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1. Introduction

Fractional calculus (FC) was born almost the same time as the

integer order calculus [1–6] and resulted from a discussion be-

tween Leibniz and Bernoulli. Recently FC abandoned a pure

mathematical perspective and was recognised by the applied

sciences community, namely physics and engineering [7–23],

giving rise to interesting applications in many fields, such

as biology [24, 25], biomedical engineering [4, 26–28], fi-

nance [29], and signal processing [30] just to mention a few.

FC is an essential tool for modelling long memory and

long range processes. This non-locality in time and space can

be found in many phenomena, such as the diffusion process-

es [31–34], anomalous porous media [35], and fractional

spaces [36]. Viscoelasticity is another subject of active stud-

ies [37]. The modelling of mechanical systems, from 1-D [38]

to n-D [16, 39, 40], is also an important subject that attract-

ed the attention of researchers. This has been accomplished

through the fractionalization of Hamiltonian and gradient con-

cepts [16, 17, 39, 40]. The general case of field theories was

tackled by Herrmann [41, 42].

The generalization of the vectorial operators: gradient, di-

vergence, curl, and Laplacian was discussed in [43], starting

by the space version of the fractional forward and backward

Grünwald-Letnikov and Liouville derivatives [5, 44]. These

operators are used to define a pair of left and right fractional

gradients that lead to the corresponding divergences and curls.

The fractional Laplacian is obtained from the inner product of

the left and right gradients. Such operators are backward com-

patible in the sense that they recover the classical definitions

when the order is 1.

An important aspect of our formulation concerns the use

of distinct orders for different directions. These non-local

∗e-mail: mdo@fct.unl.pt

Manuscript submitted 2017-12-06, revised 2018-02-14 and 2018-03-06,

initially accepted for publication 2018-03-07, published in August 2018.

tools, unlike the classical ones, look more suitable for dealing

with non-homogeneous and anisotropic media.

With those operators the generalized Helmholtz decompo-

sition theorem for fractional space and time is reviewed and

decoupled by means of fractional wave equations for fields or

potentials. The generalization is based on differential opera-

tors and points to the need for an integral formulation.

The importance of the classical Green’s, Stokes’, and

Ostrogradski-Gauss’s integral theorems is unquestionable.

Hence, attempts to derive a fractional formulation based on

two different point of views have been made, namely, frac-

tal geometry [35, 36, 39, 45] and FC [31, 39, 46]. In this line

of thought, we propose the fractional version of such theo-

rems for rectangular domains. The starting point is the gen-

eralization of the fundamental theorem of calculus. Several

researchers tried this topic [16, 46, 47], but without having

the support of the notion of fractional definite integral (FDI)

and, consequently, achieving limited results. However, recent-

ly this concept was tackled by means of the generalization

of the Barrow formula [48]. Having defined the FDI on R,
we can introduce definite integrals in R

2 and R
3 for rec-

tangular domains. Here we use those ideas to generalize the

classic Green’s, Stokes’, and Ostrogradski-Gauss’s theorems,

bearing in mind a full agreement with the fractional vecto-

rial operators proposed in [43]. In a wider scope, this work

follows the generalization of the FC the concepts and pro-

vides a straightforward methodology for the adoption of FC

in applied sciences.

The manuscript is organized as follows. Section 2 defines

the main fractional derivatives suitable for fractional vecto-

rial calculus. Time and space derivatives are introduced using

the Grünwald-Letnikov and Liouville formulations. Two-sided

derivatives are also included due to their importance in the

development of differential vectorial tools, namely the Lapla-

cian. The tools are described in Sec. 3, where we analyze the

left and right gradients, divergences, and curls, called “first

generation operators”, leading to a second group of “second
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generation operators” and particularly to the fractional Lapla-

cian. This is compared with the fractional Laplacian based

on the Riesz potential. The generalized Helmholtz decom-

position is recalled and its solution expressed in terms of

those corresponding to several fractional wave equations. In

Sec. 4, the fractional definite integrals are described. They are

used in Sec. 5 to extend the classic integral theorems towards

the fractional case. The Green’s, Stoke’s, and Ostrogradski-

Gauss’s theorems in rectangular domains are formulated. The

particular cases of uniform fractional orders is also discussed.

Finally, Sec. 6 outlines the main conclusions.

1.1. Remarks

• We will assume that we are working on R
3 and that the

set {e1, e2, e3} constitutes its standard orthonormal base.

Therefore, each vector has the representation

v = v1e1 + v2e2 + v3e3.

In particular, we define the vector

r = x1e1 + x2e2 + x3e3. (1)

• A vectorial function is represented by

f(x1, x2, x3) = f1(x1, x2, x3)e1 + f2(x1, x2, x3)e2

+f3(x1, x2, x3)e3.

• When necessary, we write α = (α1, α2, α3) and ω =
(ω1, ω2, ω3) and similarly for other cases, as s.

• We will use the two-sided Laplace transform (LT) of

f(x1, x2, x3) defined on R
3 and given by:

F (s) = L [f(x1, x2, x3)]

=

∫

R3

f(x1, x2, x3)e
−(s·r)dx1dx2dx3,

(2)

under the usual existence conditions. The inverse LT is [49]

f(x1, x2, x3) =
1

(i2π)3

a1+i∞∫

a1−i∞

a2+i∞∫

a2−i∞

a3+i∞∫

a3−i∞

F (s)e(s·r)d3s,

(3)

where a = (a1, a2, a3) is in the region of convergence of

the transform and i =
√
−1.

• The Fourier transform (FT) is obtained from the LT using

the substitution s = iω with ω ∈ R
3 is defined by the

synthesis equation [50]

f(x1, x2, x3) =
1

(2π)3

∫

R3

F (ω)ei(ω.r)d3ω (4)

and the corresponding analysis equation

F (ω) = F [f(x1, x2, x3)]

=

∫

R3

f(x1, x2, x3)e
−i(ω.r)dx1dx2dx3.

(5)

• We will work with the multivalued expressions sα and

(−s)α. To obtain functions from them, we fix for branchcut

lines the negative real half axis for the first and the positive

real half axis for the second; for both we work on the first

Riemann surface.

2. Suitable fractional derivatives

2.1. Previous comments. In [51], two criteria were proposed

for deciding if a given operator can be considered as a frac-

tional derivative. According to such criteria, there are several

acceptable definitions. Later, it was shown that only some of

such derivatives are suitable when thinking on the generaliz-

ing classic tools [44]. In particular, they must verify the index

law in order to ensure that, given a derivative, there exists its

inverse, that is the anti-derivative, [48]. In the follow-up such

derivatives are recalled.

2.2. About time derivatives. Let f(t), t ∈ R, be a function

of time, having Laplace transform, F (s), with a given re-

gion of convergence and introduce the Pochhammer symbol

(a)n = a(a+ 1) · · · (a + n − 1), n ∈ N, with (a)0 = 1. Let

us define two sets of fractional derivatives according to the

arrow of time, namely the forward and backward derivatives:

Definition 2.1 (forward Grünwald-Letnikov).

Dα
f f(t) = lim

h→0+
h−α

∞∑

n=0

(−α)n

n!
f(t− nh), (6)

Definition 2.2 (backward Grünwald-Letnikov).

Dα
b f(t) = e−iπα lim

h→0+
h−α

∞∑

n=0

(−α)n

n!
f(t+ nh). (7)

There are several properties exhibited by (6) and (7) [51]:

• Linearity

• Additivity and commutativity of the orders (index law). If

we apply (6) twice for any two orders α and β, we have

Dα
fD

β
f f(t) = Dβ

fD
α
f f(t) = Dα+β

f f(t). (8)

• Neutral and inverse elements

Dα
fD

−α
f f(t) = D0

ff(t) = f(t). (9)

From (9) we conclude that there is always an inverse el-

ement, that is, for every order α there is always the −α
order derivative.

• Backward compatibility (n ∈ N)

If α = n, then:

Dn
f f(t) = lim

h→0

∑n
k=0(−1)k

(
n
k

)
f(t− kh)

hn
.

We obtain this expression repeating the first order deriva-

tive.

If α = −n, then:

D−n
f f(t) = lim

h→0

n∑

k=0

(n)k

k!
f(t− kh) · hn,

that corresponds to a n-th repeated summation [5].
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• We can apply the LT to (6) and (7) to obtain

L
[
Dα

f f(t)
]

= sαL [f(t)] , (10)

with Re(s) > 0 in the first and Re(s) < 0 in the second.

Let N = ⌊α⌋ + 1. For functions with LT or FT, there are

integral formulations for the fractional derivatives, enjoying

the same set of properties.

The most general integral formulations of derivatives, in

the sense of being valid for any functions defined in R, are

introduced in the folowing definitions [44, 52].

Definition 2.3 (forward regularised Liouville derivative).

Dα
f f(t) =

1

Γ(−α)

∞∫

0

·
[
f(t− τ) − u(α)

N−1∑

0

(−1)mf (m)(t)

m!
τm

]
τ−α−1dτ,

(11)

where u(·) is the unit step function.

Definition 2.4 (backward regularised Liouville derivative).

Dα
b f(t) =

e−iαπ

Γ(−α)

∞∫

0

·
[
f(t+ τ) − u(α)

N−1∑

0

f (m)(t)

m!
τm

]
τ−α−1dτ.

(12)

Other Liouville derivatives can be defined on R. One, sim-

ply called “Liouville derivative”, is similar to the Riemann-

Liouville [1] and the other is the “Liouville-Caputo deriva-

tive” [44, 53, 54], similar to the Caputo derivative.

2.3. On space derivatives. For derivatives in the time do-

main we consider two cases with the same LT and we inter-

preted them as causal and anti-causal according to the region

of convergence.

When dealing with derivatives in the space domain there

is no need to impose causality, since we can move in all direc-

tions. Therefore, two fractional space derivatives called “left”

and “right”, are adopted. The left (in space) is defined by the

same expression as for the forward derivative (in time) and

denoted Dα
lxf(x).

Definition 2.5 (left and right Grünwald-Letnikov derivatives).

Dα
lxf(x) = lim

h→0+
h−α

∞∑

n=0

(−α)n

n!
f(x− nh). (13)

The right space derivative, Dα
rxf(x), is defined as the

backward, but removing the exponential factor – see (7)

Dα
rxf(x) = lim

h→0+
h−α

∞∑

n=0

(−α)n

n!
f(x+ nh), (14)

The lack of the exponential factor in the right deriva-

tive, when compared with the backward definition (7), has, as

consequence, that the corresponding LT is different from the

LT of the left derivative. In fact, if we apply the LT to (13)

and (14), then we obtain

L [Dα
lrxf(x)] = (±s)αL [f(x)] , (15)

with Re(s) > 0, in the left derivative (+ sign), andRe(s) < 0,

in the right (− sign) case.

2.4. Two-sided derivatives. The composition of derivatives

of the same type (e.g. left) is a derivative of the same type.

If the composition is mixed, say a left with a right one, then

we obtain a two-sided derivative, that can be called centred

derivative.

Two centred derivatives were introduced in [55–57]. Let

us consider the composition of a left and a right derivatives.

As shown in [55, 56], the composition Dα
lxD

β
rxf(x) leads to

the GL centred (two-sided) fractional derivative:

Dα+β
cx f(x) := lim

h→0+
h−α−β

+∞∑

n=−∞

(−1)n

· Γ(α+ β + 1)

Γ(α− n+ 1)Γ(β + n+ 1)
f(x− nh).

(16)

In a general setup we would proceed as in [57] by in-

troducing two parameters: γ = α + β defining the derivative

order and θ = α−β sometimes called skewness. In this paper

it will be called dissymmetry, since it determines the symme-

try of the binomial parameters in (16) [57]. Nonetheless, here

we retained the order as α+ β to enhance the two sources.

The above formula has the usual integer order derivatives

as particular cases, but it introduces also others not existing

before as shown in the following examples.

Examples. Some examples show the relation between the

centred and the classic derivatives

• α = 1 and β = 0

D1+0
cx f(x) = lim

h→0+

f(x) − f(x− h)

h
.

This is one of the classical derivative definitions.

• α = 0 and β = 1

D0+1
cx f(x) = lim

h→0+

f(x) − f(x+ h)

h
.

Aside a factor (−1) this is another classical derivative.

Substituting −h for h we obtain the previous expression.

• α = 1/2 and β = 1/2

D1/2+1/2
cx = lim

h→0+
h−1

+∞∑

n=−∞

(−1)n

· 1

Γ(3/2 − n)Γ(3/2 + n)
f(x− nh).

This represents a new derivative without having an inter-

pretation in classical terms.
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• α = 1 and β = 1

D1+1
cx f(x) = lim

h→0+

2f(x) − f(x+ h) − f(x− h)

h2
.

This derivative is the classical centred derivative of order 2.

Aside a factor (−1) coincides with the classic order two

derivative

D2
cxf(x) = lim

h→0+

f(x) − 2f(x− h) + f(x− 2h)

h2
.

We can obtain other order 2 derivatives with other com-

binations. For example with α = 3/2 and β = 1/2 we

obtain

D3/2+1/2
cx = lim

h→0+
h−1

+∞∑

n=−∞

(−1)n

· 1

Γ(5/2 − n)Γ(3/2 + n)
f(x− nh).

This represents also a new derivative.

We must note that the LT of the centred derivatives does

not exist. In fact, it would be given by (s)α(−s)β , but the

region of convergence is the empty set. However, the corre-

sponding Fourier transform is given by [5, 55, 56]

lim
s→ik

(s)α(−s)β = |k|α+β ei π
2
(α−β)·sgn(k).

We can write

F
[
Dα+β

cx f(x)
]

= |k|α+β
ei π

2
(α−β)·sgn(k)F (ik), (17)

where sgn(·) is the signum function and F (ik) is the FT of

f(x).
The special case where α = β

F
[
D2α

cx f(x)
]

= |k|2α
F (ik) (18)

will be very important due to its relation with the FT of the

Laplacian. The properties of the two-sided derivatives are dis-

cussed in detail in [55, 56]. In the following we describe the

most important:

• Linearity

• Additivity and commutativity

If 2α+ 2β > −1, [55, 56]

D2α
cx

[
D2β

cx f(x)
]

= D2β
cx

[
D2α

cx f(x)
]

= D2α+2β
cx f(x) (19)

• Neutral and inverse elements

In particular, with 2α + 2β = 0, relations (19) show that,

for any centred derivative of order α, with |α| < 1/2, there

is an anti-derivative, with order −α, [55,56] and it can be

obtained by using formula (18)

D2α
cx

[
D−2α

cx f(x)
]

= D0
cxf(x) = f(x). (20)

This implies that the derivative of order 2α = 1 does not

have inverse given by (16).

• Relation with the Riesz-Feller derivative

In the 1-D case, the Riesz and the Riesz-Feller operators are

closely related with the centred derivative defined in (16).

In particular such operators can be obtained for α = β, and

for α− β = ±1, respectively ( [55,56] and [1], page 214).

Remark 2.1. All the results derived using the GL derivative

can be obtained with the integral formulations, due to their

equivalence, at least for functions with LT [52].

Remark 2.2. Partial derivatives are readily obtained from the

above definitions. Usually the symbol ∂x is adopted for denot-

ing the partial derivatives. Here, we will continue using Dx.

For example

Dα
lx2

= lim
h→0+

h−α
+∞∑

n=0

(−1)n (−α)n

n!
f(x1, x2 − nh, x3).

For the other derivatives, the notations are similar.

3. Fractional vectorial differential operators

3.1. The gradients, divergences, and curls. Let us consider

a scalar field f(x1, x2, x3). The usual integer order gradient is

a vector with components corresponding to the partial deriva-

tives of the scalar field. The gradient points in the direction of

the largest rate of function increase and its magnitude is the

slope of the graph in that direction. This important and useful

tool has some limitations since it requires a smooth field and

uses derivatives of order one.

Here we extend its applications by considering not on-

ly fractional derivatives, but also (and more important) dif-

ferent orders. With this in mind, we are able to model non-

homogenous and non-isotropic spaces. Essentially we can face

complexity in different directions.

For any α ∈ R, we define left gradient operator by

Definition 3.1.

gradα
l (·) = ∇α

l (·) := Dα1

lx1
(·)e1 +Dα2

lx2
(·)e2 +Dα3

lx3
(·)e3.

(21)

Similarly, for any α ∈ R
3, we define right gradient oper-

ator through

Definition 3.2.

gradβ
r (·) = ∇β

r (·) := Dβ1

rx1
(·)e1 +Dβ2

rx2
(·)e2 +Dβ3

rx3
(·)e3.

(22)

The gradients act on a scalar function defined on R
3 and

generate vectors having as components the partial derivatives

of the function: the nabla is a vectorial differential opera-

tor. Their action over other vectors, namely vectorial func-

tions with components defined on R
3, originates two pairs of

differential vectors obtained using the inner or scalar prod-

uct and the cross or vectorial product. Let f(x1,x2,x3) be

a vectorial function. Calculating the inner product of the left

gradient and f we get the left divergence of f

divα
l (f) = ∇α

l · f := Dα1

lx1
f1 +Dα2

lx2
f2 +Dα3

lx3
f3. (23)

With the right nabla we obtain the right divergence

(divα
r (f)), similarly defined.

If, instead of the inner product, we use the cross product,

then we derive the left and right curls. For the left curl we

have
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curlαl (f) = (∇α
l × f) :=

∣∣∣∣∣∣∣

Dα1

lx1
Dα2

lx2
Dα3

lx3

f1 f2 f3

e1 e2 e3

∣∣∣∣∣∣∣
. (24)

We can write

(∇α
l × f) =

[
Dα2

lx2
f3 −Dα3

lx3
f2

]
e1

+
[
Dα3

lx3
f1 −Dα1

lx1
f3

]
e2

+
[
Dα1

lx1
f2 −Dα2

lx2
f1

]
e3.

(25)

The corresponding right (curlαr (f)) is readily obtained.

The three pairs of operators defined in (21)–(24) will be

called first generation operators [43], because they use only

the left or right derivatives, that is, not both.

Remark 3.1. With the LT such operators can be formulated

easily from a transform perspective. To exemplify, the LT of

the divergence is given in the LT domain by the inner product

of the vector sα and the transform of the vector field,

L
[
divα

lr(f)
]

=
(
(±s)α · L [f ]

)
.

Remark 3.2. The choice of the region of convergence

(Re(s) > 0 or Re(s) < 0) and the sign determines the type

of divergence: left or right.

Similarly, we obtain for the LT of the curl

L
[
curlαlr(f)

]
=

(
(±s)

α × L [f ]
)
,

under the conditions stated in Remark 3.2.

3.2. Mixed operators. The above operators can be combined

to get second generation operators in several distinct ways, but

in agreement with the previous ideas. The most important are

those resulting from combinations of left-right operators that

produce two-sided derivatives.

3.2.1. Internabla operations. Divergence and curl operators

were defined by inner and outer products of the nabla (left or

right) and a vectorial function. If we substitute this function

by the left/right nabla, then we get the following operators

1. (a) (∇α
l ×∇α

r )
Using (25) we can write

(∇α
l ×∇α

r ) =
[
Dα2

lx2
Dα3

rx3
−Dα3

lx3
Dα2

rx2

]
e1

+
[
Dα3

lx3
Dα1

rx1
−Dα1

lx1
Dα3

rx3

]
e2

+
[
Dα1

lx1
Dα2

rx2
−Dα2

lx2
Dα1

rx1

]
e3

It is well known that in integer order calculus we

have the important property: ∇1 × ∇1 ≡ 0. This is

not valid with the operator (∇α
l ×∇α

r ) that in general

is not null.

(b) (∇α
l ×∇α

l ) and (∇α
r ×∇α

r )
We have:

(∇α
l ×∇α

l ) = (∇α
r ×∇α

r ) = 0 (26)

that will be useful in 3.3.

2. (a) (∇α
l · ∇α

l ),
With the results presented in 3.1 we have

(∇α
l · ∇α

l ) = D2α1

lx1
+D2α2

lx2
+D2α3

lx3

(b) (∇α
r · ∇α

r )
This is similar to the previous case

(∇α
r · ∇α

r ) = D2α1

rx1
+D2α2

rx2
+D2α3

rx3
.

Remark 3.3. The two last operators are scalar one-

sided. They are similar to the fractional Laplacian

that we will define next.

(c) (∇α
l · ∇α

r ),
Attending to the results presented in Subsec. 3.1, we

obtain easily:

(∇α
l · ∇α

r ) = Dα1

lx1
Dα1

rx1
+Dα2

lx2
Dα2

rx2
+Dα3

lx3
Dα3

rx3

and from (16) we derive that

Dα1

lx1
Dα1

rx1
f(x1, x2, x3) = D2α1

c f(x1, x2, x3)

= lim
h→0

h−α
∞∑

n=−∞

(−1)
n

Γ(2α1+1)

Γ(α1+n+1)Γ(α1−n+1)
(27)

f(x− nh, y, z).

This expression is the centred fractional derivative [5]

of order 2α1 relatively to the variable x1. For x2 and

x3 the expressions are similar.

Definition 3.3. With (27) we can define the fractional Lapla-

cian with order α by

∆α := (∇α
l · ∇α

r ) = D2α1

cx1
+D2α2

cx2
+D2α3

cx3
. (28)

Remark 3.4. When α1 = α2 = α3 = 1 the centred derivative

equals the classic centred derivative of order 2, but we do not

recover the classic Laplacian, because it uses a non centred

derivative and as consequence, it yields a (−1) factor.

Attending to these considerations about the use of LT in

Remarks 3.1 and 3.2 and relations (17) and (18) we conclude

that, for this operator, the region of convergence degenerates

into the imaginary axis. This means that the suitable trans-

form is the FT.

For the FT of the Laplacian we use (18) and the properties

of the two-sided derivatives [55, 56] to obtain

FT
[
∆αf(x1, x2, x3)

]
= ‖k‖2α

F (ik), (29)

where

‖k‖2α
= |k1|2α1 + |k2|2α2 + |k3|2α3 . (30)

When αi = 1/2, i = 1, . . . , 3, we obtain a new Laplacian of

order α = 1/2 that results from the application of derivatives

of order 1/2.

The above Laplacian is valid for orders verifying αi >
−1/2, due to the conditions of existence of the two-sided

derivatives, [55,56]. However, due to the relation between the

centred derivative and the Riesz potential referred above, we

can compute the partial derivatives in (28) for αi ≤ −1/2
with the 1-D Riesz potential, which enlarges the validity of

the definition to any orders. This means that the Laplacian

introduced in (28) can be computed for any real order.
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It is relevant to refer here that we can define a more gen-

eral Laplacian by using operators with different orders:

∆α,β = (∇α
l · ∇β

r ) = Dα1+β1

cx1
+Dα2+β2

cx2
+Dα3+β3

cx3

with FT given by

FT
[
∆α,βf(x1, x2, x3)

]
= (k)α,βF (ik),

where

(k)α,β =
3∑

1

|km|αm+βmei π
2
(αm−βm)·sgn(km).

3.2.2. On the Laplacian. The Laplacian is an important op-

erator in physics and engineering. However, the standard de-

finition does not cope with domains that are neither homo-

geneous, nor isotropic. Researchers in applied sciences have

been interested in a definition of fractional Laplacian suitable

for describing such type of media. In recent studies the frac-

tional Laplacian was implemented by means of the inverse of

the Riesz potential [58–60]. However, it is not straightforward

that this is the suitable option when thinking in applications

where the properties change with direction. In fact, the inverse

of the Riesz potential cannot be expressed as a sum of partial

derivatives and is only defined using the inverse of Fourier

transform of the operator [61].

The classical Laplacian is defined in 3-D by

∆f(x) =
∂2f(x)

∂x2
1

+
∂2f(x)

∂x2
2

+
∂2f(x)

∂x2
3

, (31)

where x = (x1, x2, x3). This operator is fundamental in

physics, namely in electromagnetism. Applying the FT to

equation (31), we obtain

F(−∆f)(k) = |k|2f̂(k) (32)

with

|k|2 =

3∑

j=1

k2
j . (33)

Remark 3.5. If instead of the usual right derivative used to

define the Laplacian, the centred one is adopted, then the sign

− can be removed.

In his work [58], Riesz implicitly suggested several pos-

sible definitions of fractional Laplacian [3,58], but he did not

present the explicit realization of such operators. Nonethe-

less, Riesz deduced expressions suggesting that the potential

defined by

(Iα
Rf)(x) :=

1

γ3(α)

∫

R3

f(y)|x− y|α−3dy, (34)

for any positive α, could implement the inverse of the integer

order Laplacian. The normalizing constant γ3(α) is given by

γ3(α) =
π

3
2 22αΓ (α)

Γ
(

3−2α
2

) = 2
π2Γ (2α)

Γ
(

3−2α
2

)
Γ

(
1
2 + α

) . (35)

In the literature several authors have proposed expressions

for the Riesz Laplacian by looking for an operator satisfying

the generalization of (32), that is, by verifying:

F((−∆)αf)(k) = |k|2αF(f)(k), (36)

with 0 < α ≤ 1 and

|k|2α =




3∑

j=1

k2
j




α

. (37)

This operator can be implemented by [1] means of

(−∆)αf(x) :=
1

γ3(α)

∫

R3

(∆l
yf)(x)

|x− y|2α+3
dy, (38)

where (∆l
yf)(x) is the l-th difference of f(x). For l > 2α the

above integral is absolutely convergent. Often we have α < 1
and l is chosen as l = 1 yielding [59, 60]

(−∆)αf(x) :=
1

γ3(α)

∫

R3

f(y) − f(x)

|x− y|2α+3
dy. (39)

Operator (39) has been used to implement the fractional

Laplacian [59, 60]. However, the Riesz based Laplacian does

not fit into our proposal pointing to the generalization of clas-

sic vectorial operators.

3.3. Vectorial Laplacian and mixed operators. Starting

from the Laplacian formulation, (28), we can define the vec-

torial Laplacian

lapαf = ∆αf1e1 + ∆αf2e2 + ∆αf3e3 (40)

that enjoys a very important relation shared with two pairs of

mixed operators

1. Gradient of a divergence

We define gradient of a divergence as

gradα
r (divα

l f) := ∇α
r (divα

l f)

= D2α1

cx1
f1e1 +D2α2

cx2
f2e2 +D2α3

cx3
f3e3

+Dα1

rx1
Dα2

lx2
f2e1 +Dα2

rx2
Dα3

lx3
f3e2 +Dα3

rx3
Dα1

lx1
f1e3

+Dα1

rx1
Dα3

lx3
f3e1 +Dα2

rx2
Dα1

lx1
f1e2 +Dα3

rx3
Dα2

lx2
f2e3.

(41)

Remark 3.6. We obtain gradα
l (divα

r f) with the substitu-

tions l for r and r for l.

Remark 3.7. We can also define gradα
l (divα

l f) and

gradα
r (divα

r f), but they are one-sided operators of limited

interest.

2. Divergence of a curl

We can define several divergence of a curl operators as

before. The most interesting are the following

divα
l (curlαl (f))=divα

l (∇α
l × f)=∇α

l · ∇α
l × f =0, (42)

divα
r (curlαr (f))=divα

r (∇α
r × f)=∇α

r · ∇α
r × f =0, (43)

because they are identically null as in the usual integer

order case.
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3. Curl of a curl

We start defining curl of a curl by curlr(curll(f)). To ob-

tain a closed form for this operator we use the vectorial

Laplacian to get:

curlαr (curlαl (f)) = gradα
l (divα

r (f)) − lapαf (44)

in agreement with the classical result. Obviously we can

have alternative order for the symbols “l” and “r” obtaining

a second valid relation:

curlαl (curlαr (f)) = gradα
r (divα

l (f)) − lapαf . (45)

Remark 3.8. It is possible to generalize and to combine op-

erators with any triplets of orders: α = (α1, α2, α3) 6= β =
(β1, β2, β3) as we did before for the Laplacian.

Remark 3.9. In the above expressions it was assumed that

the orders of the operators are fixed. Nevertheless, we can

consider changing the orders of derivation. As concerns the

derivation in time, we only have to perform another deriva-

tive using a suitable order, since the proposed time derivative

verifies the additivity of the orders that can assume any real

value. Concerning the space derivatives, the problem may not

have a such simple solution. It was conjecturated [43] that

we can substitute a given field, F, by gradβ
r div

α
l F, but that

conjecture remains to be proved.

3.4. Fractional generalized Helmholtz decomposition the-

orem. The Helmholtz decomposition theorem is a classical

result that allows the decomposition a given time independent

field into curl-free and divergence-free components [62, 63].

This theorem was extended by Kapuścik for the time vari-

ant case and simultaneously deduced some gauge invariants

of classical field theories [64]. This development was used by

Nevels [65] to present a derivation of Maxwell equations. Fol-

lowing Kapuścik’s procedure, similar conclusions for a frac-

tional setup were obtained in [43]. Essentially the procedure

consists in the decomposition of two fields in terms of time-

dependent scalar and vectorial potentials. The decomposition

involves the vectorial tools presented in the previous sections

and the forward fractional time derivative (to impose causal-

ity).

Theorem 3.1. Helmholtz decomposition theorem

1. Consider a pair of time-dependent vector fields F1 and

F2 that are null at an infinitely long distance. Such pair is

uniquely determined by

r1 = divα
l F1, (46)

r2 = divα
r F2, (47)

and

j1 = curlαr F1 + a2
∂γF2

∂tγ
, (48)

j2 = curlαl F2 + a1
∂γF1

∂tγ
, (49)

where a1 and a2 are two constants with physical meaning

used to match the physical dimensions.

2. For the above pair of fields there are four potentials, two

scalar, φ1 and φ2, and two vectorial, A1 and A2, that are

able to represent those fields according to

F1 = −gradα
r φ1 −

∂γA1

∂tγ
+

1

a1
curlαl A2, (50)

F2 = −gradα
l φ2 −

∂γA2

∂tγ
+

1

a2
curlαr A1. (51)

Remark 3.10. In this generalization of the Helmholtz decom-

position, the gradient and the rotational have different char-

acter: one is left and the other right-sided.

Remark 3.11. The scalars r1 and r2 and the vectors j1 and

j1 have the role of inputs to the system defined by (46) to (49).

Remark 3.12. The two fields are interlaced. The solution of

(46) to (49) for obtaining the fields consists of decoupling that

relationship.

Remark 3.13. Another manifestation of that relationship can

be obtained with the divergence operators in (48) and (49)

using (42) and (43) to get

divα
r j1 = a2

∂γr2
∂tγ

, (52)

divα
l j2 = a1

∂γr1
∂tγ

. (53)

Remark 3.14. The scalar and vectorial potentials serve as in-

termmediate tools to obtain the fields (outputs of the system).

3.4.1. Solution in terms of potentials. To justify this theo-

rem it was shown that the pair of fields can be determined

from the four potentials [43]. As referred above we consid-

er r1, r2, j1, and j2 as inputs to the system and F1 and F2

the outputs. The scalar and vectorial potentials are auxilliary

functions. Therefore, we need relations involving such poten-

tials serving as intermmediate tools to compute the fields from

the input functions.

Such relations are obtained by applying the divergence

and rotational operators for both fields and manipulating the

equations with the help of the vectorial operators introduced

in Sec. 3. As shown in [43] the four potentials are completely

determined from four equations and once they are known we

obtain the fields F1 and F2. Such equations assume the form

a1j1 = gradα
l

[
divα

r A2 − a1a2
∂γφ2

∂tγ

]

−
[
lapαA2 + a1a2

∂2γA2

∂t2γ

]
,

(54)

a2j2 = gradα
r

[
divα

l A1 − a1a2
∂γφ1

∂tγ

]

−
[
lapαA1 + a1a2

∂2γA1

∂t2γ

]
,

(55)
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r1 = − ∂γ

∂tγ

[
divα

l A1 − a1a2
∂γφ1

∂tγ

]

−
[
∆αφ1 + a1a2

∂2γφ1

∂t2γ

]
,

(56)

r2 = − ∂γ

∂tγ

[
divα

r A2 − a1a2
∂γφ2

∂tγ

]

−
[
∆αφ2 + a1a2

∂2γφ2

∂t2γ

]
.

(57)

This formulation suggests that for each pair (φi,Ai),
i = 1, 2, we expect to have:

1.

divα
l A1 − a1a2

∂γφ1

∂tγ
= 0, (58)

divα
r A2 − a1a2

∂γφ2

∂tγ
= 0, (59)

allowing us to obtain 4 decoupled equations.

2. Let u1 and u2 be two scalar potentials, and B1 and B2

be two vectorial potentials verifying (58), (59), and (61).

Then, the fields (50) and (51) remain invariant under the

transformations:

φ1 −→ φ1 − ∂γu1

∂tγ − 1
a1a2

divα
l B1

φ2 −→ φ2 − ∂γu2

∂tγ − 1
a1a2

divα
r B2

A1 −→ A1 + gradα
r u1 − ∂γ

B1

∂tγ − 1
a1
curlαl B2

A2 −→ A2 + gradα
l u2 − ∂γ

B2

∂tγ − 1
a2
curlαr B1

(60)

3. Any other scalar or vector potential used to obtain the in-

variants must give a null contribution to the fields, meaning

that they must verify the condition:

∆αψ + a1a2
∂2γψ

∂t2γ
= 0. (61)

According to the above relations (54) to (61) we conclude

that we can always choose the scalar and vectorial potentials

verifying (61). This together with (60) implies that the con-

ditions (58) and (59) are also satisfied leading to simplified

decoupled equations for the potentials

a1j1 = −
[
lapαA2 + a1a2

∂2γA2

∂t2γ

]
, (62)

a2j2 = −
[
lapαA1 + a1a2

∂2γA1

∂t2γ

]
, (63)

r1 = −
[
∆αφ1 + a1a2

∂2γφ1

∂t2γ

]
, (64)

r2 = −
[
∆αφ2 + a1a2

∂2γφ2

∂t2γ

]
, (65)

establishing a set of 8 independent equations involving the

Laplacian. Once the potentials are computed, the fields F1

and F2 are readily obtained using (50) and (51).

3.4.2. Decoupled solution involving the fields. We can

avoid passing by intermmediate potentials if we use wave

equations for the fields (see [43]). Such equations are

lapαF1 + a1a2
∂2γF1

∂t2γ
= −curlαl j1

+ gradα
r r1 + a2

∂γj2

∂tγ
,

(66)

lapαF2 + a1a2
∂2γF2

∂t2γ
= −curlαr j2

+ gradα
l r2 + a1

∂γj1

∂tγ
.

(67)

Remark 3.15. The above theory only makes sense if it is

a true generalization of the classic integer order counterpart.

Therefore, when the orders in the gradients, divergences, and

curls become 1 we have to obtain the classic Helmholtz de-

composition theorem. From the derivative definitions given in

Sec. 2 we conclude that the fractional left and right gradi-

ents, divergences, and curls recover the classic corresponding

operators, since there is no difference between integer order

left and right derivatives. On the other hand, these operators

are continuous functions of the orders. The unique difference

lies in the Laplacian definition. The one proposed here leads

to an expression that has a “−” sign when compared to the

classic one, due to the use of the two-sided derivative.

Remark 3.16. There are several approaches for obtaining

the fractional Maxwell equations [22, 39, 40, 66], but without

the coherence given by the previous formalism. In [43] a ver-

sion of fractional Maxwell equations based on the generalized

Helmholtz decomposition was proposed.

4. On the fractional definite integrals

4.1. Previous considerations. The concept of fractional def-

inite integrals (FDI) was introduced in [48]. Starting with

a generalization of Barrow formula an FDI definition was

proposed, followed by the formulation of the “fractional fun-

damental theorem of calculus”. These developments allowed

the definition of double and triple integrals on rectangular

spaces. Here we will recall those results in the scope of the

present work.

4.2. A generalized Barrow formula. Let f(x), x ∈ R, such

that f
(α)
lr (x), α > 0, exist – it is enough to assume that f(x)

has LT with a non void region of convergence. We denote the

two cases of left and right anti-derivatives by f
(−α)
lr (x).

Definition 4.1. The α-order fractional integral (FI) of f(x)
over the interval (a, b) is defined through the fractional Bar-

row formula

Iα
lrf(a, b) = −

b∫

a

f(x)dxα = f
(−α)
lr (b) − f

(−α)
lr (a), (68)

where the dashed integral symbol represents the FI. Using the

Liouville anti-derivative expression we can write
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Iα
lrf(a, b) =

1

Γ(α+ 1)

∞∫

0

[f(b± x) − f(a± x)] dxα, (69)

since Dxα

α = xα−1, as x ≥ 0. From the standard (integer

order) Barrow formula

b∫

a

f ′(x)dx = f(b) − f(a) we obtain

the expression

Iα
lrf(a, b) =

1

Γ(α+ 1)

∞∫

0

b∫

a

f ′(y ± x)dydxα. (70)

Since the function f(x) has LT, the integral in (69) exists.

The same happens with inner integral in (70) that is uniformly

convergent. Consequently, we can commute the integrations

to obtain

Iα
lrf(a, b) =

b∫

a

f
(−α+1)
lr (x)dx. (71)

Considering as variable the upper limit, b = z ∈ R, (71)

leads to a fractional formulation of the fundamental theorem

of integral calculus. In fact, setting f(x) = Dα
lrg(x) we can

write [48]

Iα
lrD

α
lrg(a, z) =

z∫

a

D
(1)
lr g(x)dx = g(z) − g(a), (72)

and

Dα
lr [Iα

lrf(a, z)] = Dα
lr

[
f

(−α)
lr (z) − f

(−α)
lr (a)

]
= f(z), (73)

since, for the adopted formulations of derivatives, the deriva-

tive of a constant is zero.

4.3. Integrals in R
2 and R

3. Let us assume that the func-

tion g is dependent of a variable, x1, and a parameter, x2, that

is kept fixed, f(x1, x2). We define the parametric integral

Iα
lrg(a1, b1, x2) = −

b1∫

a1

g(x1, x2)dx
α1

1

= g
(−α1)
lr (b1, x2) − g

(−α1)
lr (a1, x2).

(74)

Similarly, fixing x1 and having x2 for variable, we define the

parametric integral

Iα
lrg(x1, a2, b2) = −

b2∫

a2

g(x1, x2)dx
α2

2

= g
(−α2)
lr (x1, b2) − g

(−α2)
lr (x1, a2).

(75)

This motivates to the following definition.

Definition 4.2. The FI on a rectangular region (a1, b1) ×
(a2, b2) is given by

Iα
lrg(a1, b1, a2, b2) = −

b1∫

a1

−
b2∫

a2

g(x1, x2)dx
α1

1 dxα2

2 , (76)

where each integration is obtained by the fractional Barrow

formula.

If the orders of the FD are equal (i.e., α1 = α2 = α),

then we can consider the standard expression for surface,

x1x2 = S, to get the fractional surface integral

Iα
lrg(a1, b1, a2, b2) = −

∫

S

g(x1, x2)dS
α. (77)

The integral in R
3 is obtained in a similar way.

Definition 4.3. The FI in R
3 is defined by

Iα
lrg(a1, b1, a2, b2, a3, b3)

= −
b1∫

a1

−
b2∫

a2

−
b3∫

a3

g(x1, x2, x3)dx
α1

1 dxα2

2 dxα3

3 ,
(78)

where each integration is performed by means of the fraction-

al Barrow formula.

If the derivative orders are equal (i.e., α1 = α2 =
α3 = α), then we get

Iα
lrg(a1, b1, a2, b2, a3, b3) = −

∫

V

g(x1, x2, x3)dV
α, (79)

where we considered the standard expression for volume,

V = x1x2x3.

5. Fractional classic integral theorems

in rectangular domains

In this section we generalize the classic integral theorems of

Green, Stokes, and Ostrogradski-Gauss by following a pro-

cedure similar to the one adopted in [46]. Furthermore, we

will use the left derivative unless another option is explicitly

mentioned.

5.1. The Green’s theorem. Let us consider a closed

path γ defining a rectangle in the horizontal plane

Σ = {(x1, x2) : a1 ≤ b1, a2 ≤ b2} and a vectorial function

f(x1, x2) = f1(x1, x2)~e1 + f2(x1, x2)~e2, where ~ei, i = 1, 2,
define the usual orthogonal base in R

2. Let αi, i = 1, 2, be

the order of the derivative with respect to the variable xi. The

line FI along γ is defined by:

Iα
lrf(γ) = −

b1∫

a1

f1(x1, a2)dx
α1

1 + −
b2∫

a2

f2(b1, x2)dx
α2

2

+−
a1∫

b1

f1(x1, b2)dx
α1

1 + −
a2∫

b2

f2(a1, x2)dx
α2

2

= −
b1∫

a1

[f1(x1, a2) − f1(x1, b2)] dx
α1

1

+−
b2∫

a2

[f2(b1, x2) − f2(a1, x2)] dx
α2

2 .
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Using the fractional formulation of the fundamental theorem

of integral calculus (72) and the Fubini theorem [67], we can

write

Iα
lrf(γ) = −

b1∫

a1

−
b2∫

a2

·
[
−Dα2

x2
f1(x1, x2) +Dα1

x1
f2(x1, x2)

]
dxα1

1 dxα2

2 .

In this line of thought, introducing the notation −
∫

γ

f(γ)dγα =

Iα
lrf(γ), we can formulate the following theorem.

Theorem 5.1. The fractional Green’s theorem for a rectangu-

lar domain Σ is given by

−
∫

γ

f(γ)dγα = −
b1∫

a1

−
b2∫

a2

·
[
Dα1

x1
f2(x1, x2) −Dα2

x2
f1(x1, x2)

]
dxα1

1 dxα2

2 .

(80)

This theorem is valid for a region formed by juxtaposing

a finite number of small rectangles. In this case the integra-

tion paths is a succession of horizontal and vertical segments.

We can write dγα = cdxα1

1 + (1 − c)dxα2

2 , with c = 1 and

c = 0 for horizontal and vertical segments, respectively.

Consider two rectangles placed side by side, Σ1 =
{(x1, x2) : a1 ≤ b1, a2 ≤ b2}, and Σ2 = {(x1, x2) : b1 ≤
2b1 − a1, a2 ≤ b2}. The corresponding surrounding lines are

γ1 and γ2. Let Σ be the union of the two rectangles and γ
the surrouding line. We have:

−
∫

γ1

f(γ)dγα + −
∫

γ2

f(γ)dγα

= −
b1∫

a1

f1(x1, a2)dx
α1

1 + −
b2∫

a2

f2(b1, x2)dx
α2

2

+−
a1∫

b1

f1(x1, b2)dx
α1

1 + −
a2∫

b2

f2(a1, x2)dx
α2

2 + −
bb1∫

b1

f1(x1, a2)dx
α1

1

+−
b2∫

a2

f2(b1, x2)dx
α2

2 + −
b1∫bb1 f1(x1, b2)dx

α1

1 + −
a2∫

b2

f2(b1, x2)dx
α2

2

= −
bb1∫

a1

f1(x1, a2)dx
α1

1 + −
a2∫

b2

f2(2b1 − a1, x2)dx
α2

2

+−
b1∫bb1 f1(x1, b2)dx

α1

1 + −
b2∫

a2

f2(a1, x2)dx
α2

2 = −
∫

γ

f(γ)dγα.

We set 2b1 − a1 = b̂1. This procedure can be used with re-

gions bounded by integration paths similar to that illustrated

in Fig. 1.

Fig. 1. Example of a rectangular domain in R
2. The boundary is

a rectangular line γ

5.2. The Stokes’ theorem. In this case we adopt a strategy

similar to the one followed for the Green’s theorem, with the

difference that now the integration path is a line in R
3 with

6 segments parallel to the coordinate axis.

Let us consider a surface constituted by 3 contigu-

ous faces of a parallelepiped Ψ = {(x1, x2, x3) : a1 ≤
b1, a2 ≤ b2, a3 ≤ b3} and a vectorial function f(x1, x2, x3) =
f1(x1, x2, x3)~e1+f2(x1, x2, x3)~e2+f3(x1, x2, x3)~e3, and αi,

i = 1, 2, 3, the derivative orders relatively to variables xi.

The 3 faces define a path, γ, with 6 segments. To compute

the fractional line integral along γ we apply to each face the

Green’s theorem above introduced. The direction of the walk

must be the same in each face. This leads to a cancellation of

the contributions in edges belonging to two contiguous faces.

We can write

• Upper horizontal face

−
∫

γ3

f(γ)dγα = −
b1∫

a1

−
b2∫

a2

[
Dα1

x1
f2(x1, x2, b3)

−Dα2

x2
f1(x1, x2, b3)

]
dxα1

1 dxα2

2 .

(81)

• Close frontal face

−
∫

γ1

f(γ)dγα = −
b2∫

a2

−
b3∫

a3

[
Dα2

x2
f3(b1, x2, x3)

−Dα3

x3
f2(b1, x2, x3)

]
dxα2

2 dxα3

3 .

(82)

• Right hand face

−
∫

γ2

f(γ)dγα = −
b1∫

a1

−
b3∫

a3

[
Dα1

x1
f3(x1, b2, x3)

−Dα3

x3
f1(x1, b2, x3)

]
dxα1

1 dxα3

3 .

(83)
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Attending to the definition of the fractional curl operator in-

troduced in Sec. 3, we have

(∇α
l × f) =

[
Dα2

lx2
f3 −Dα3

lx3
f2

]
e1

+
[
Dα3

lx3
f1 −Dα1

lx1
f3

]
e2 +

[
Dα1

lx1
f2 −Dα2

lx2
f1

]
e3

(84)

we can rewrite the relations (81)–(83) in the form

• Upper horizontal face (x3 = b3)

−
∫

γ3

f(γ)dγα = −
b1∫

a1

−
b2∫

a2

∇α
l × f · ~e3 dxα1

1 dxα2

2 . (85)

• Close frontal face (x1 = b1)

−
∫

γ1

f(γ)dγα = −
b2∫

a2

−
b3∫

a3

∇α
l × f · ~e1 dxα2

2 dxα3

3 . (86)

• Right hand face (x2 = b2)

−
∫

γ2

f(γ)dγα = −
b1∫

a1

−
b3∫

a3

∇α
l × f · ~e2 dxα1

1 dxα3

3 . (87)

Adding the 3 terms we obtain the following theorem.

Theorem 5.2. The fractional Stokes’s theorem for a paral-

lelepipedic domain, Ψ, becomes

−
∫

γ

f(γ)dγα =
3∑

i=1

−
bj∫

aj

−
bk∫

ak

∇α
l × f · ~ei dx

αj

j dxαk

k , (88)

where j, k = 1, 2, 3, j < k, j, k 6= i, and, for each i = 1, 2, 3,
the variable xi is kept constant equal to bi.

As in the classical case, we define the flux, Φ3, through a

horizontal face by

Φ3 = −
b1∫

a1

−
b2∫

a2

f(x1, x2, x3) · ~e3 dxα1

1 dxα2

2

= ±−
b1∫

a1

−
b2∫

a2

f3(x1, x2, x3)dx
α1

1 dxα2

2 ,

where the − or + signs apply when x3 = a3 or x3 = b3. The

fluxes Φ1 and Φ2, through frontal and lateral faces are defined

in a similar way. Therefore, the factional Stokes’ states that

the fractional integral of a vectorial field along a rectangular

line is equal to the total flux of the curl of such field through

a surface supported on such line.

5.3. The Ostrogradski-Gauss’s theorem. Let us consider

a parallelepipedic region Ψ previously defined and a vectorial

function f(x1, x2, x3) = f1(x1, x2, x3)~e1+f2(x1, x2, x3)~e2+
f3(x1, x2, x3)~e3. Since each face is parallel to a coordi-

nate plane, its normal is parallel to one of the unity vectors

~ei, i = 1, 2, 3.

According to the fractional fundamental theorem of inte-

gral calculus, summing the flux contributions of two parallel

faces, we get

−
b1∫

a1

−
b2∫

a2

[f3(x1, x2, b3) − f3(x1, x2, a3)] dx
α1

1 dxα2

2

= −
b1∫

a1

−
b2∫

a2

−
b3∫

a3

Dα3

x3
f3(x1, x2, x3)dx

α1

1 dxα2

2 dxα3

3 .

We can sum of the six contributions and represent sym-

bolically the result by
∮

S

(f(x1, x2, x3) · ~n)dSα

= −
b2∫

a2

−
b3∫

a3

Dα1

x1
f1(b1, x2, x3)dx

α2

2 dxα3

3

+−
b1∫

a1

−
b3∫

a3

Dα2

x2
f2(x1, b2, x3)dx

α1

1 dxα3

3

+−
b1∫

a1

−
b2∫

a2

Dα3

x3
f3(x1, x2, b3)dx

α1

1 dxα2

2 ,

where j, k = 1, 2, 3, j 6= k 6= i and xi = bi. The normal ~n is

equal to one of the base vectors, ~ei, i = 1, 2, 3, according to

the integration surface.

With this result we can state the following theorem.

Theorem 5.3. Let the left divergence operator be defined in

(23). Then the fractional Ostrogradski-Gauss or Divergence

theorem can be written as
∮

S

(f(x1, x2, x3) · ~n) dSα

= −
b1∫

a1

−
b2∫

a2

−
b3∫

a3

divα
l (f) dxα1

1 dxα2

2 dxα3

3 .

(89)

In particular, f(x1, x2, x3) can be set equal to the gradient

of a scalar function: f(x1, x2, x3) = gradα
r (g) leading to

Corollary 5.1.
∮

S

(
gradα

r (g) · ~n
)
dSα

= −
b1∫

a1

−
b2∫

a2

−
b3∫

a3

∆α(g) dxα1

1 dxα2

2 dxα3

3 .

(90)

Remark 5.1. As referred previously, the results deduced for

a parallelepiped can be generalized to the region that results

from joining as many parallelepipeds as needed in such a way

that all the small surfaces are parallel to one coordinated

plane.
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5.4. Uniform derivative order cases. In the previous sec-

tions we assumed different orders for the three space direc-

tions. Herein, we derive formulae for the particular case of

uniform order, that is, for α1 = α2 = α3 = α.

In this case the FI on a rectangular region constituted by

contiguous rectangles is given by (77) and is reproduced here

Iα
lrf(a1, b1, a2, b2) = −

∫

S

f(x1, x2)dS
α. (91)

The integral in R
3 was obtained in a similar way and the FI

in R
3 was defined in (79) and reads

Iα
lrf(a1, b1, a2, b2, a3, b3) = −

∫

V

f(x1, x2, x3)dV
α. (92)

A particular case of the Green’s theorem occours when

α1 = α2 = α and can be written as

−
∫

γ

f(γ)dγα =−
∫

S

[
Dα

x1
f2(x1, x2)−Dα

x2
f1(x1, x2)

]
dSα. (93)

Similarly, for Stokes’ theorem 5.2, if αi = α, i = 1, 2, 3,

then we can write from (88)

−
∫

γ

f(γ)dγα =
3∑

i=1

−
∫

Si

∇α × f · ~ei dS
α
i , (94)

where Si, i = 1, 2, 3, is a surface with normal given by ~ei,

i = 1, 2, 3.

Concerning the Ostrogradski-Gauss’s theorem 5.3, in the

case of uniform orders we can write, from (89)
∮

S

f(x1, x2, x3) · ~n dSα = −
∫

V

divα(f) dV α. (95)

With α = 1, we recover the classical results.

6. Conclusions

In this paper, a generalization of classical fractional vectori-

al calculus was proposed, by considering the differential and

integral formulations. Concerning the first we presented frac-

tional versions of the vectorial tools, namely, the gradient,

divergence, curl, and Laplacian. For this purpose, suitable

formulations of fractional derivatives were described. Time

and space derivatives were introduced using the Grünwald-

Letnikov and Liouville formulations. Two-sided derivatives

were also presented due to their importance in the develop-

ment of differential vectorial tools, namely the Laplacian. We

described left and right gradient, divergence, and curl, calling

them “first generation operators”, since they led to the “sec-

ond generation operators” and, in particular, to the fractional

Laplacian. This formulation was compared with the fraction-

al Laplacian based on the Riesz potential. The generalized

Helmholtz decomposition was recalled and its solution ex-

pressed in terms of the solutions of several fractional wave

equations. Before going into the integral tools the fractional

definite integrals were defined. They were adopted to gen-

eralize the classic integral theorems to the fractional case.

Considering rectangular domains the Green’s, Stoke’s, and

Ostrogradski-Gauss’s theorems were presented. A discussion

of the particular case having uniform fractional orders was

also included.
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