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Abstract: A large amount of electric vehicles (EVs) charging load will bring significant
impact to the power system. An appropriate resource allocation strategy is required for se-
curing the power system safety and satisfying EVs charging demand. This paper proposed a
power coordination allocation strategy of EVs’ in distribution systems. The strategy divides
the allocation into two stages. The first stage is based on scores assigned to EVs through
an entropy method, whereas the second stage allocates energy according to EV’s state
of charge. The charging power is delivered in order to maximize EV users’ satisfaction
and fairness without violation of grid constraints. Simulation on a typical power-limited
residential distribution network proves the effectiveness of the strategy. The analysis re-
sults indicate that compared with traditional methods, EVs, which have higher charging
requirement and shorter available time will get more energy delivered than others. The root-
mean-square-error (RMSE) and standard-deviation (SD) results prove the effectiveness of
the methodology for improving the balance of power delivery.
Key words: electric vehicles, charging power management, allocation strategy, priority
assessment

1. Introduction

As a clean energy carrier, electric vehicles (EVs) become an important way to deal with
energy crisis and environmental problems which have been concerned widely in recent years
[1, 2]. However, charging EVs imposes an additional load on the power grid [3]. Most of the
existing public distribution networks have been built for many years, the power supply capacity is
limited, and it costs significantly to expand the capacity. These negative factors are hindering EVs
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from entering the public distribution network. However, with the increasing popularity of electric
vehicles, a large number of electric vehicle users will utilize the residential area-based public
distribution system as the main stop and charging places, this will also lead to a great impact on
the system, and then power resources will be in short supply. It will cause the distribution network
and transformer overload, voltage drops and other electrical safety problems [4–7].

Renewable energy relieves the tension of power resources, but its intermittency may break
the supply and demand balance of the power grid [8, 9]. Guiding electric vehicles to eliminate
excess power in time is essential. Under the influence of peak and valley electricity price, electric
vehicles are more inclined to charge under valley electricity price [10]. However, it may cause
another peak load of the power grid. All the factors above could affect the formulation of charging
strategies for electric vehicles.

With the support of the communication infrastructure [11], electric vehicles can be increased
through wireless charging [12]. However, the construction of smart distribution residential area
is not perfect, and the power supply capacity of some residential areas can’t meet the charging
demand of more electric vehicles [2, 13]. Thus current research mainly focuses on the orderly
charging and the optimal scheduling to deal with the load impact of electric vehicles on the
power grid. Literature [14] put forward two smart strategies with objective functions consider-
ing minimization of total daily cost and peak-to-average ratio respectively. The impact on PEV
charging from an economic and technical was studied correspondingly. In [15], a methodol-
ogy is proposed for moving numerous electric vehicles charging load to valley period using
vehicle-to-grid (V2G) technology. However, as the total load increases, peak load shifting will
no longer achieve the desired effect. Literature [16] put forward a scheduling strategy based on
Time-of-use (TOU) power price, which suggests EVs charge during valley price periods and
discharge in peak price time. The strategy considered both the power grid security and users’
economic benefits, but it is subjected to car owners’ personal schedule constraints, which limited
its effectiveness.

A methodology for scheduling EV energy based on unit commitment practice is proposed
in [17]. However, in reality, due to the stochastic nature of the EV owners’ behavior, the opti-
mization scheme based on forecast data cannot accurately provide a suitable solution for each
user. A dynamic control strategy could adapt to the changing environment that need to be raised
[18–20]. A method controlling the charging power of plug-in EVs is proposed in [21], a quality of
service (QoS) aware admission control scheme is put forward to manage power, a vehicle owner
who pays more gets a faster charging rate. In [22], a demand coordination method of plug-in EVs
in distribution systems is proposed, and the methodology is based on the priority assigned to
plug-in EVs through a fuzzy expert system. Vehicle owners which have shorter parking duration
and higher required charging time can get better charging experience.

In order to manage an EVs’ charging power resource in separate areas and optimize owners’
charging experience, this paper studies the charging power of a single electric vehicle, presents a
dynamic charging power allocation strategy for electric vehicles in the public distribution network
area. The strategy utilizes the available charging power at present to fulfill users’ needs without
increasing the total power capacity of the distribution network. Each allocation will be divided
into two stages, the first stage is based on priority, focusing on fairness between users; the second
stage allocates all the remaining available power according to the state of charge (SOC), focusing
on meeting the urgent needs of some particular users.



Vol. 67 (2018) Dynamic electric vehicles charging load allocation strategy 643

2. Power allocation in residential area

Generally, the charging of EVs can be classified into fast charging and slow charging. The
power of slow charging is around 3.3 kW, and the power of fast charging rang from 10 kW to
50 kW [23]. The slow charging has little impact on the power grid and low installation cost, it is
preferable in a residential area. However, it may pose a threat to the safety of the power grid with
a large scale of EVs. Power allocation in residential area is indispensable.

2.1. Disordered allocation
There are mainly two charging ways for EVs in a public distribution area. In the first way, car

owners use the existing plug-in device, whereas in other way, they use a charging pile built in a
specific parking lot for EVs. Both ways belong to the category of disordered allocation, this type
of allocation regards the EVs charging load as a regular load, which would not be regulated by
the distribution system [24]. Keeping charging in a disordered type will threaten electricity safety
when the EVs charging load is large enough to make total load of the district exceed the upper
limit of power supply capacity, lead to tripping failure, power off or even causing fire disaster.
Therefore, the disordered allocation is unreliable [25].

2.2. Queuing allocation
To avoid power overloading, a straightforward allocation strategy for EVs in a residential area

applies a queuing mechanism [26]. Power grid monitors transformer capacity in real time, once
electricity load reaches its upper limit, these EVs to be charged will have to wait in line, until a
car finishes charging and releases enough energy space.

Queuing allocation could effectively avoid power overloading and can be implemented simply.
However, queuing allocation did not consider user needs, when power load reaches its upper limit,
car owners in queue have to wait for an uncertain time without any charging power supplied, this
could be inconvenient for those who have emergency charging needs. Moreover, some users may
arrive later than others, but they also have less time for charging, and it is possible for them not
to start charging during their entire available time, which could be unfair and unreasonable.

3. Allocation strategy modeling

This paper proposes a dynamic Evs’ charging load allocation strategy for a residential area,
allocates the limited power resources to each EV connected to the power grid according to
certain rules. The strategy divides the available power into two parts, participates in two stages
respectively.

3.1. Information collection and processing
Before executing the allocation algorithm, we need to collect related information in advance

(as shown in Table 1). The information can be obtained from a power consumption information
collection system, smart electric meter and battery management system.
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Table 1. Information needed to be collected

Name Description

P total power of public distribution network

P0.t regular load at time t

Pr .i rated charging power of the i-th EV (EVi)

SOCi.t state of charge of EVi at time t

thold i charged time of EVi

tplan i planning charge time of EVi

Lithium-ion batteries are mainly used for the pure electric vehicles (such as private cars and
pure electric buses) in the market currently [27]. The charge of the lithium-ion batteries usually
adopts the constant current – constant voltage charging mode [28], the constant current charging
is carried out with a standard current for a period of time, firstly, and when the battery voltage
reaches the charging cut-off voltage, the lithium-ion batteries will be charged by the constant
voltage.

In order to realize the distribution of power resources on demand in a dynamic real-time way,
the proposed strategy sets maximum demand charging power for every EV involved in based
on typical charging curve of lithium battery. The maximum demand charging power (Pe) was
determined by EV battery rated charging power (Pr ) and state of charge (SOC), when SOC
approaches its maximum, Pe drops from Pr . The real-time maximum demand power can be
obtained from the battery management systems (BMS).

By adding Pe to all EVs in the charge queue, we get total demand charge power at time
t (Psum.t ). According to the value between Psum.t and total available charge power at time t
(Pable.t ), current supply-demand relationship can be expressed as: Pable.t > Psum.t , in this case,
power resources are enough to support all EVs in the charge queue, they could get their Pe

respectively. Pable.t ≤ Psum.t , in this case, power resources could not support every EV’s Pe, the
following two-stage allocation algorithm needs to be executed.

The first stage allocation relies on a priority level assigned to EVs. The priority determining
can be considered as a multi-index comprehensive evaluation problem, involving tholdi , tplani ,
SOCi.t . In order to evaluate the weight of each indicator objectively, an entropy method [29] is
adopted to evaluate the priority level of each electric vehicle. The steps of the evaluation algorithm
are as follows: the indicators need to be standardized firstly. Thus

Yi j =
Xi j −min(Xi)

max(Xi) −min(Xi)
or Yi j =

max(Xi) − Xi j

max(Xi) −min(Xi)
, (1)

where: Xi j is the j-th index value of EVi; Yi j is the standardized index value, former one is a
forward index, whereas latter one is the reverse index. In this paper, tholdi is the forward index,
tplani and SOCi.t are the reverse indexes.

The information entropy of each index can be calculated as follows:

Ej = −
1

ln n

n∑
i=1

pi j ln pi j , (2)
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where

pi j = Yi j
/ n∑
i=1

Yi j . (3)

If pi j = 0, then
lim
pi j→0

pi j ln pi j = 0. (4)

Ej is the entropy of j-th index; n is the number of EVs.
The weight of index j is

Wj =
1 − Ej

k −
k∑
j=1

Ej

, (5)

where Wj is the weight of index j; k is the number of indexes.
Thus, the final score of EVi is

Zi =

k∑
j=1

WjYi j , (6)

where Zi is the score assigned to EVi , Z = {Z1, Z2, . . . , Zi, . . . , Zn}.
The priority level of an electric vehicle is obtained by sorting Z in descending order. That is,

if the score of EVi equals max(Z), the EVi priority level is 1; the score of EVi equals min(Z),
the EVi priority level is n.

3.2. Two-stage allocation
The first stage allocation is illustrated as follows:

Pg.i.t = Pable.t ∗
Pe.i.t

Psum.t
, (7)

where i is the priority level decided by the size of Zi in (6); Pg.i.t is the charging power allocated
for EV with priority i at time t; Pable.t is the available charging power at time t, Pable.t = P − P0.t .
Pe.i.t is the maximum demand charging power with priority i at time t.

The allocation starts from EV with i = 1, and Pable.t updates itself after each allocation,
thus, executing Pable.t = Pable.t − Pg.i.t , until all EVs are allocated. As the first stage allocation
completes, part of Pable.t will remain and will participate in the second stage allocation:

Pg2.i.t = Pable2.t ∗
Soc.max − Soc.i.t

N∑
i=1

(Soc.max − Soc.i.t )

, (8)

where Pg2.i.t is the charging power allocated for the EV with priority i at time t; Pable2.t is
the remaining available charging power at time t after the first stage allocation; Soc.max is the
maximum SOC of the EV battery; N is the total number of EVs of the charging queue.

After calculating the Pg2.i.t , it is necessary to detect whether the total power of the two stage
allocations exceeds the maximum charging power of the electric vehicle. If Pg.i.t+Pg2.i.t > Pe.i.t ,
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Pg2.i.t , it is adjusted as Pg.i.t + Pg2.i.t = Pe.i.t . The actual distribution power Pi.t of an electric
vehicle is the sum of two stages of the power allocation:

Pi.t =


Pe.i.t, Pg.i.t + Pg2.i.t > Pe.i.t

Pg.i.t + Pg2.i.t, Pg.i.t + Pg2.i.t ≤ Pe.i.t

. (9)

Thus, the allocation process of one time interval ends. The length of each time interval can
be adjusted according to charging environment. The whole process of the allocation algorithm is
shown in Fig. 1. The two-stage allocation can be explained in Fig. 2.

Fig. 1. Flow chart of power allocation
algorithm

Fig. 2. Waveforms of the source currents
before symmetrisation
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4. Case study

To evaluate the proposed strategy, two cases were examined. The first case is five EVs charging
data from a parking lot, and the second case is a more practical illustration of a residential area.
All the charging power delivered by devices is considered adjustable. Both cases are modeled in
a MATLAB software environment, where the length of simulation time is set for one day, and
one hour for each time interval correspondingly.

4.1. Residential distribution network
The residential distribution network studied here is the IEEE 34-node test feeder [30] as

shown in Fig. 3. In the test system, node 1 is connected to the grid, and the other 33 nodes are
connected with a residential load. It is assumed that each house has an electric vehicle. There are
some nodes, which will have EV charging randomly.

Fig. 3. IEEE 34-node test feeder [30]

4.2. Case study involving five EVs
In order to analyze the effect of priority on the SOC of electric vehicle, the traditional queuing

allocation method and the two stage allocation method proposed in this paper are compared under
the same scene. It is assumed that the five EVs charging information during a peak period are
shown in Table 2. It is assumed that due to an energy capacity limit, only three EVs can be
simultaneously charged in the parking lot. The entropy method is adopted as follows:

Table 2. Five EVs charging information at a time interval

thold i / min tplan i / min SOC i(t) / %

EV1 180 270 58

EV2 90 360 42

EV3 0 360 21

EV4 0 60 23

EV5 60 180 30



648 Y. Wang, X. Ma, F. Wang, X. Hou, H. Sun, K. Zheng Arch. Elect. Eng.

Table 3 shows the results of indicators standardization using (1):

Table 3. Indicators standardization

thold i tplan i SOC i(t)

EV1 1 0.3 0

EV2 0.5 0 0.43

EV3 0 0 1

EV4 0 1 0.95

EV5 0.33 0.6 0.76

Table 4 indicates the entropy and weight of each index using (2) (5):

Table 4. Entropy and weight of each index

thold i tplan i SOC i(t)

Ej 0.62 0.62 0.83

Wj 0.41 0.41 0.18

Finally, the scores assigned to five EVs are shown in Table 5 using (6):

Table 5. Results of priority score

Score Priority level

EV1 0.53 2

EV2 0.28 4

EV3 0.18 5

EV4 0.58 1

EV5 0.52 3

Fig. 4 and Fig. 5 indicate the SOC trend on a traditional queuing allocation and the proposed
two-stage allocation, respectively. It is assumed that these five EVs have the same battery capacities
and charger ratings.

As shown in Fig. 4, EV2 with 75% initial SOC arrives first and plugs. EV3 and EV5
sequentially arrive and start charging. EV1 and EV4 have to wait for charging as they finally
arrive. In Fig. 5, EVs get charged without waiting due to real-time energy adjustment. EV4 is
assigned a high-level priority, so its charging resources are guaranteed, whereas EV3’s charging
power is relatively limited because of its low priority. Due to the existence of the maximum
demand power, EV2 gets lower energy as its battery is about to full.
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Fig. 4. SOC (%) trend based on queueing allocation solution

Fig. 5. SOC (%) trend based on the proposed two-stage allocation solution

4.3. Case study involving a residential area

The second case study involves a residential area where transformer’s maximum active power
output is 1009 kW [31]. Disordered allocation, queuing allocation and the proposed two-stage
allocation are all implemented in the case. For convenience, it is assumed that EVs involved have
a common specification, the battery capacity is 60 kWh and the rated charging power is 30 kW.
The number of charging EVs at each time period is shown in Fig. 6. The probability density
distribution of charging data is listed in Table 6. It is assumed to follow uniform distribution.
Fig. 7 indicates system loading of a day in three allocation ways. Here the proposed two-stage
allocation’s time interval is set to 1 h.

The total daily load and the maximum overload rate of the four modes are shown in Table 7.
As illustrated in Fig. 7 and Table 7, in disordered allocation, EVs start charging as soon as

they plug-in the system, regardless of the power grid constraints. As can be noted, significant
overloading occurs in the scheme, which will lead to a serious threat to the safety of electricity
within the area. The disordered allocation, as a result, is infeasible. In addition, both queuing and
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Fig. 6. The number of EVs charging at each time period in residential area

Table 6. Probability density distribution of charging datas

SOCi.t tplan i / min thold i / min

EV U(20, 45) U(30, 120) U(20, 30)

Fig. 7. Simulation results of the system loading

the proposed two-stage allocation are able to avoid the grid overloading, moreover, they almost
have the same trend and total load. Compared with the queuing allocation, electric vehicles
absorb all available resources with the proposed two-stage allocation. It shows that the proposed
allocation method can effectively use available resources for electric vehicles.

At 16:00 pm, the available load is 304 kW under the limitation of the distribution network
capacity and twelve electric vehicles are being charged. The cell grid cannot support all electric
vehicles to charge with maximum demand power. According to the data distribution in Table 6,
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Table 7. Comparison of load conditions in four ways

No EV Disordered Queuing Two-stage

Total daily load (MW) 15.346 21.264 20.274 20.308

Max. overloading 0 122.2% 0 0

the two-stage allocation algorithm has been operated for 1000 times with twelve electric vehicles.
Fig. 8 shows the relationship between the priority z and the power difference ∆P(z). The abscissa
is the priority level, 1 indicates highest priority. The ordinate is the average value of the difference
between the demand power and the actual distribution charging power of the charging vehicles
corresponding to each priority:

∆P(z) =

1000∑
k=1

Pe.z.k − Pz.k

1000
, (10)

where k means the simulation time; Pe.z.k and Pz.k are the maximum demand power and actual
distribution power of the electric vehicle with the priority of z (z = 1, 2, . . . , 12) in K-th
simulation, respectively.

Fig. 8. The relation schema between priority and demand power difference

The priority level reflects the charging urgency of an electric vehicle. The higher priority
of the electric vehicle, the higher charging urgency it is, and the distribution power should be
closer to the maximum demand power correspondingly. In Fig. 8, it can be seen that the two-stage
allocation presents an inverse relationship between the priority and the power difference. As a
result, the proposed allocation method uses the priority level to determine the allocated power,
and to improve fairness among EV owners.

In order to evaluate EV owners’ satisfaction and fairness, both the queuing and proposed two-
stage allocations are compared by calculating the root-mean-square-error (RMSE) and standard-
deviation (SD) between the delivered power and the required power. RMSE is typically used to
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measure the differences between values predicted by a model and the values actually observed,
whereas SD represents the confidence or significance of the analysis [32]. The combination of
the RMSE and SD reflects the overall satisfaction of EV user’s needs. Thus

RMSEpow =

√√√√√√√ n∑
i=1

d2
i

n
, (11)

SDpow =

√√√√√√√ n∑
i=1

(di − µ)2

n
, (12)

where RMSEpow is the root-mean-square-error between the required power and the delivered
power among n vehicles; n is the number of EVs; di is the difference between the delivered and
the required power of the i-th EV. SDpow is the standard-deviation between the required power
and the delivered power among n vehicles; µ is the mean of power difference.

Obviously, when the power resources are sufficient to satisfy all EVs’ charging requirement,
there is RMSEpow = SDpow = 0 for both the queuing and two-stage allocation (assume that
there is no charging loss, thus di = 0). Therefore, only the 6 peak hours’ data are picked up for
comparison.

Table 8. RMSE and SD calculation results in both schemes

Time period 16–17 17–18 18–19 19–20 20–21 21–22

RMSE Queuing 11.77 8.66 11.77 16.04 15.49 14.41

Two-stage 6.49 5.42 6.29 8.93 8.72 8.20

SD Queuing 10.82 8.29 10.82 13.55 13.27 12.64

Two-stage 4.51 4.14 4.15 4.90 4.91 5.31

Table 8 demonstrates the RMSE and SD values for residential area at peak hours. Compared
with the queuing allocation, the proposed two-stage allocation has lower RMSE and SD val-
ues, performs more robustly for serving EV owners. Overall, the proposed two-stage allocation
outperforms the queuing allocation in delivering energy balanced and stable energy.

5. Conclusions

This paper proposed an electric vehicles charging load allocation strategy for residential
area that enables a grid system to dynamically adjust EV charging power in order to optimize
energy utilization. The strategy was divided into two stages. The first stage allocation was based
on priority which determines the order EVs get charged, whereas the second stage serves EVs
according to their state of charge.
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Case studies were simulated for a typical residential area with different allocation methods.
Simulation results indicates that compared to traditional ways of allocation, the proposed strategy
outperforms in delivering energy effectively and safely. Furthermore, the root-mean-square-error
(RMSE) and standard-deviation (SD) results prove the effectiveness of the methodology for
improving the stability and balance of the charging process. However, there is still a need to find
a way to guide EV owner’s charging behavior, a demand response mechanism should be a future
extension of this study.
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