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In this work a concept of energetic efficiency of mixing is presented and discussed; a classical 
definition of mixing efficiency is modified to include effects of the Schmidt number and the 
Reynolds number. Generalization to turbulent flows is presented as well. It is shown how the 
energetic efficiency of mixing as well as efficiencies of drop breakage and mass transfer in two-
phase liquid-liquid systems can be identified using mathematical models and test chemical reactions. 
New expressions for analyzing efficiency problem are applied to identify the energetic efficiency of 
mixing in a stirred tank, a rotor stator mixer and a microreactor. Published experimental data and 
new results obtained using new systems of test reactions are applied. It has been shown that the 
efficiency of mixing is small in popular types of reactors and mixers and thus there is some space for 
improvement. 
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1. INTRODUCTION 

In this work the authors are concerned with the influence of mixing on the course of complex chemical 
reactions in single phase liquid systems and two-phase liquid-liquid systems. This problem is 
considered in the chemical reaction engineering literature (Bałdyga and Bourne, 1999; Bourne, 2003; 
Levenspiel, 1972) from two related points of view. First of all the design and performance of chemical 
reactors should enable to run chemical reactions with the highest possible selectivity. On the other 
hand, complex chemical reactions can be used as test reactions, to investigate the efficiency of mixing. 
Using test reactions one can characterize the level of mixedness (intensity of segregation, time 
constants for mixing) and use this information to improve the performance of processes carried out in 
the reactor. The time constant for turbulent mixing can be defined as the time scale of decay of the 
concentration variance of the passive scalar, i. 
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For effective laminar mixing by fluid elongation, one can define the characteristic mixing time 
(Bałdyga and Bourne,1986) by 
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where γ  is the rate of elongation and 
0δ  represents original thickness of the slab to be elongated. In the 

case of turbulent mixing the rate of elongation can be expressed as ( )1 2ε ν and the slab thickness 

expressed using the Kolmogrov microscale, 
Kλ . Then the mixing time can be expressed by the Corrsin  

(1964) equation 
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When both the inertial-convective and viscous-convective subranges of the concentration spectrum 
exist then the time constant for mixing reads (Corrsin, 1964): 
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where the relaxed integral scale for turbulent fluctuations of concentration, cΛ , is proportional to the 

scale of the large, energy containing eddies, L, 2c LΛ ≅ . 

The process of mixing between elongated slabs in laminar flow or in the viscous-convective and 
viscous-diffusive subranges of turbulence can be represented by the rate of creation of the intermaterial 
area per unit volume, va  [m-1], as given by (Ottino, 1980): 
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that is defined using the velocity gradient, ( )grad u


. 

Equation (5) depicts the fact that orientation of the intermaterial area with respect to the principle axes 
of deformation determines the effectiveness of mixing. It characterises the ratio of energy really applied 
to increase the intermaterial area to the whole energy dissipated during the flow. Using this concept one 
can define the efficiency of mixing using either a definition proposed by (Ottino, 1980) for 2D systems, 
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or a similar definition published by Rożeń (2008) for 3D deformation 
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where εT [m2s-3] represents the total rate of energy dissipation per unit mass and λ is the slab or striation 
thickness that is directly related to va , namely 1

vaλ −= . In this work the average values of efficiency 

during residence time t in the mixer will be considered. 

2. THEORETICAL ASPECTS OF EFFICIENCY OF MICROMIXING 

Equations (5) to (8) describe just fluid deformation but they do not consider mixing on the molecular 
scale. This means that intensity of segregation (a normalized variance of the passive scalar tracer) stays 
equal to unity during mixing. To illustrate an influence of the local flow structure on mixing, consider a 
spot of contaminant of finite molecular diffusivity, Di, which is transported, deformed and rotated. 
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Following Tennekes and Lumley (1972) and Bałdyga and Bourne (1999), one can start from the 
conservation equation for the concentration, c 
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and assume that the spot size is smaller than the Kolmogorov microscale λK. The spot position is 

determined by the position of the Lagrangian point X


 that can be interpreted as the centre of mass of 
the spot. One can write the differential mass balance in a local coordinate system (ξ1, ξ2 and ξ3) 

attached to the Lagrangian point X


, where Xx


−=ξ  is the position vector in the moving frame. The 

fluid element is assumed to be smaller than the Kolmogorov microscale, hence the relative motion 
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Treating now the concentration of the tracer substance as a three-dimensional probability density 
function one can characterize the shape of our spot by using the concentration moments (Tennekes and 
Lumley, 1972). 
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This definition allows the diagonal moment Ikk, to be used as a quantity proportional to the square of the 
penetration distance of the contaminant in the “k” direction. The shape of the spot can be characterized 
by comparing the diagonal moments I11, I22 and I33 

 332211
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whereas the sum of diagonal components 332211 IIIII kk ++==  is proportional to the square of the 

average spot radius. From Eqs. (10) and (11) one gets after transformation 
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where skm and Ωkm represent the pure deformation and rotation tensors, respectively. 

   

Fig. 1. Effect of stretching on spreading of the contaminant due to molecular diffusion 
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Equation (13) shows effects of deformation and rotation on spreading of the contaminant. To show 
relation between fluid deformation and mixing on molecular scale one can neglect effects of rotation, 
and follow spreading of the contaminant in the 2-dimensional flow, as shown in Fig. 1. 

Equation (13) reduces then to 

 11
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which can be solved with initial conditions ( ) 2
11 00I δ=  and ( ) 2
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yielding 

 ( )2
11 22 02 cosh 2 2 sinh(2 )i

SD

D
I I I st st

s
δ= + = +  (16) 

Notice that definitions (7) and (8) consider only the first term on the RHS of Eq.(16). When there is no 
deformation  (s = 0),  Eq.(16) reduces to 

 2
11 22 02 4D iI I I D tδ= + = +  (17) 

To present effect of deformation on mixing one can plot the ratio SD DI I versus dimensionless time, 

s t⋅  for 0 0δ = , as shown in Fig. 2. 

 

Fig. 2. Effect of fluid deformation on spreading of the contaminant 

Figure 2 shows a dominating effect of stretching on spreading due to molecular diffusion. If, however, 
rotation effects are not neglected, and conditions presented in Fig. 1 are replaced by those given in Fig. 
3, then the resulting solution will look different, as shown in Fig. 4. Figure 4 clearly shows that the 
growth of the spot of a contaminant is retarded by rotation; when rotation is small, the growth is still 

exponential, but with the resulting rate of stretching, e.g. 1γ ′ , smaller than s11 = s. For intensive rotation 

the spot is turned to a new orientation before the gradients have opportunity to increase and accelerate 
molecular diffusion. 
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Fig. 3. The flow field including rotation 

 
Fig. 4. Effects of stretching and rotation on spreading of the contaminant 

Equation (13) for 1sΩ < can be presented in the local frame of reference ( 1 2
' ',ξ ξ ) such that the off-

diagonal moments vanish, and Eq. (13) is replaced by 

 
1

2
'

'ii
i' '

ii ii

dI D
( x,t )

I dt I
γ

 
= + 

 


  (18) 

where 
1 2

1 2
s

εγ β β
ν

 ′ = ⋅ = ⋅ 
 

 and 
1 2

2 2
s

εγ β β
ν

 ′ = − ⋅ = ⋅ 
 

 with 0 0β≤ ≤ . The coefficient β is equivalent 

to the efficiency eff defined by Eq. (7). 

As mentioned earlier, Eqs. (5) to (8) are based on analysis of fluid deformation but they do not consider 
mixing on the molecular scale. In what follows let us consider turbulent mixing and include effects of 
molecular diffusion. This should lead to a more realistic definition of energetic efficiency. Considering 
that the slab or striation thickness is directly related to av, namely 1

vaλ −= , we get from Eqs. (5) and (8) 
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When Eq. (19) is integrated from the Kolmogorov microscale 
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−= =  the latter representing a cut-off of the spectrum due to molecular 

diffusion as shown in Fig. 5, then the time of decreasing λ from λK  to λB corresponds to the mixing 
time, τM. This results in the new equation for efficiency of micromixing: 
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Once the characteristic time scale for mixing is measured one can calculate the efficiency of mixing 
from Eq.(20). In this section we identify efficiency of mixing based on available in the mixing literature 
models of mixing on the molecular scale. 

 

Fig. 5. Spectrum of concentration variance in liquids with very large Schmidt number at very high  

Reynolds number 

Let us start from mixing in the viscous-convective and viscous-diffusive subranges of turbulence,  

Eq. (3). In Eq. (3) it was assumed that the rate of strain is equal to ( )1 2ε ν . We can replace now the 

prefactor for the rate of strain more precisely: based on Taylor’s equation one gets 
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expression including the effect of skewness factor was given by Batchelor (1980) for the characteristic 
rate of strain ( ) ( )1 2
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which after substitution to Eq. (20) results in 0.26eff = . A slightly less exact estimate for isotropic 

turbulence based on Taylor’s equation results in 0.36eff = . 
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The results show that due to reorientation of the rate of strain tensor at a small scale in turbulent flow 
the efficiency of mixing 1eff =  is not possible. 1eff =  would be possible for continuous elongation of 

threads of fluid in 3D space without reorientation, which does not take place in turbulent flows. 

Introducing now Batchelor’s correction to Eq. (4) we get 
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and substituting for the integral scale of concentration fluctuations the relaxed value, 2c LΛ ≅ , 
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where ReL u L ν′=  is the Reynolds number based on the root-mean-square velocity fluctuation u′and 

the scale of the large, energy containing eddies, L. Equation (23) is based on the definition of efficiency 

given by Eq. (20). A special definition for turbulent mixing can be proposed when instead of 
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valid for laminar flow we will use after Batchelor (1980) the maximum possible rate of deformation for 

turbulent flow ( ) ( )1 2
7 6 15du dx S ε ν= ⋅ . Then efficiency for turbulent mixing, eff2, defined as 
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will take values between 0 and 1. 

Figure 6 shows effects of the Reynolds number and the Schmidt number on mixing efficiency. 

 

Fig. 6. Effects of the Reynolds and Schmidt numbers on efficiency of mixing 
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The efficiency of mixing decreases significantly with increasing the Reynolds number due to the 
increasing role of the inertial-convective mixing and increases slightly with increasing the Schmidt 
number. To run the process at high efficiency it is important to decrease the integral scale, cΛ , in  

Eq. (22). When reagents are fed to the tank very slowly through the feeding nozzle of small diameter 
then one has c LΛ << and its effect in Eq. (22) is negligible (see Bałdyga and Bourne (1999)). In such 

a case multiple feeding pipes are recommended to have a faster overall feeding rate. 

For description of micromixing under such asymptotic conditions the Engulfment model is 
recommended. The model describes viscous-convective processes of building lamellar structures by 
engulfment and deformation. 

When micromixing is controlled by a viscous-convective engulfment process, then the ci concentration 
history can be calculated from the engulfment equations: 

 ( )i
i i i
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E c c r

dt
= − +  (25) 
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, that depends on flow conditions and fluid viscosity. 
ic  

represents here the concentration of reactant i in the environment. For this model the efficiency as 
defined by Eq. (8) is equal to 0.1eff = . Because the E-model is easy to use and validated 

experimentally, we will treat the value predicted by this model as the reference one and define relative 
efficiency based on it.  Of course it is always possible to express the absolute efficiency defined by Eqs. 
(7) or (8) by multiplying the efficiency identified using E-model by 0.1. In such a case the E-model, or 
any other model of this type, takes the role of an agent of efficiency identification. Notice that a 
somewhat similar approach was applied by Falk and Commenge (2010), where as a reference model 
the model for laminar mixing (Bałdyga and Bourne, 1986) was used in combination with the IEM 
model (Villermaux, 1986). 

3. EXPERIMENTAL IDENTIFICATION OF MICROMIXING EFFICIENCY 

The procedure to characterize efficiency of mixing includes modelling of effects of mixing on the 
course of the test chemical reactions using the E-model of micromixing (Bałdyga and Bourne, 1999). In 
the E-model the engulfment parameter, ( )1 2

0 058E . ε ν= depends on the rate of energy dissipation, ε. 

One can construct then the calibration curve representing the theoretical dependence of the product 
distribution on the rate of energy dissipation. Having measured the value of product distribution one 
identifies then the rate of energy dissipation, ε as the theoretical reference value. Comparing the 
theoretical rate of energy dissipation, ε necessary to obtain the same product distribution, XS, as the one 
observed in experiment under consideration, characterized by the rate of energy dissipation equal to εT, 
one can express the average efficiency of mixing, eff , by 
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Let us consider the set of competing or parallel reactions as given by Eq. (28): 

 1 2A B R C B Sk k,+ ⎯⎯→ + ⎯⎯→  (28) 
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A good example of such a reacting system is competitive neutralization of hydrochloric acid and 
alkaline hydrolysis of monochloroacetate methyl or ethyl esters of monochloroacetic acid (Bałdyga and 
Bourne, 1999). In what follows in this section we use as a reference system the one given by Eq. (28) 
with A = HCl, B = NaOH, C =  CH2ClCOOC2H5, R = H2O or NaCl, S = C2H5OH or CH2ClCOONa and 
a new one, with C replaced by CHCl2COOC2H5 and thus S represented this time by CHCl2COONa. To 
illustrate application of the test reactions, both experiments and simulations have been performed. 
Experiments were carried out using a semibatch stirred tank reactor of diameter T = 145 mm, equipped 
with the Rushton type impeller of diameter Dimp=50 mm and 4 baffles of a width equal to 15 mm. 

The product distribution was represented by the ratio of number of reacted moles of the ester to the 
number of moles of the base (B) for NA = NB = NC. 

 C

S

A

N
X

N

Δ=  (29) 

The feeding of B solution to premixture A and C was so slow that there was no effect of feeding rate 
observed on the product distribution. In this situation the inertial-convective mixing is not active and 

one can expect 
1 2

1
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eff
ε
ε

 
= ≅ 
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Figure 7 shows that results of simulation with the E-model agree very well with experimental data, 
hence 

T
ε ε= . Notice that the relative efficiency based on comparison with the E-model is equal to 1, 

but the efficiency characterising E-model itself is 10%. 

 

Fig. 7. Effect of agitation rate on selectivity XS for ethyl chloroacetate and ethyl dichloroacetate;  

cB=1M, cA0=cC0=0.02M, α=50, feeding position A close to the impeller 

When as a system of the test reactions a simultaneous diazo-coupling between 1- and 2-naphtols and 
diazotized sulphanilic acid is applied (Bourne et al., 1992), two measures of product distribution can be 
used, one concentrating on the yield of secondary product S (a bisazo dye) and the other on the yield of 
the competitive product Q (a single monoazo dye). XQ means then a fraction of the diazotized 
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sulphanilic acid converted into Q and similarly XS presents a fraction of the diazotized sulphanilic acid 
converted into S. 

 1

1A +B Rpk p⎯⎯→ −  (30) 

 1
1A +B Rok o⎯⎯→ −  (31) 

 2R+B Sokp − ⎯⎯→  (32) 

 2R+B Spko − ⎯⎯→  (33) 

 3
2A +B Qk⎯⎯→  (34) 

 ( )2 2S S oR pR Q SX c c c c c= + + +  (35) 

 ( )2Q Q oR pR Q SX c c c c c= + + +  (36) 

where A1 denotes 1-naphthol, A2 is 2-naphthol, B represents diazotized sulphanilic acid, o-R and p-R 
are two mono-substituted dyes (ortho and para), S represents a bisazo dye and Q is a single monoazo 
dye. 

Effects of energy dissipation ε and the volume ratio of reactants α  on XS and XQ as predicted by the  
E-model are presented in Fig. 8. To this end Eqs. (25) and (26) are applied together with the kinetics 
describing rates of reactions represented by Eqs. (30) to (36) (Bałdyga and Bourne, 1999; Bourne et al., 
1992). Notice that Fig. 8 has been constructed in a similar way as Fig. 7, just for different kinetics and 
without replacing the rate of energy dissipation by equivalent frequency of impeller.  One can see that 
for high values of the rate of energy dissipation one should apply rather XQ than XS to interpret effects of 
mixing due to higher sensitivity to the rate of energy dissipation. 

 

Fig. 8. Predicted effect of the energy dissipation rate, ε, on product distributions XQ and XS:  

for α = QA/QB = 1, cA1,0 = 1.2 mol/m3, cA2,0 = 2.4 mol/m3, cB0 = 1 mol/m3,  

for α = QA/QB = 10, cA1,0= 1.2 mol/m3, cA2,0 = 2.4 mol/m3, cB0 = 10 mol/m3 

As shown in Fig. 9, Fig. 8 can be used in what follows as a calibration curve, which based on 
experimentally determined XQ values gives the smallest, “theoretical” values of the rate of energy 
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dissipation necessary to obtain experimental XQ , that can be later compared with the energy really used 
in the experiment. 

 

Fig. 9. Application of calibration curve 

Applying this procedure to experimental data presented by (Jasińska et al., 2013a) for homogeneous 
mixing in a Silverson 150/250 MS rotor-stator mixer one obtains results shown in Fig. 10. The 
efficiency is calculated from Eq. (27) with the energy dissipation Tε resulting from both, agitation and 

flow ,T N Qε ε= . In this paper the rate of energy dissipation ,N Qε  is calculated from the power number 

correlation (Jasińska et al., 2013a) and the rotor swept volume VH. 

 P QN =6.0 N +0.24⋅  (37) 

where 

 ( )3
QN Q ND=  (38) 

represents dimensionless flow rate. 

The average rate of energy dissipation is thus given by Eq. (39) 

 3 5
, P= NN Q HN D Vε  (39) 

One can see in Fig. 10 that as expected with increasing rotor speed the product distribution XQ 

decreases, so mixing becomes faster. However, it becomes less efficient with increasing Re as well, in 
agreement with the theory, Eq. (24) and Fig. 6. 

The same procedure has been applied to other systems, including microreactors (Malecha et al., 2009). 
It is interesting to compare results obtained for the rotor-stator device presented in Fig. 10 with similar 
results obtained in the serpentine microreactor are shown in Fig. 11. 

The theoretical rate of energy dissipation was identified using the procedure presented in Figure 9 and 
the overall  rate of energy dissipation was recalculated from measured pressure drop and flow rate, 

( )P R
Q P Vε ρΔ = Δ . One can see from Figure 11 that in this case efficiency of mixing increases with 

increasing the Reynolds number. This happens because of destabilization of the laminar flow; at small 
Re number molecular diffusion controls mixing and energy is just used to move the fluid parallel to 
reactor walls. In a simple linear stable laminar shear flow the shearing motion will stretch and rotate 
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fluid elements, with consequences explained earlier. At higher Re numbers the flow is destabilised and 
faster mixing is induced by flow instability. Lamellar structures are first formed by unstable flow, then 
fluid deformation accelerates molecular diffusion and this effect increases with increasing Re. Figures 
10 and 11 show that measured effects of the Reynolds number on mixing efficiency can help to identify 
mechanism of mixing. 

 

 

Fig. 10. Dependences of the product distribution XQ on the rotor speed and efficiency of mixing eff  
on the Reynolds number, Re 

 

Fig. 11. Dependences of the measured product distribution XQ on the flow rate and efficiency of mixing eff  
on  the Reynolds number, Re (based on Malecha et al., 2009) 

4. MASS TRANSFER EFFICIENCY IN LIQUID-LIQUID SYSTEMS 

Equations (20), (23) and (24) can be interpreted as the ratio of two time constants with the minimum 
possible time constant in the numerator and the real one in the denominator. Theoretical interpretation 
of efficiency of the mass transfer in liquid-liquid systems can be constructed in a similar way. The time 
constant for mass transfer can be defined as 
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1

D
LK a

τ =  (40) 

where LK a  represents the volumetric mass transfer coefficient, and 

 

1
1 1

L
Ld Lc

K
k P k

−
 

= + ⋅ 
 (41) 

with Ldk  and Lck being mass transfer coefficients in the dispersed and continuous phase respectively 

and P is the equilibrium distribution coefficient between phases. 

Then the energetic efficiency can be defined by 

 D,min

D

eff
τ

τ
=  (42) 

For low solubility of the solute in the continuous phase one has 1P >> and then L LcK k≅ . This 

happens when an organic solute is dissolved in the organic dispersed phase and the aqueous solution 
represents the continuous phase as considered by Jasińska et al., (2013b). 

Two aspects of the efficiency can be considered based on definition, Eq. (42): the first one is related to 
efficiency of drop breakage, the second one to efficiency of mass transfer. 

Similarly as the E-model was chosen as a reference model for mixing in homogeneous systems, one 
can choose a reliable reference model for mass transfer. In this paper the value of kLca will be 
calculated using the model of Favelukis and Levrenteva (2013), Lc FLk k= , which includes effects of 

drop deformation to the shape of prolate ellipsoid 

 
( )

( )
( )

1 2
Ca

4 4 313
4 1 N Pe

2 1 315 1FL drop eq i
K Y

k a R D
K ) K

π
π

 +
= − + + 

 (43) 

where ( ) ( )19 16 16 16Y K K= + + . The capillary number and the Péclet number are defined using the 

equivalent radius, i.e. the radius of a sphere of equal volume to that of the deformed drop 
2eq eqR R d= = . Using FL dropk a and the population balance to calculate the interfacial area per unit 

volume a, ( )36 drop eqa a dϕ π= , one can determine Lc FLk a k a=  and related time constant Dτ . 

Efficiency of drop breakage can be expressed by effect of drop size on the time constants for mass 
transfer, Dτ . The time constant D,minτ  in Eq. (42) can be interpreted as the shortest mass transfer time 

calculated from the model of Favelukis and Levrenteva (2003) using the maximum stable drop size dd , 

2eq dR d= . The maximum stable drop size dd  can be estimated including intermittency effects using 

an equation given by Bałdyga and Podgórska (1998). 

 

0.93

1.54
2 3 5 3d x

c

d C L
L

σ
ρ ε

 
=   

 
 (44) 

where L is the integral scale of turbulence, 0.23xC = , and the rate of energy dissipation ε applied in 

Equations (43) and (44) represent the values really used in experiments. This gives 

 ( )
3

2
6

eq d

d
D,min

FL drop R d

d

k a

πτ
ϕ

=

=  (45) 
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where ϕ represents the mean value of the volume fraction of the organic, dispersed phase. Similar 
calculations but performed for 32 2eqR d=  give the time constant Dτ . 

 ( )
32

3
32

2
6

eq

D

FL drop R d

d

k a

πτ
ϕ

=

=  (46) 

Then efficiency of development of the interfacial area reads 

 
( )
( )

32

3
2 ,min

32
2

eq

eq d

FL drop R d Dd
a

DFL drop R d

k a
d

eff
d k a

=

=

τ 
= ⋅ =  τ 

 (47) 

The efficiency as given by Eq.(47) has been defined using the reference model represented by Eq. (44), 
similarly as the E-model has been used to determine efficiency of micromixing. As mentioned before, 
the E-model has been used as an agent necessary to identify the absolute efficiency as defined by Eqs. 
(7) and (8). One can define such absolute efficiency also in the case of development of the interfacial 
area, a. 

The work dw done to expand the interfacial area dA can be presented as dw dAσ= . This leads directly 
to 

 
da

dt

ρε
σ

′
=  (48) 

where ε’ represents this part of mechanical energy that is used to increase an interfacial area. 

For a continuous flow system with the mean residence time t one has then 

 
t

a
ρε
σ

′
Δ =  (49) 

where aΔ is an increase of the interfacial area between an inlet and an outlet of the system. Based on 
measured aΔ  one can calculate ε’ and express efficiency of development of interfacial area as 

 aeff
ε
ε
′′ =  (50) 

where ε is the average rate of energy dissipation in the system. However, the values of efficiency 
resulting from Eq.(50) are extremely low, which means that the application of Eq. (50) can be 
cumbersome. 

Consider now efficiency of mass transfer for given drop size distribution. On can use directly Eq.(43) 
as the reference one and calculate efficiency of mass transfer either based on experimental data or 
applying any model of mass transfer, specific for given process conditions. 

 ( )L

L
k

FL drop eq

k
eff

k a a
=  (51) 

where aeq is the surface of a sphere with identical volume as the considered droplet. 

As an example let us consider mass transfer of benzoic acid from toluene drops to aqueous solution in 
dense emulsion of volume fraction ϕ = 0.75 processed in a rotor-stator mixer as described by Bałdyga 
et al. (2016). 

2D numerical CFD simulations of the process in the in-line rotor-stator device for drops whose 
diameter falls within the inertial subrange of turbulence were carried out using the standard k-ε model 
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of Fluent-Ansys and the multiple reference frame method (MRFR) linked to the population balance 
equation. Simulations were performed to predict the hydrodynamic properties of the flow, the size 
distribution of droplets forming emulsion, its viscosity and volumetric mass transfer coefficient. An 
unstructured mesh consisting of 178 845 cells and 180 309 nodes was applied. Gambit was used 
including application of its smoothing procedures to redistribute nodes, and the resulting drop sizes 
were mesh independent. Simulations were performed using a computer cluster consisting of 17 single-
processor PCs and 7 double-processor nodes connected by a local network. 

Figure 12 shows distribution of the time scaleτD as calculated from Eqs. (43) and (46). Based on Eq. 
(47) one can calculate the effa efficiency: effa ≈ 0.15 at N = 1000 rpm and effa = 0.058 at N = 11 000 
rpm. 

 

                

Fig. 12. The time constant for mass transfer of benzoic acid from toluene drops to aqueous solution emulsion for 

ϕ = 0.75  ηc = 0.91 mPas , ηd = 0.587 mPas, Qm=600 kg/h (a) N=1000 rpm, (b) N=11000 rpm 

To illustrate how one can find 
Lkeff let us consider effects of presence of surface-active contaminants in 

the system. Such impurities can eliminate internal circulation, thereby significantly reducing mass 
transfer rate. Assuming that droplets behave as hard spheres because of no internal circulation, one can 
use the model of Batchelor (1980) for kL. 

 

1 32 1 2
1 3

1 2
Sh= 0 55Pe 0 55L

i i

k R R
. .

D D

ε
ν

 
= =  

 
 (52) 

with 32 32 2R R d= = and the Sauter mean diameter taken in the considered example from CFD results. 

Based on Eq.(48) we get for the mass transfer efficiency 0 24
Lkeff .≈  at N = 1000 rpm and 0 19

Lkeff .=  

at N = 11 000 rpm. 

The general efficiency including both aspects of the process i.e. drop breakage and mass transfer, takes 
the values 0 036

La keff eff eff .= ⋅ =  at N=1000 rpm and 0 011
La keff eff eff .= ⋅ =  at N = 10 000 rpm. 

To check if turbulence is intensive enough to use the models developed for turbulent flow, the 

Reynolds number ReL

u L

ν
′

= based on the scale of large, energy containing eddies is plotted in Fig. 13. 
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Fig. 13. The Reynolds number for emulsion flow for ϕ = 0.75, ηc = 0.91 mPas, ηd = 0.587 mPas,  

Qm = 600 kg/h at N = 1000 rpm, (b) at N = 11000 rpm 

Figure 13 shows that turbulence is well developed in most of the rotor-stator inside, especially in the 
rotor swept region, so the assumption on turbulent flow in the mixer is justified. 

5. CONCLUSIONS 

A new definition of efficiency of mixing in homogeneous systems is proposed, discussed and applied to 
interpret experimental data. The new definition represents modification and generalization to turbulent 
flows of a definition proposed originally by Ottino (1980). It has been shown that similar methods can 
be applied to investigate efficiency of drop breakage and mass transfer in two-phase liquid-liquid 
systems. Results show that the value of efficiency of mixing is not high in popular types of reactors and 
mixers, but can be used to compare different methods of contacting reactants and identify the 
mechanism of mixing. 

The authors acknowledge the financial support from Polish National Science Centre (Grant agreement 
number: DEC-2013/11/B/ST8/00258). 

SYMBOLS 

a interfacial area per unit volume of emulsion, m-1 

dropa  drop area, m2 

va  intermaterial area, m-1 

c concentration, mol m-3 
ci concentration of component "i", mol m-3 
D rotor diameter, m 

D  deformation tensor, s-1 
Di molecular diffusivity of component "i", m2 s-1 
d drop diameter, m 
dd maximum stable drop size, m 
d32 Sauter diameter, m 
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E engulfment parameter, s-1 
eff efficiency 
Iij concentration moments, m2 
ID concentration moment for pure diffusion, m2 
ISD concentration moment for diffusion and deformation, m2 
K viscosity ratio, d cK η η=  

KL overall mass transfer coefficient, m s 
k2 rate constant of the 2nd order chemical reaction, m3mol-1s-1 
kL mass transfer coefficient, m s-1 
kLc mass transfer coefficient in continuous phase, m s-1 
kLd mass transfer coefficient in dispersed phase, m s-1 
L integral scale of turbulence, m 
N rotor speed, rps 
NCa capillary number, c dη γ σ ; for Eq.(43) c eqRη γ σ  

NP power number, ( )3 5P N Dρ  

NQ dimensionless pumping capacity, ( )3Q ND  

P power, W 
P equilibrium distribution coefficient 
Pe Péclet number, 2 1

iR Dγ −  

Re Reynolds number 
Q volumetric flow rate, m3s-1 
Qm mass flow rate, kgs-1 
Req equivalent radius, m 
Sc Schmidt number, 1

iDν −  

Sh Sherwood number, 1
L ik RD−  

S skewness factor 
sij deformation tensor, s-1 
t time, s 
u


 velocity vector, ms-1 

iu  component of velocity vector, ms-1 

u′  root-mean-square velocity component , ms-1 
VH rotor swept volume, m3 
XS, XQ product distributions of complex reactions 
Y deformation parameter in Eq. (43), ( ) ( )19 16 16 16Y K K= + +  

Greek symbols 
 α volume ratio 
β coefficient in definition of effective shear rate 

ε rate of energy dissipation, m2 s-3 

0δ  initial slab thickness, m 

γ  rate of shear, rate of elongation, s-1 

'γ  rate of shear, s-1 

dη  viscosity of dispersed phase, Pa s 

cη  viscosity of continues phase, Pa s 

cΛ  integral scale for turbulent fluctuations of concentration, m 

λ  striation thickness, m 

Bλ  Batchelor microscale, m 

Kλ  Kolmogorov microscale, m 

ν  kinematic viscosity, m2 s-1 
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ξ


 position vector in a moving frame, m 

dρ  density of dispersed phase, kg m-3 

cρ  density of continuous phase, kg m-3 

σ  [N m-1]  interfacial tension 

Dτ  time constant for mass transfer, N m-1 

Mτ  time constant for mixing, s 

ϕ  volume fraction of dispersed phase 

ijΩ  rotation tensor, s-1 

ω  vorticity vector, s-1 
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