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Summary. An alternative approach of the determining of 

conditions of safe stability loss of rectilinear motion of a 

wheeled vehicle model with controlled wheel module in 

the sense of N.N. Bautin is considered. The slipping 

forces are presented accurate within cubic expansion 

terms in the skid angles. Terms and conditions of safe 

stability loss depend on the ratio between the coefficients 

of resistance to the skid, the adhesion coefficients in the 

transverse direction of the axes and the parameter of 

torsional stiffness of the controlled wheel module. 

The presented approach to the analysis of real 

bifurcations related to the divergent loss of rectilinear 

motion mode stability has a clear geometric pattern: if in 

the vicinity of rectilinear motion at subcritical speed, 

there are additionally two unstable circular stationary 

states, then the stability limit is of dangerous nature in the 

sense of N.N. Bautin; if two circular stationary modes 

exist at supercritical speed, the limit of the stability loss 

in the parameter space of the longitudinal velocity is safe 

in the sense of N.N. Bautin. Analysis of the number of 

stationary modes in the vicinity of the critical velocity of 

rectilinear motion is performed for the obtained 

determining equation - cubic binomial. 

Key words: wheel module, stability, adhesion 

coefficient, slipping forces, divergent bifurcation. 

 

 

INTRODUCTION 

 

A variety of operating conditions of vehicles made 

for their widespread specialization. Automobiles differ by 

specific properties that enable their use in specific terms 

with the greatest efficiency. One group of specific 

properties is the performance characteristics of the 

automobile, which include: traction and speed properties 

(dynamics), braking performance, fuel economy, 

steerability, stability, passability, travelling comfort. 

Stability is considered to be an important component of 

the vehicle performance properties, the lack of which is 

one of the most common causes of road accidents. 

Stability is the property of the system to return to 

the original steady state after leaving it in the result of 

any external influence. 

A considerable amount of work are dedicated to 

the study of common issues of automobile motion 

stability [1, 9, 16, 18, 20]. The processes of the stability 

of individual automobiles and trucks at a steady motion 

mode, when driving in a straight line, while moving 

along a curved path, when braking, near the stability limit 

and so forth are under study [11, 14, 21, 25, 28]. Besides, 

as pointed by [15, 27], the same movement can be stable 

with respect to one variable and unstable with respect to 

the other variable. Therefore, there are differences in the 

formulation of the parameters of automobile motion 

stability. Two aspects to assess the parameters of 

automobile motion stability were singled out [5]. 

According to the first aspect, the concept describes 

the movement of the automobile as a solid body in all its 

degrees of freedom, except for the direction 

perpendicular to the bearing surface and direction 

coinciding with the longitudinal axis of the vehicle. 

However, the formulation of motion stability criteria for 

each of the degrees of freedom is vague and does not 

correspond to the classic notion of stability. 

According to the second aspect, the concept of 

stability of the automobile characterizes its behavior only 

in the movement along the given course. The formulation 

of the concept of motion stability in this parameter is 

given in full compliance with the definitions adopted in 

the general theory of mechanical systems stability. 

Thus, despite the fact that currently the problem of 

determining the conditions of automobile stability as a 

dynamic system has been studied thoroughly enough, 

however, as practice shows, the issues of determining the 

system behavior nature as for instability and identifying 

the causes of its emergence remain relevant. Success in 

solving similar problems depends on how well chosen is 

the mathematical model and its relevant parameters that 

describe the real automobile behavior [24]. 

The stability of the vehicle and the conditions of 

turnability of a nonlinear model with a fixed steering is 

considered in [6], and the conditions of safe stability loss 
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of rectilinear motion of two-axle vehicle model with 

oversteer - in [5].  

Self-oscillations of a single wheel unit are investigated in 

[7].  

One of the well-established mathematical models 

of the automobile is based on a flat bicycle scheme and 

includes the main non-linear properties of the wheel skid 

[10]. 

This article is dedicated to the development of the 

methods for the analysis of controllability and stability of 

a nonlinear automobile model with rigid wheel module, 

first introduced in the works by Ya. M. Pevzner [17].  

The proposed methods for determining the 

stationary motion modes of the automobile models, 

complemented by the algorithms of the construction of 

the bifurcation set in conjunction with the Poincare Index 

method, make it possible to conduct a preliminary 

analysis of the number of stationary modes and to 

determine the stability boundaries in the plane of the 

controlled parameters. 

 

THE ANALISIS OF RECENT RESEARCHES  

AND PUBLICATIONS 

 

Divergent stability loss of the rectilinear stationary 

motion mode of the vehicle in the simplest case is related 

to the implementation of the assembly bifurcation. From 

the origin of coordinates at a critical speed either a couple 

of stable stationary states is born, or a couple of unstable 

steady states comes to the origin and merges with stable 

rectilinear mode. Research results of Troger H., Scheidl 

R., Stribersky A., Kacani V., Zeman K. [3, 4, 10, 21, 27] 

were based on numerical method for the continuation of 

two parameters, and it makes difficult the determination 

of the conditions of safe stability loss of rectilinear 

motion mode in the space of parameters according to 

N.N. Bautin [2]. 

In the case of symmetric vehicle with absolutely 

rigid steering control, substantial "internal" parameters 

affecting the nature of the loss of stability are adhesion 

coefficients on the axes: at reduction of the adhesion 

coefficient on the front axle, the nature of the danger of 

the region border of stability changes due to the 

realization of butterfly catastrophe; bifurcation set in this 

case has a characteristic cross-section with three critical 

points (cusps) [22]. 

The problem of stability loss (secure-insecure) of 

the rectilinear motion of a wheeled vehicle model with a 

controlled has already been considered in [22]. A 

formalized approach to the analysis of the stability 

boundary security, based on the assessment of the number 

of stationary modes in the vicinity of the rectilinear 

motion mode, is offered in [23]. 

 

OBJECTIVES 

 

Obtaining sufficient conditions for a safe loss of 

stability of rectilinear motion of a wheeled vehicle model 

with controlled wheel module.  

 

THE MAIN RESULTS THE RESEARCH 

 

Figure 1 shows the design diagram of the vehicle 

model with controlled wheel module. 

 

 
 

Fig. 1. Design diagram of the vehicle model 

 

The controlled module is pivotally connected to the 

vehicle case, the corner between the longitudinal axis of 

the case and the vertical longitudinal plane of the wheel is 

 , the case-wheeled module is affected by the elastic 

restoring moment tending to return the system to the 

position 0 
,
 where 0  is the angle of rotation of 

forward row wheels positioned by the driver; ,1 2Y Y
 
are 

the equivalent cross forces (skid forces) operating in a 

spot of contact of wheels with a basic surface that are 

defined according to I.Rocard's axiomatics [19]; the axis 

of a wheel is removed from an axis of hinged connection 

at the distance of offset  (  <0 in the case when the axis 

of a wheel is ahead of a point of hinged connection of 

links);   is a longitudinal component of speed of the case 

mass center (it is kept constant); a , b are distance from 

the center of mass of the controlled wheel module to the 

point of fastening of the forward (controlled) axis and the 

back axis respectively; the reduced factor of rigidity of 

the controlled module k; the damping coefficient on the 

rotation angle of the controlled module h, the positioned 

rotation angle of the back row wheels is 
1

 .  

The weight and moment of the case inertia relative 

to the central vertical axis are ,m J ; ,1 1m J
 
 are the 

weight and moment of inertia of the controlled wheel 

module relative to the central vertical axis (we assume 

that it passes through the wheel axis). 

The system of the differential equations of the 

movement of the vehicle model with controlled wheel 

module (phase variables u, , ,   ) is received at the 

assumptions accepted in [12], in which: U is the 

derivative of a cross component of speed of the center of 

masses;   is the derivative of angular speed;   is the 

speed of change of the rotation angle of the controlled 

module; TT is angular speedup of the controlled module:
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In (1) the slipping forces are approximated by a 

monotonic dependence of the nature of the saturation 

curve: 
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where: ik – coefficients of resistance to the slip, i  – 

adhesion coefficients in the lateral direction, iZ  – vertical 

reactions on the axes. 
We assume that the reduced axial force on the 

front axle in the system (1) is negligible (X1 = 0), the 

rotation angle of the back row of wheels 
1 = 0. 

Condition of divergent stability loss of rectilinear 

mode was found in general form [12]: 
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and safe-dangerous loss of stability conditions were 

studied in [2, 8]. 

 

CONSTRUCTION OF THE BIFURCATION SET  

OF THE AUTOMOBILE MODEL WITH 

CONTROLLED WHEEL MODULE. 

 

The stationary states of the system (1) (special 

points of the phase space) satisfy the system of finite 

equations 
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where: iE  –  left-hand sides of system equations (1). 

System (2) has two controlling parameters ( , )0v  . 

Parameter continuation method proposed by Shinohara 

[8] makes it possible to identify different branches of the 

equilibrium curve and to evaluate the maximum number 

of stationary modes in the final field of the control 

parameters. 
In [10] the problem of the evolution of stationary 

states when changing one of the control parameters is 

considered. The variety of bifurcation values of 

parameters *,*
0v  , to which the multiple stationary 

modes of the movement ),,(  u of system (2) 

correspond, can be found on the basis of two parameters 

continuation method. The condition for the 

implementation of multiple stationary mode ),,(  u  

is the equality 
* *( , , , , )

| 0
0u v

4E
    

  (Jacobian 

determinant of the system (2) vanishes): 
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System (2) with the last equation defines the critical 

set of stationary modes. The method of continuation on 

two parameters leads to the auxiliary system of 

differential equations: 
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Starting point for realization of continuation method 

(0,0,0,vкр, 0), where vкр is the critical speed of the 

rectilinear mode of the vehicle movement, is defined 

from the solution of the equation 

( , , , )| 0
04 u 0 0 0 0E         . 

In Fig. 2 the bifurcation set obtained by numerical 

integration of auxiliary system of the differential
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 equations at the following values of design data is 

presented: a=1,45 m; b=1,55 m; λ =0,0043 m; h=0; 

m=2090 kg; κ1=0,7; κ2=0,8; k1=91500 Н; k2= 61000 Н; 

J1=3,22 kg m
2
. 

 

 
Fig. 2. Critical set of longitudinal velocity control parameters v 
and the rotation angle of the controlled wheel module (k = 400 

H∙m) 
 

Points M1, M2, M3 in Figure 3 correspond to the 

velocity of 10 m/s, 12 m/s and 15 m/s. They are pivot 

points in which the loss of stability of the circular 

stationary modes occurs. They are the elements of the 

bifurcation set (Figure 2). 

 

 
Fig. 3. Equilibrium curves of the corresponding angular speeds 

ω of the stationary modes at the change of the rotation angle of 

the controlled wheel module0; (k=400 Nm; v=15; 12; 10 m/s) 

 

The bifurcation set divides the plane of the control 

parameters (v, 0) into areas with various quantity of the 

stationary modes: in internal area - 3, in external - 1. At 

the points of the bifurcation set (Figure 2) there is a real 

bifurcation of the folds (merger-birth) of a pair of 

stationary modes - stable and unstable. At the fixed speed 

kpvv  and 0 parameter increase from zero to 0* 

symmetrical stable stationary mode moves along the 

equilibrium curve, in the pivot point (vi*,0i*) the 

divergent stability loss of the circular stationary mode 

occurs (Figure 3). 

With the decrease in the value of torsional rigidity 

the nature of the bifurcation, set changes greatly (Figure 

4).  

 
Fig. 4. Critical set of parameters of longitudinal velocity control 

v and rotation angle of the controlled wheel module 0 (k=40 

Нм) 

 

The pivot point M4 (corresponding to the velocity of 

8 m/s) divides the equilibrium curve into stable and 

unstable parts - stable from 0 to M4 (Figure 5). 

Equilibrium curve corresponding to v = 6 m/s has no 

pivot point, divergent stability loss of the motion circular 

modes does not occur here. 

 

 
Fig. 5  Equilibrium curves of the corresponding angular 

velocities ω of stationary modes while changing the pivot 

point of the controlled wheel module 0; (k=40 Nm; v=6; 

8 m/s) 
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ANALYTICAL RESULTS OF THE ANALYSIS  

OF (DANGEROUS-SAFE) LOSS OF STABILITY  

OF RECTILINEAR MOTION MODE. 

 

Estimating the number of stationary modes of the 

system (1) at subcritical speed parameter value and 

supercritical value allows to determine the conditions of 

safe-dangerous stability loss of rectilinear stationary 

motion mode. 
The system determining the set of stationary modes 

has the form (3) (skid forces are represented up to cubic 

expansion terms) 
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From the third equation, we express θ as 

function 1 : 

1 1k

k

 
  

 
 

and put it in the first two equations of the system (3). We 

obtain the system of two equations relative to the 

variables 1 and 2 . Turn to the dimensionless skid 

coefficients on the front and rear axles: 
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System (3) in the dimensionless form becomes:  
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(4) 

The expression for the square of the critical velocity 

of rectilinear motion (skid and stiffness coefficients are 

presented in dimensionless form): 
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(5) 

 

Figure 6 shows the dependence of the critical speed 
крv

 
of rectilinear motion of a wheeled vehicle model with 

controlled wheel module as a function of the 

dimensionless parameter of torsional stiffness. 

 

 
 
Fig. 6. Dependence of the critical speed v of rectilinear motion 

of a wheeled vehicle model from the dimensionless parameter 
kk of torsional stiffness 

 

From the system (4) one can go to a single defining 

equation for δ1: 
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(6) 

 

The number of solutions of this equation determines 

the number of stationary states of the system in the 

vicinity of rectilinear motion. 
The condition of the critical velocity of rectilinear 

motion is as follows : 
 

2 2 0.1 1 1g kk kk kk kk kk kk       
 

(7)
 

 

The condition for safe stability loss of rectilinear 

motion earlier obtained in [23] is  0  : 
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(8) 

 

By combining (7) and (8) we have: 
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2
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From the analysis of the coefficients signs of the 

determining equation at subcritical and supercritical 

speeds, we find the condition (refined) of safe stability 

loss of rectilinear stationary motion:  
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

 

  

  

  

  

  

  

            

            

            

            

 
(10)

 

 
The condition of the critical velocity of rectilinear 

motion ( 0  ): 
 

2 2 11 1 0.a kk kk a kk kk kk kk a kk kk             
 

(11) 

 

Conditions (10), (11) can be represented as a double 

inequality: 

 

     

2

2
2
2 2

2 2 2
1 2 22

3

.

1

1 1

1

3
1 1

3 2

a kk kk
             kk

a kk a kk kk

l a kk kk

l a kk l a kk l a a kk



  



  

 
 

    

   


              
 

(12) 

 

Figure 7 is a graphic interpretation of the safe 

conditions of stability loss of rectilinear motion of the 

vehicle with the controlled wheel module. The 

appropriate range of the parameter torsional stiffness 

changes is determined .  

 

 
 

Fig. 7. Graphic illustration of the conditions of safe stability 

loss 
 

The left boundary of the interval is determined by 

the intersection of the solid line (corresponding to the 

condition (10)) and the right border - by the intersection 

of the dotted line (corresponding to the condition (11) ) 

with the x- axis; 21,64 <kk <141,28. 

Thus, the interval of kk torsional stiffness parameter 

change, providing safety of vehicle loss of stability, 

coincides with the result obtained earlier at 0   [13]: 

21,42< kk <116,18. The right border (kk = 116,18) 

corresponds to the intersection of the dash-dot line with 

the x-axis and corresponds to the condition (8). 

Expansion of range of kk parameter change was 21,6%. 

 

CONCLUSIONS 

 

1. Numerical and analytical analysis of the real 

bifurcations in the vicinity of the rectilinear mode of 

vehicle movement associated c divergent loss of stability 

was conducted.  

2.  On the basis of the proposed approach the 

system of finite equations defining a set of stationary 

modes is reduced to one determining equation (cubic 

binomial). 

3.  The analysis of the number of solutions of the 

defining equation makes it possible to draw conclusions 

about the safe-dangerous border of rectilinear motion 

mode in space of system design parameters.  

4.  Specified sufficient conditions of safe loss of 

stability of rectilinear motion mode of the wheeled 

vehicle model with controlled wheel module were 

obtained.  

5.  Numerical estimates for the torsional stiffness 

parameter interval, providing a safe loss of stability of 

rectilinear motion mode of the wheeled vehicle model are 

presented. 
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ДИВЕРГЕНТНЫЕ БИФУРКАЦИИ 

СТАЦИОНАРНЫХ РЕЖИМОВ ДВИЖЕНИЯ 

МОДЕЛИ КОЛЕСНОГО ЭКИПАЖА С 

УПРАВЛЯЕМЫМ КОЛЕСНЫМ МОДУЛЕМ 

 

Александр Кравченко, Владимир Вербицкий, 

Валерий Хребет, Наталья Вельмагина, Андрей 

Муранов
  

 

Аннотация. Рассмотрен альтернативный подход 

определения условий безопасной потери 

устойчивости прямолинейного движения модели 

колесного экипажа с управляемым колесным 

модулем в смысле Н.Н. Баутина. Силы увода 

представлены с точностью до кубических членов 

разложения по углам увода. Условия безопасной 

потери устойчивости зависят от соотношения между 

коэффициентами сопротивления уводу, 

коэффициентами сцепления в поперечном 

направлении осей и параметром крутильной 

жесткости управляемого колесного модуля. 

Представленный подход анализа 

вещественных бифуркаций, связанных с 

дивергентной потерей устойчивости прямолинейного 

режима, имеет наглядную геометрическую картину: 

если в окрестности прямолинейного движения при 

докритической скорости дополнительно существуют 

два неустойчивых круговых стационарных состояния, 

то граница устойчивости имеет опасный характер в 

смысле Н.Н. Баутина; если два круговых 

стационарных режима существуют при 

закритической скорости, то граница потери 

устойчивости в пространстве параметра продольной 

скорости движения имеет безопасный характер в 

смысле Н.Н. Баутина. Анализ количества 

стационарных режимов в окрестности критической 

скорости прямолинейного движения выполняется для 

определяющего уравнения – кубического двучлена. 

Ключевые слова: колесный модуль, коэффициент 

сцепления, силы увода, устойчивость, дивергентная 

бифуркация. 
 

 

 



 

 

 


