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Abstract
Beamforming is an advanced signal processing technique used in sensor arrays for directional signal trans-
mission or reception. The paper deals with a system based on an ultrasound transmitter and an array of
receivers, to determine the distance to an obstacle by measuring the time of flight and – using the phase
beamforming technique to process the output signals of receivers for finding the direction from which the
reflected signal is received – locates the obstacle. The embedded beam-former interacts with a PID-based
line follower robot to improve performance of the line follower navigation algorithm by detecting and
avoiding obstacles. The PID (proportional-integral-derivative) algorithm is also typically used to control
industrial processes. It calculates the difference between a measured value and a desired set of points, then
attempts to minimize the error by adjusting the output. The overall navigation system combines a PID-based
trajectory follower with a spatial-temporal filter (beamformer) that uses the output of an array of sensors to
extract signals received from an obstacle in a particular direction in order to guide an autonomous vehicle
or a robot along a safe path.

Keywords: autonomous vehicle, beamforming, trajectory follower, ultrasonic obstacle detector, measure-
ments, sensors.
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1. Introduction

The simplest line following algorithm is the one that uses only one sensor. The sensor is
placed in a position that is a little off-centred to one of the sides. When the sensor detects no
line, the autonomous vehicle (AV) or robot moves to the left and when the sensor detects the line
the AV moves to the right. A drawback of this simplest algorithm is that the line following is
not smooth and the AV keeps wavering to the left and right on the track, wasting battery power
and time. Adding sensors on both sides of the AV and placing them so that they just sense the
line on either side can improve the algorithm. The algorithm will decide to move forward if both
the sensors sense the line or to move left if only the left sensor senses the line or trajectory and
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moves right if only the right sensor senses the line [1]. An AV with this improved algorithm will
follow the line faster than the simplest one with one sensor, however it will still wobble along
the line and may not be fast enough. A much better algorithm to follow the line is the one using
a PID controller [2, 3]; it makes the line following process much smoother, faster and efficient.
The PID is a popular loop feedback control extensively used in industrial control systems. A con-
ventional robot will follow the line by oscillating a lot along the line, wasting valuable time and
battery power and will sometimes overshoot the line. In the experiment, a line following robot
distinguishing a black line from a white surface and data from infrared reflectance sensors will
be used to control the motors with the PID algorithm [4]. In this paper a beamformer is imple-
mented on the line follower robot to enable obstacle avoiding navigation while following the
line. The beamformer [5] is an efficient technique in which an array of sensors is employed to
achieve maximum reception in a specified direction by a signal arriving from a desired direction
and rejecting signals of the same frequency coming from other directions [6].The most impor-
tant problem in sensor array signal processing using acoustic scanning, is the estimation of the
coordinates of a source emitting a signal (passive localization) or a point target illuminated by
an external signal (active localization). A point in a three-dimensional space is defined by three
parameters, namely: range, azimuth and elevation. The range is often measured by means of the
return time of travel in active systems and by means of time delays measured by a number of sen-
sors in passive systems. The azimuth and elevation angles are obtained from the measurements of
direction of arrival (DOA) by an array of sensors. A point of power concentration is assumed to
be a source. Three methods are mostly used: the beam formation detailed in [7], Capon spectrum
and maximum entropy spectrum. The last two methods fall into the nonlinear category, while the
first method – to the linear one. The basic difference between the linear and nonlinear methods
lies in their response to an input which consists of the sum of two or more uncorrelated signals.
The output of a linear method will be the sum of the spectra of input signals, whereas the output
of a nonlinear method may contain an additional cross-term [7]. An AV can also use, in order
to increase its accuracy, the particle swarm optimization for adapting different trajectories and
speed. The controller is designed for a nonlinear vehicle model [8]. The design should take into
account energy minimization for the AV by including a specific control system [9]. Other im-
provements can be obtained by means of a nonlinear model predictive control (MPC) to prevent
clashing into an obstacle at high speed by considering controlling the centre of gravity [10]. Each
vehicle aims at estimating its own state relying on locally available measurements and limited
communication with other vehicles in the neighbourhood using a discrete-time Kalman filtering
formulation [11] with a sparsity constraint on the gain parameter, and specific simulations of
field data referring to speed and traffic volumes [12] from existing roundabouts.

2. Delay and sum beamforming for object detection

A given array of sensors can be organized in any shape in space, where the position of each
sensor can be described by its coordinates like p = (px, py, pz). If a plane wave signal f (t, p)
is arriving at a particular point in space, and positions of each sensor in space are different, the
signals received by each sensor will be the same as the original one with a time delay depending
on the position of the sensor. To describe the signal received by each sensor, we can use the
following vector:

f (t, p) =


fp0(t)
fp1(t)

:
fpN−1(t)

=


f (t − τ0)
f (t − τ1)

:
f (t − τN−1)

 , (1)
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where N is the number of elements in the array and τi is the time delay associated with the
position of the element. The Bartlett beamformer, or delay-and-sum beamforming is a robust
beamforming algorithm; it is the conventional beamformer. The delay-and-sum beamformer ap-
plies a delay and an amplitude weight to the output of each sensor, and then sums the resulting
signals. Delays are chosen to maximize the array sensitivity to incoming waves from a particular
direction. By adjusting the delays, the look-direction array can be steered towards the source,
and the waveforms captured by individual sensors add constructively. This means that signals at
particular angles produce the constructive interference, while others cause the destructive inter-
ference [13]. The operation of a delay-and-sum beamformer is depicted in Fig. 1; it consists of
applying a delay ∆m and an amplitude weight ωm to the output of each sensor, and then summing
the resulting signals as described in [14].

Fig. 1. The conventional anddelay-and-sum beamforming.

The delays are chosen to maximize the array sensitivity to waves propagating from a par-
ticular direction. By adjusting the delays, the look-direction array can be steered towards the
source, and the waveforms captured by individual sensors add constructively. This operation is
sometimes called stacking. Weighting different sensors of the array differently may be seen as
a gain factor for individual sensors, and it enhances the shape and reduces sidelobe levels of
the listening beam. As opposed to the adaptive methods, the sensor weights for a delay-and-
sum beamformer are chosen in advance and independently from the received waveform [15, 16].
The delay-and-sum beamformer output in the time domain is then:

z(t) =
M−1

∑
m=0

wm · ym(t −∆m). (2)

The basic idea behind beamforming is to steer the listening direction of the array on different
points in the scanning plane, measure the power from each point, and interpolate the values to
create an image. When the steering direction coincides with a source, the maximum output power
will be observed [17]. By interpolating the measured output power from all the scanning points,
it is possible to colour the spatial power (power across the scanning plane) and make an acoustic
image, as shown in Fig. 2.
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Fig. 2. When the steering direction coincides with a source or target, the maximum output power is observed.

To characterize the array sensitivity of our autonomous vehicle to a single ultrasound fre-
quency wave from an arbitrary incidence angle when using the delay-and-sum beamformer, we
assume that the incidence angle in spherical coordinates is then given as elevation θ , which is the
normal incidence angle, and azimuth φ which is the angle in the XY plane as depicted in Fig. 3.

Fig. 3. A spherical coordinate system illustrated with elevation
θ and azimuth φ .

The input of a single sensor is:

ym(t) = e j(ω0t−⃗k0 ·⃗xm), (3)

where ω = 2π f is the frequency of the input signal with frequency f . The wavenumber vector
(or wave vector) k⃗ = [kx,ky,kz] is a propagation vector giving both magnitude and direction of
arrival of the incident plane wave. The superscript 0 over k⃗0 and ω0 is to denote that the wave
has a specific frequency ω0 and a specific direction given by the wave vector k⃗0, which may be
different from the direction k⃗ which the array is steered to. As before, x⃗m = [xm,ym,zm] is the
position in space of the receiving sensor. By using the same input signal as in (3), the delayed
signal can be expressed as:

ym(t −∆m) = e j(ω0(t−∆m)−⃗k0 ·⃗xm)

= e j(ω0t−⃗k0 ·⃗xm) · e− jω0∆m

= ym(t) · e− jω0∆m .

(4)
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The signal ym(t) is a signal received from an individual sensor, different for different sen-
sors, and e− jω0∆m represents the phase delay associated with the signal from the m-th ultrasound
sensor. The delay-and-sum beam-former output can again be expressed as in (1), as follows:

z(t) =
M−1

∑
m=0

wm · ym(t) · e− jω0∆m . (5)

Now, we want to choose a set of delays as the phase shifts steer the beam listening direction
to the direction of the vector k⃗ which can be different from the wave propagation direction k0.
That is, the delays are chosen as follows:

∆m =
k⃗

ω0 · x⃗m (6)

and the total response from (5) may be calculated as follows:

z(t) =
M−1

∑
m=0

wm · ym(t) · e
− jω0(∆m=

k⃗
ω0 ·⃗xm

=
M−1

∑
m=0

wm · ym(t) · e j⃗k·⃗xm .

(7)

with e j⃗k·⃗xm as the phase delay associated with each individual sensor. Now to characterize the
output of the delay-and-sum beam-former, we write ym(t) as in (3). Let us substitute it into (7):

z(t) =
M−1

∑
m=0

wm · ym(t) · e j⃗k·⃗xm

=
M−1

∑
m=0

wm · e j(ω0t−⃗k0 ·⃗xm)·e j⃗k·⃗xm

=
M−1

∑
m=0

wm · e j(⃗k−⃗k0)·⃗xm·e jωt

= w(⃗k− k⃗0) · e jω0t ,

(8)

with

w(⃗k) =
M−1

∑
m=0

wme j⃗k·⃗xm . (9)

Equation (9) is our array pattern, which is a function of the position of the sensors in the
array and the used weights. In the case of uniform shading where the weights are all equal, the
array pattern depends only on the array geometry. The function w

(⃗
k− k⃗0

)
given in (8) is called

the beam-pattern of the array. We see how the beam-pattern describing a monochromatic signal
e jω0t propagating in a direction given by k⃗0 with a frequency ω0 is attenuated by a delay-and-
sum beam-former steered towards the direction k⃗. The beam-pattern will have the maximum
output when the steering direction coincides with the wave direction of propagation, that is we
set k⃗ = k⃗0. Returning to the notation given in (7) and including the phase delays in the received
signal vector Y = ym(t) · e j⃗k·⃗xm , we may write (7) in the vector notation as follows:

z(t) =
M−1

∑
m=0

wm ·
(

ym(t) · e j⃗k·⃗xm
)
= wHY, (10)
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where Y is an M × 1 vector of the signals received from all sensors with their associated phase
delays:

Y =


y0(t) · e j⃗k⃗x0

y1(t) · e j⃗k⃗x1

...
yM−1(t) · e j⃗k⃗xM−1

 , (11)

where w is an M×1 vector of weights for individual sensors and Hdenotes a complex conjugate
transpose.

w =


w0
w1
...

wM−1

 . (12)

By using the vector notation given in (10) and assuming that we have already steered the
array to the desired direction, we can calculate the power, or the variance, of the output signal as
follows:

P(z(t)) = σ2 = E{|z(t)|2}
= E

{
(wHY )(wHY )H}

= E
{

wHYY Hw
}

= wHE
{

YY H}w

= wHRw.

(13)

The above equation gives the power of the output of the beam-former in the steered direction,
where R=E

{
YY H

}
is the correlation matrix of the data. Now, let us suppose we want to measure

the output power as a function of steering directions, or scanning angles. In (7) the phase delays
each associated with an individual sensor e j⃗k·⃗xm give a so called steering vector, denoted as e, and
governing how we want to steer the beam of our array:

e = e j⃗k·⃗xm =


e j⃗k·⃗x0

e j⃗k·⃗x1

...
e j⃗k·⃗xM−1

 . (14)

The wave vector is related to the Cartesian coordinates by the following equations:

kx = k sinθ cosϕ
ky = k sinθ sinϕ
kz = k cosθ ,

(15)

where x – is a component of the wave vector; kx determines the rate of change of phase of a prop-
agating plane wave in the x-direction. The same definitions are valid for the y- and z-directions.
The wavenumber k is equal to 2πλ or 2π/ f . Then,the steering vector depends on frequency
and propagation direction of the incoming plane wave, and can be expressed in terms of wave-
length λ , elevation θ and azimuth ϕ . Usually planar 2D arrays with the elements positioned in
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the same plane will be used, so that the zcoordinates of the sensors will be equal to zero. This
means that the dependence on z and kz may be omitted, and the steering vector can be written as:

e = e j⃗k·⃗xm =


e j 2π

λ (sinθ cosϕ ·x0+sinθ sinϕ ·y0)

e j 2π
λ (sinθ cosϕ ·x1+sinθ sinϕ ·y1)

...

e
j 2π

λ (sinθ cosθ ·xM−1+sinθ sinϕ ·yM−1 )

 . (16)

In (13) we have already assumed that the array was steered to the correct direction before
calculating the power. Now, if we want to calculate the energy for an arbitrary direction, instead,
we must be aware that since the received signal vector Y in (13) have phase delays included,
this must mean that R also is a function of the steering vector e, that is R(e) = eHRe. Now, let
us suppose that we want to measure the output power as a function of scanning angle, or rather
as a function of steering vector. The output power calculated as a function of steering vector
is named the steered response, and it is the power of the beam-former output in the frequency
domain. This array output power spectral density may then be expressed by using the correlation
matrix and the steering vector as follows:

P(e) = wHR(e)w = wH(eHRe)w. (17)

For a uniform array where all sensors have an equal weight, the above expression is re-
duced to:

P(e) = eHRe. (18)

3. Implementation of PID algorithm

The PID controller is by far the most common control algorithm. Most feedback loops are
controlled by this algorithm or minor variations of it. The PID controller calculates the difference
between a measured variable and a desired set point [6, 7, 13]. The controller attempts to mini-
mize the error by adjusting the input. The PID controller has three values: Proportional, Integral
and Derivative – denoted P, I, and D, respectively. Heuristically, these values can be interpreted
in terms of time: P depends on the present error, I depends on the accumulation of past errors,
and D is a prediction of future errors, based on the current rate of change. By simultaneous com-
bining the three terms the algorithm maintains the desired set point with minimal errors. This can
be mathematically expressed as follows:

con(t) = K

e(t)+
1
Ti

t∫
0

e(τ)+Td
de(t)

dt

, (19)

where con is the controller variable and e is the controller error (e = ysp − y). The controller
variable is thus the sum of the tree terms: the P-term (which is proportional to the error), the
I-term (which is proportional to the integral of the error), and the D-term (which is proportional
to the derivative error). The controller parameters are: the proportional gain K, the integral time
Ti and the derivative time Td .The proportional action is given as:

con(t) = Ke(t)+ conb . (20)
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It is simply proportional to the control error. The variable conb is a bias or a reset. The integral
action is given as:

con0 = K
(

e0 +
e0

Ti
t
)
. (21)

Its main function is to make sure that the process output agrees with the set point in a steady
state. The derivative action associated with the proportional is given as:

con(t) = K
(

e(t)+Td
de(t)

dt

)
. (22)

Its purpose is to improve the closed-loop stability. If we use the Taylor series expansion of
e(t +Td), we get:

e(t +Td)≈ e(t)+Td
de(t)

dt
. (23)

The control signal is thus proportional to an estimate of the control error at time Td ahead,
where the estimate is obtained by linear extrapolation. In this paper, the measured process vari-
able is the position of the sensor array for the line detection, c is the controller variable. The con-
troller output signalconsists of the speeds of the two DC motors. The basic idea of the algorithm
is as follows:
previous_error = 0
integral = 0
start:

error = setpoint − measured_value
integral=integral+error ∗ dt
derivative = (error − previous_error)/dt
output = Kp ∗ error + Ki ∗ integral + Kd ∗ derivative
previous_error = error
wait(dt)

goto start
In this paper, the C function that performs the PID computations is illustrated below:

int pid( ){
const int set_point = 250;
double Kp, Ki, Kd;
position = int(sensors_average/sensors_sum);
proportional = position − set_point;
integral = integral + proportional;
derivative = proportional − last_proportional;
last_proportional = proportional;
output = int(proportional ∗ Kp + integral ∗ Ki + derivative ∗ Kd);
return output; }

Simulink PID was used to tune the controller without using a complex mathematical model
of the autonomous vehicle. We adjusted the proportional gain of the controller till a suitable
response was obtained. As a rule of thumb, we increased the value of the derivative gain to be
equal to 1/10th of the proportional gain and then we adjusted the derivative gain and observed the
change in the AV behaviour till a suitable behaviour was obtained. Increasing the proportional
gain will increase the amount by which the AV turns. An increase of the derivative gain would
suppress the magnitude of oscillations by the robot so we set the integral value to 1, tuned kp to
0.22 and finally kd to 0.04, in respect to the performance indices, as shown in Fig. 4.
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Fig. 4. The performance indices used when tuning the controller are: the Integral
of Squared Error (ISE), the Integral of Absolute Error (IAE), the Integral of Time
Multiply Squared Error (ITSE), the Integral of Time Multiply Absolute Error (ITAE).

4. Results

On one hand the controller computes data from the trajectory sensor array to adjust the AV
position, and on the other hand it performs beamforming measurements [18] based on data from
the acoustic sensor array to detect an obstacle along the path. The closed-loop system is depicted
in Fig. 5. Positions of the sensors are presented in Fig. 6, whereas the trajectory – in Fig. 7.

Fig. 5. A diagram of the closed-loop system which performs the line following
process. The data from the line sensor array are used to correct the robot position
while the Atmega controller handles the data from the acoustic sensor array,

related to obstacle detection.

Fig. 6. The acoustic sensor array is mounted in front of the AV so that it can
perceive incident signals from objects along the path.

569



P. Kapita Mvemba, A. Lay-Ekuakille, et al.: AN EMBEDDED BEAMFORMER FOR A PID-BASED . . .

Fig. 7. Part of the AV trajectory during testing.

The corresponding directional pattern and beampattern are shown in Fig. 8 and Fig. 9, re-
spectively. They are useful for showing precision and accuracy of the designed AV beamformer
in detecting the trajectory as a directional antenna.

Fig. 8. A theta (degrees) directional pattern of the sensor array sensitivity
estimated with MVDR.

Fig. 9. A beam-pattern of the embedded delay-and-sum beamformer
(for the arrival angles of −30 and 10 degrees).
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The aperture angle depicted “theta” demonstrates the capability of the embedded beam-
former to keep its trajectory (path) with a certain (good) accuracy. The dynamic range repre-
sented in Fig. 10 enables simultaneous measurements of the distance with an optimal level of
signal received from an obstacle. The value of 6.0 dB also ensures low distortion within an
area of 1.5× 1.5 m. That confirms that a high dynamic range enables the embedded processor
(Atmega) to beveryprecise in processing. The proposed beamformer is a MVDR (minimum vari-
ance distortionless response); the system response, as PID, is indicated in Fig. 11 with acceptable
smoothing. The dynamic range at 3.0 dB is presented in Fig. 12, in terms of angle.

Fig. 10. The embedded beamformer dynamic range at 6.0 dB.

Fig. 11. The blue line represents the PID action with parameters that
smooth the line following process, (P = 0.22, I = 1, and D = 0.04)

after a fluctuation.

The AV is placed on a black line drawn on a white ground surface, as shown in Fig. 7. It has to
follow the trajectory and to sense its surroundings. If there are obstacles spreaded along the path,
it decides to leave the line to avoid the nearest obstacle in front of it, and afterwards comes back
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Fig. 12. The embedded beamformer dynamic range at 3.0 dB.

Fig. 13. The beam-pattern minimum variance.

to the line by computing the amount of error accumulated from the previous line position to the
actual position. It recalls the direction of avoidance and moves in the opposite direction to reach
the trajectory (route) while leaving the obstacle behind it. Fig. 11 shows that the autonomous
vehicle comes back to the trajectory after a couple of seconds. We have mounted an array of 9
acoustic sensors in front of the AV, as shown in Fig. 6. These sensors are arranged like shown in
Fig. 14 to perceive incident signals from obstacles that are along the path.

The ultrasound wavefront frequency is 40 kHz; it results from (20) that itis in a relation
with the sensivity of the acoustic sensor array for signals coming from a particular direction. We
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Fig. 14. The angle of arrival is measured from the line perpendicular to the array.

compute the sensitivity of our sensor array as shown in Fig. 14. The array has 9 acoustic sensors
separated by a distance l (1 cm). The angle of arrival:

Output = 20log10

(
1
N

N−1

∑
i=0

e
j2π f iLsinθ

c

)
(24)

is measured from the line perpendicular to the array, where output is the array’s gain for a single
frequency f (40 kHz) and an arrival angle θ , c denotes the speed of sound and N is the number
(9) of acoustic sensors in the array. Fig. 8 shows the directional pattern of the sensor array sensi-
tivity estimated with MVDR. Fig. 9 also shows the beampattern of the embedded delay-and-sum
beamformer where the arrival angle is either −30 or 10 degrees. Fig. 9 shows the embedded
beam-former dynamic range at 6.0 dB, and Fig. 10 presents the dynamic range of the embedded
beam-former at 6.0 dB. Fig. 13 illustrates the beampattern of delay-and-sum and minimum vari-
ance when steered to −10 degrees. The input signal consists of two sources arriving at incidence
angles of −30, and 10 degrees.

5. Conclusions

The PID controller is a mathematically-based routine that processes sensor data and uses
them to control the direction (and/ or speed) of an AV to keep it on route. In this paper we use it
for sensing a trajectory and avoiding obstacles on the path to enablemaneuvering the AV to stay
on route, while constantly correcting wrong moves using a feedback mechanism. An additional
application could be tailored not only for roads but also for working in harsh and severe envi-
ronments [19, 20]. The more granular the sensor data are, the more accurately we can measure
AV positions over the line. The embedded beamformer is implemented on the line follower AV
to enableobstacle avoiding navigation while the AV is following the line. The beamformer is an
efficient technique in which an array of sensors is employed to achieve the maximum reception in
a specified direction by accepting a signal arriving from a desired direction and rejecting signals
of the same frequency coming from other directions; however, some parts of the beamformer can
be improved [21]. In this paper we have two input signals arriving at −30, and 10 degrees respec-
tively, with the array being steered to the incidence angle of the first source, so that the array will
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have its mainlobe pointed in this direction.The beampattern of the delay-and-sum beamformer
shows how the obtained signal will be distorted by signals arriving at an incidence angle that
corresponds to the location of one of the side lobes of the array. The beampattern is forced to
have minimum energy at arriving angles corresponding to other sources [22]. The proposed ap-
plication fits the new trend of using public transportation vehicles without drivers [23], as it has
already been done in some cities.

References

[1] Liu, Y., Peng, Y., Wang, B., Yao, S., Liu, Z. (2017). Review on Cyber-physical System. IEEE/CAA
Journal of Automatica Sinica, 4(1), 27–40.

[2] Xu G., Tan, M. (2001). Development Status and Trend of Mobile Robot. Robot Technique and Appli-
cation, 3(5), 7–13.

[3] Xin, X., Ye, H., Feng, C. (1990). The PID Adaptive Control of Operator. Robots, 12(2), 1–7.

[4] Ying, D., Songshu, S. (2002). Global Stability of the PD + Feedforward Robot Robust Adaptive
control. ACTA Automatic Sinica, 8(1), 11–18.

[5] Lay-Ekuakille, A., Vendramin, G., Trotta, A. (2008). Beamforming-Based Acoustic Imaging for Dis-
tance Retrieval. IMTC 2008 – IEEE International Instrumentation and Measurement Technology Con-
ference, Victoria, Vancouver Island, Canada.

[6] Jafarov, E.M., Parlakci M.N.A., Istefanopulos, Y. (2005). A new variable structure PID-controller
design for robot manipulators. IEEE Transactions on Control Systems Technology, 13(1), 122–130.

[7] Ramasamy, S., Pradhan, H.V., Ramanathan, P., Arulmozhivarman, P., Tatavarti, R. (2012). A novel
and pedagogical approach to teach PID controller with LabVIEW signal express. IEEE International
Conference on Engineering Education: Innovative Practices and Future Trends (AICERA), Kerala,
India.

[8] Amer, N.H., Hudha, K., Zamzuri, H., Aparow, V.R., Abidin, A.F.Z., Kadir, Z.A., Murrad, M. (2018).
Adaptive modified Stanley controller with fuzzy supervisory system for trajectory tracking of an au-
tonomous armoured vehicle. Robotics and Autonomous Systems, 105, 94–111.

[9] Malikopoulos, A.A., Cassandras, C.G., Zhang, Y.J. (2018). A decentralized energy-optimal control
framework for connected automated vehicles at signal-free intersections. Automatica, 93, 244–256.

[10] Liu, J., Jayakumar, P., Stein, J.L., Ersal, T. (2017) A nonlinear model predictive control formulation for
obstacle avoidance in high-speed autonomous ground vehicles in unstructured environments. Vehicle
System Dynamics, 56(6), 853–882.

[11] Viegas, D., Batista, P., Oliveira, P., Silvestre, C. (2018). Discrete-time distributed Kalman filter design
for formations of autonomous vehicles. Control Engineering Practice, 75, 55–68.
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