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Abstract: In this work nine non-linear regression models were compared for sub-pixel 
impervious surface area mapping from Landsat images. The comparison was done in 
three study areas both for accuracy of imperviousness coverage evaluation in individual 
points in time and accuracy of imperviousness change assessment. The performance 
of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient 
boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors 
regression, Multivariate Adaptive Regression Splines, averaged neural networks, and 
support vector machines with polynomial and radial kernels) was also compared with the 
performance of heterogeneous model ensembles constructed from the best models trained 
using particular techniques. 
The results proved that in case of sub-pixel evaluation the most accurate prediction of 
change may not necessarily be based on the most accurate individual assessments. When 
single methods are considered, based on obtained results Cubist algorithm may be advised 
for Landsat based mapping of imperviousness for single dates. However, Random Forest 
may be endorsed when the most reliable evaluation of imperviousness change is the 
primary goal. It gave lower accuracies for individual assessments, but better prediction 
of change due to more correlated errors of individual predictions.
Heterogeneous model ensembles performed for individual time points assessments at 
least as well as the best individual models. In case of imperviousness change assessment 
the ensembles always outperformed single model approaches. It means that it is possible 
to improve the accuracy of sub-pixel imperviousness change assessment using ensembles 
of heterogeneous non-linear regression models.

Keywords: machine learning, model ensembles, sub-pixel classifi cation, impervious 
areas, Landsat
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1. Introduction

The coverage of impervious surface areas (ISA), defi ned as areas preventing the 
infi ltration of rainwater into the ground, is considered as very important environmental 
indicator (Arnold and Gibbons, 1996). Growing ISA percentage indicates an increase 
of anthropogenic impacts on the environment, what is refl ected in changes of many 
environmental functions and processes (e.g. rainfall-runoff transformation, ground 
water recharge, environmental or even population health) (Arnold and Gibbons, 1996; 
Shahtahmassebi et al., 2014). For this reason the accurate information about ISA 
coverage and monitoring of its change plays an important role in many environmental 
studies, especially urban and hydrological ones (Caldwell et al., 2012; Dams et al., 
2013; Shahtahmassebi et al., 2014; Li et al., 2016).

Remote sensing is nowadays commonly used for monitoring changes in land 
use and land cover (LULC), including changes of imperviousness. Applications of 
remotely sensed data for mapping ISA have been reviewed by Weng (2012) and 
Lu et al. (2014a). Recently, very high spatial resolution satellite images, aerial 
(Nielsen et al., 2011) and even UAV photographs (Tokarczyk et al., 2015) are used 
for imperviousness mapping. Despite that fact, in regional scale and/or ISA change 
assessment applications Landsat imagery is the most frequently used (Lu et al., 2014b; 
Tokarczyk et al., 2015; Li et al., 2016).

LULC changes may take different forms (Turner and Meyer, 1994). In case of 
conversion one land cover type changes completely into another. However, very often 
the changes are much more subtle and have a form of modifi cation. What changes is not 
the LULC category, but the proportions of land cover fractions inside the considered 
area (pixel, object, mapping unit) still classifi ed to the same class. For example, due 
to urbanization processes the housing density (and in turn the imperviousness) may 
increase substantially, nevertheless the area is classifi ed as “discontinuous built-up” or 
“10-30% impervious” as it was before. 

The ISA changes usually takes a form of modifi cations. Their detection and 
assessment from high, medium and low-resolution remotely sensed images requires 
the use of sub-pixel analysis approaches. In case of ISA mapping done for individual 
cities, the spectral mixture analysis-based methods are preferred (Ridd, 1995; Lu 
et al., 2014a). However, when the study area is dominated by other than urban 
types of land cover, mixture analysis may not give the expected accuracy and the 
regression-based approaches provide an alternative (Lu et al., 2014b; Heremans and 
Van Orshoven, 2015). These methods range from building regression models with 
vegetation indices (Bauer et al., 2004), through regression trees applications (Yang 
et al., 2003) to implementation of other machine learning algorithms, like artifi cial 
neural networks (Mohapatra and Wu, 2007; Chormanski et al., 2008) or support 
vector machines (Walton, 2008; Esch et al., 2008).

Applicability of machine learning algorithms for sub-pixel imperviousness mapping 
was compared in several studies (Liu and Wu, 2005; Walton, 2008; Mohapatra and 
Wu, 2010; Bernat and Drzewiecki, 2014; Heremans and. Van Orshoven, 2015). Each 
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of these studies was focused on evaluating the ISA prediction accuracy achieved 
for individual point in time. But, imperviousness estimates generated for particular 
dates are very often subtracted from each other and used for change assessment. The 
methodology of change detection through sub-pixel percent imperviousness mapping 
was proposed by Yang et al. (2003). This approach is classifi ed to layer arithmetic 
change detection techniques (Tewkesbury, 2015). It should be noted however, that 
the input layers and their difference have semantic meaning. Moreover, the subtracted 
layers may be created through sophisticated non-linear regression models or even 
through hybrid approach when classifi cation and regression models are combined 
(Mountrakis et al., 2009; Bernat and Drzewiecki, 2014). 

In case of sub-pixel imperviousness change detection it is commonly assumed 
that to assure the highest accuracy of change map the accuracies of individual 
imperviousness maps should be as high as possible. Such assumption is true for 
post-classifi cation change detection techniques (Hussain, 2013). However, in case of 
sub-pixel assessment of fractional coverages (eg. imperviousness), although generally 
true, may fail. As imperviousness change is calculated by subtracting of two values, 
the standard deviation of ISA change assessment error (

chISAs ) may be calculated as 
(Kircher, 2001; Morgan and Henrion, 1990):
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where 
1ISAs  and 

2ISAs  are standard deviations of ISA errors for individual time points and 

21ISAISAr
 is the correlation coeffi cient between the errors of individual ISA assessments. 

As the result, due to higher correlation of their prediction errors the approaches less 
accurate for individual assessments may give lower error of change evaluation. 

Drzewiecki (2016) presented the comparison of nine selected machine learning 
algorithms for mapping the imperviousness and its change in the catchment of 
Dobczyce Reservoir (south Poland) from Landsat imagery. The Cubist algorithm gave 
the lowest errors for both individual assessments. Nevertheless, the most accurate 
change assessment was obtained by subtraction of Random Forest results due to 
higher correlation of their prediction errors. These fi ndings stimulated the research 
which are presented in this paper. The fi rst purpose of the present study was to repeat 
the previous experiment and compare selected machine learning algorithms in the 
context of sub-pixel imperviousness change detection with new datasets. The second 
aim of the research was to answer the question if by ensembling prediction algorithms 
one can fi nd the approach performing better both for individual time points ISA 
assessments and ISA change evaluation.

In ensemble learning process a set of models is generated and combined to 
obtain the fi nal prediction (Mendes-Moreira et al., 2012). The approach is used both 
for classifi cation and regression problems, but some differences in methods exist. 
A comprehensive survey of ensemble learning approaches for regression is provided 
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by Mendes-Moreira et al. (2012). Model ensembles are reported to be more robust 
and accurate than single models (García-Pedrajas et al., 2005). As shown by Perrone 
and Cooper (1993), it is possible to construct an ensembled model which performs in 
the mean squared error (MSE) sense as good or better than any of single models in 
the ensembled set.

Ensemble methods may be divided according to the approach used for generation 
of ensembled models (Rooney et al., 2004). In homogeneous ones all the models 
are obtained using the same induction algorithm. If different algorithms are used to 
create a set of models, the ensemble is called heterogeneous. Wichard et al. (2003) 
suggest that in regression problems heterogeneous ensembles perform better than 
homogeneous ones. This is due to less correlated errors of individual models, what 
results in reduction of ensemble variance. 

These advantages of heter  ogeneous ensemble learning should also be benefi cial 
for ISA change assessment. Predictions of ensembled models for individual time 
points should have MSE not higher than obtained with the best of ensembled models. 
At the same time, if their variances are reduced, one may also expect more correlated 
errors for these predictions. As a result, the error of change evaluation should be 
reduced as well.

Heterogeneous ensemble approaches were successfully used for regression 
problems in different applications (Partalas et al., 2008; Kew and Mitchel, 2015; 
Heinermann and Kramer, 2015). Nevertheless, remote sensing applications are hard 
to fi nd. On the other hand heterogeneous models were reported as outperforming 
approaches based on individual machine learning techniques in remote sensing 
classifi cation tasks (Qi and Huang, 2007; Engler et al., 2013; Gómez-Chova et al., 
2013) and Zhang (2010) expects that ensemble learning would be adopted to high-
level fusion of multi-source remote sensing data.

2. Study areas and image data

2.1. Study areas

Three watersheds located in South Poland were chosen as study areas (Figure 1). 
All of them are the catchments of reservoirs. The fi rst one is the part of Sola river 
watershed till the point of water intake for Dzieckowice reservoir. The second one 
– the watershed of Dobczyce reservoir – is located on Raba river. These two reservoirs 
are important sources of drinking water for upper Silesia and Krakow agglomerations. 
The last one is the watershed of Czorsztyn reservoir located on Dunajec river. Names 
of the rivers are used as the labels of study areas further in the paper.

All three catchments are hilly and partially even mountain regions with large 
forest cover (40–50% of area). Urbanized areas covers from ca. 5 (Dunajec) to ca. 
8 percent (Raba) of the area. More information about land use and land cover in 
studied watersheds may be found in Wężyk et al. (2016).
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Fig. 1. Location of study areas (S – Sola watershed, R – Raba watershed, D – Dunajec watershed)

2.2. Image data

The time points for ISA assessments were chosen due to availability of high-resolution 
image data needed for acquiring the reference information about imperviousness. 
Photogrammetric aerial projects were realized in all study areas in 1996 and 2009. To 
gather reference data digital color aerial orthophotomaps were used. 

Landsat-5 TM images were used for ISA mapping. All cloud-free images available 
for mid 1990s (1996 ± 1 year) and late 2000s (2009 ± 1 year) were orthorectifi ed 
using orbital model. As the imperviousness change was evaluated by subtraction of 
individual ISA maps, no atmospheric correction was applied. An overview of the 
remote sensing imagery used in this study is given in Table 1.

Table 1. Overview of image data

Time 
Period

Data Characteristics
Data 
type Platform Acquisition dates Spatial 

resolution
Raba dataset

mid 1990s
source Landsat-5 02.07.1994, 22.10.1994, 24.08.1996, 

12.09.1997
30 m

reference aerial 1996 0.75 m

late 2000s
source Landsat-5 28.08.2009, 12.06.2010 30 m

reference aerial 2009 0.25 m
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Time 
Period

Data Characteristics
Data 
type Platform Acquisition dates Spatial 

resolution
Dunajec dataset

mid 1990s
source Landsat-5 25.06.1994, 02.07.1994 30 m

reference aerial 1996 0.75 m

late 2000s
source Landsat-5 03.05.2007, 18.06.2009, 21.08.2009, 

12.06.2010, 11.10.2010 30 m

reference aerial 2009 0.25 m
Sola dataset

mid 1990s
source Landsat-5 02.07.1994, 22.10.1994 30 m

reference aerial 1996 0.75 m

late 2000s
source Landsat-5 19.05.2007, 28.08.2009, 12.06.2010 30 m

reference aerial 2009 0.25 m

3. Methods

Nine machine learning (ML) regression algorithms were tested in this study. For every 
study area, each of them was used to predict imperviousness for both mid 1990s and 
late 2000s. Then, the performance of every ML algorithm for imperviousness change 
assessment was evaluated based on post-classifi cation comparison. The methodological 
framework (Figure 2) used in the study for the evaluation of individual machine 
learning algorithms performance follows (Drzewiecki, 2016). Succeeding subsections 
present details on data preparation, machine learning algorithms used in the study, 
tunning and selecting the models for ISA prediction and accuracy assessment. In 
the last subsection the methodological issues of model ensembling and ensembles 
accuracy evaluation are described.



Improving imperviousness change prediction with model ensembles 199

Fig. 2. Framework of ISA and ISA change prediction accuracy assessment

3.1. Preparation of calibration and validation datasets

The reference data on imperviousness were gathered by photo interpretation. In every 
study catchment test sites (300 m x 300 m or 200 m x 200 m) were spread out all 
over the area. First, in these reference areas representing various land use categories 
(urban, suburban, agricultural, industrial, commercial, transport, forest, water) ISA 
were vectorized for 1996. The reference imperviousness layer was then overlaid on 
2009 orthophotomap and updated. Such approach eliminated differences caused by 
independent drawing of boundaries and interpretation errors (in case of any doubts, 
the 1996 photos were checked and eventually re-interpreted). Then, from obtained 
ISA polygons high-resolution (0.1 m) raster was created and used to calculate ISA 
percentage for 30 m resolution pixels of orthorectifi ed Landsat images which laid 
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completely inside test sites areas. As the pixel grid for mid 1990s and late 2000s was 
the same, these data provided also reference for ISA change assessment.

For every Landsat pixel having reference ISA information, the set of input data 
for imperviousness prediction was created. It consisted of spectral (and thermal) 
band values (7 variables), their ratios (21 variables) and values of chosen indices 
(5 variables) derived for every of Landsat images available in given study catchment 
for individual time period. Following spectral indices were selected from the ones 
reported in other studies as potentially useful for evaluation of imperviousness: 
• Normalized Difference Vegetation Index (NDVI)
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• Normalized Difference Built-Up Index (NDBI) (Deng and Wu, 2012)
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• Normalized Difference Impervious Index (NDISI) (Deng and Wu, 2012)
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where TM1-TM7 are the bands of Landsat TM image.
The fi fth index used to derive the input variable was the ZABUD1 index proposed 

in (Lewiński, 2006) for improved recognition of urbanized areas on Landsat-7 
images. In this case the panchromatic channel value in original ZABUD1 formula 
was substituted by average of blue, green and red bands values and the index 
calculated as:
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To split created datasets into calibration (80 percent of data) and validation (20 percent 
of data) datasets the random approach stratifi ed according to ISA percentage in mid 
1990s was used. Characteristics of fi nal datasets is presented in Table 2.

Table 2. Datasets characteristics

Dataset Time period No of predictors No of pixels in 
calibration dataset

No of pixels in 
validation dataset

Raba
mid 1990s 132

2310 578
late 2000s 66

Dunajec
mid 1990s 66

1382 346
late 2000s 165

Sola
mid 1990s 66

1507 376
late 2000s 99

3.2. Machine learning algorithms

In presented study following nine machine learning regression algorithms were 
compared: Cubist (Quinlan, 1993), Random Forest (RF) (Breiman, 2001), stochastic 
gradient boosting of regression trees (GBM) (Friedman, 2002), k-nearest neighbors 
(kNN), random k-nearest neighbors (rkNN) (Li et al., 2011), Multivariate Adaptive 
Regression Splines (MARS) (Friedman, 1991), averaged neural networks (avNN) 
(Ripley, 1996), support vector machines (Smola and Schölkopf, 2004) with polynomial 
(SVMp) and radial (SVMr) kernels. 

Random Forest uses an ensemble of classifi cation or regression trees, usually built 
with CART (Breiman et al., 1984) algorithm. Each of these trees is built on randomly 
selected subsets of training data and using a random subset of classifi cation features at 
each split. Final value is based on the averaged responses of each tree. This approach 
was previously used for sub-pixel imperviousness assessment based on Landsat 
(Walton, 2008); (Bernat and Drzewiecki, 2014) and MODIS images (Deng and Wu, 
2013; Tsutsumida, 2016). It was also chosen by U.S. Forest Service to produce the 
2011 NLCD percent tree canopy cover dataset (Freeman et al., 2016).

GBM is based on the principle of boosting algorithms, in which weak classifi ers 
(having prediction accuracy marginally better than chance) are ensembled and their 
predictions combined. Gradient boosting machines may be used both for classifi cation 
and regression. In case of regression the algorithm starts from computing the average 
response. Then the residuals from observed values are calculated and used to fi t 
a regression tree. The model is added to the previous one till the user-specifi ed number 
of iterations is reached. In case of stochastic gradient boosting, the models in each 
iteration are based only on the randomly selected fraction of training data (Kuhn and 
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Johnson, 2013). This method was used to estimate aboveground biomass based on 
regression with Landsat and SPOT (Güneralp et al., 2014) or ALOS PALSAR derived 
predictors (Carreiras, 2013) and predicting tree canopy cover based on Landsat-5 
images (Freeman, 2016). To my best knowledge, it has not been used for sub-pixel 
imperviousness evaluation so far.

Cubist algorithm differs from CART in criteria used for constructing the trees 
and the pruning approach. Models can be also boosted, but in a different way than 
in GBM. Training sample values are increased for underpredicted and decreased for 
overpredicted points, new models fi tted and the fi nal prediction obtained as the simple 
average of individual model predictions (Kuhn and Johnson, 2013). This prediction 
may be further adjusted based on neighboring samples from the training set. Cubist 
is quite often used in sub-pixel ISA assessment (Yang et al., 2003; Walton, 2008; 
Mohapatra and Wu, 2010; Bernat and Drzewiecki, 2014). This algorithm was also 
chosen for ISA mapping in case of US National Land Cover Database (Homer et al., 
2007).

In kNN approach to predict the value for considered sample its k nearest neighbors 
in training data are identifi ed fi rst. Then the predicted value is calculated as the 
weighted mean of their responses. The distance between samples can be calculated 
using different metrics. Different weighting methods may be used as well. The 
random kNN algorithm was developed as randomized kNN generalization for high 
dimensional datasets (Li et al., 2011). In this approach an ensemble of kNN models is 
created using random subsets of input features. The kNN approach is widely used for 
forest biomass and carbon estimations based on remotely sensed images (Sun et al., 
2015; Galeana-Pizaña et al., 2016). However, I have not found any application of kNN 
regression for sub-pixel imperviousness mapping. In case of rkNN no application to 
remotely sensed data was found.

MARS is another non-linear regression model. In this algorithm the input 
features are divided into two intervals and for each of them a separate piecewise 
linear regression model is created. The fi nal model is built from these functions and 
their products (Hastie et al., 2009). This method was used to estimate soil properties 
and biomass through regression with variables derived from satellite imagery (Fillipi 
et al., 2014; Nawar et al., 2014; Nawar et al., 2015). Again, no example of ISA 
evaluation has been found.

Apart from regression trees, artifi cial neural networks are non-linear regression 
techniques most often used for sub-pixel imperviousness assessment. From many 
existing kinds of neural networks, the multi-layer perceptron (MLP) is the most 
frequently chosen (Mohapatra and Wu, 2007; Chormanski et al., 2008; Shao and 
Lunetta, 2011; Bernat and Drzewiecki, 2014). MLP structure is build of layers of 
nodes (called neurons). Each node in input layer represents the input variable. In case 
of regression, the output layer consists of one neuron (Hastie et al., 2009). Between 
the input and output layers, there is one or more hidden layers of neurons (hidden 
units). Each neuron in hidden layer is a linear combination of input variables (or 
hidden units from the previous layer), usually transformed using a non-linear function 
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(typically sigmoidal). The fi nal prediction is obtained as linear combination of the 
hidden units from the last hidden layer (Hastie et al., 2009; Kuhn and Johnson, 
2013). To assure the best performance of MLP model the input variables should 
be centered and scaled and highly correlated predictors should be removed (Kuhn 
and Johnson, 2013). As large number of parameters have to be estimated when 
fi tting the MLP model, the solution is very often only locally optimal. As a result, 
different models giving comparable performance can be obtained. To increase the 
stability of the MLP prediction one may create several models using different initial 
values of parameters and average their results (Perrone and Cooper, 1993; Kuhn 
and Johnson, 2013).

Support vector machines is a non-parametric statistical learning technique 
developed originally for classifi cation (Vapnik and Chervonenkis, 1971; Vapnik, 
2010). Initially linear classifi er was extended to non-linear classifi cation boundaries 
thanks to implementation of kernel function (Boser et al., 1992). The most frequently 
used are linear, polynomial, sigmoid and radial basis function kernels (Qian et al., 
2015). SVMs were adapted for regression by Smola and Schölkopf (2004). In this 
approach the samples that fi t with residuals within the defi ned threshold are ignored 
and do not infl uence the regression equation. On the other hand, the effect of large 
outliers is mitigated, as the remaining samples contribute to the regression fi t in linear 
manner (Hastie et al., 2009; Kuhn and Johnson, 2013). SVM regression was tested 
for sub-pixel imperviousness assessment by Walton (2008), Esch et al. (2008) and Xi 
et al. (2011).

3.3. Model tunning and ISA predictions

Each of tested machine learning algorithms was used to predict imperviousness for 
mid 1990s and late 2000s. All predictive models were trained using the caret package 
(Kuhn, 2008) in R environment. In every case the regression models were trained 
and evaluated on calibration dataset using 10-times repeated 5-fold cross-validation. 
For kNN, rkNN, neural networks and SVM algorithms input data were preprocessed 
by centering and scaling. In case of neural network the correlated predictors were 
removed using the approach proposed in (Kuhn and Johnson, 2013). 

As for all models, the training and test data indexes were kept the same in each 
cross-validation fold, it was possible to compare the performances of the models 
trained with different sets of parameters. Model parameters tuned in cross-validation 
approach are shown in Table 3. The combination of parameters resulting in the 
lowest average RMS error was then used in fi nal model. These models were fi tted 
to the whole calibration dataset and used for ISA prediction. Then ISA change was 
calculated by subtracting the assessments obtained with the same method. As a result, 
nine change maps were created for every study area.
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Table 3. Model parameters tuned

Machine learning model Model parameter Tested values

Cubist
number of committees 1; 5; 10; 50; 75; 100

neighbors 0; 1; 3; 5; 7; 9

RF
(500 trees)

number of randomly selected 
predictors

15 values evenly distributed 
between 2 and maximum number 

of predictors

GBM

number of iterations (trees) from 100 to 1500 by 100
complexity of the tree (tree 

depth) from 1 to 9 by 1

learning rate 0.001; 0.01; 0.1
minimum number of training set 

samples in a node from 2 to 20 by 2

kNN

number of neighbors from 1 to 15 by 1
kernel functions to weight 

the neighbors
triangulal; rectangular; 
epanechnikov; optimal

parameter of Minkowski 
distance 1; 2; 3

rkNN
(500 kNNs)

number of randomly selected 
predictors

15 values evenly distributed 
between 2 and maximum number 

of predictors
number of neighbors from 1 to 15 by 1

MARS
maximum degree of interaction 1; 2

maximum number of terms from 1 to 50 by 1
avNN

5 feed-forward neural 
networks with a single 

hidden layer
(maximum number of 

iterations = 500)

number of neurons in the hidden 
layer from 1 to 12 by 1

weight decay 0; 0.1; 0.01; 0.001; 0.0001

SVMp
degree 1; 2; 3

cost 0.25; 0.5; 1; 2; 4; 8
scale factor 0.001; 0.005; 0.01; 0.05; 0.1

SVMr cost 0.25; 0.5; 1; 2; 4; 8; 16; 32; 64; 
128; 256; 512; 1024; 2048; 4096

3.4. Accuracy assessment

The root mean squared error (RMSE) and the mean absolute error (MAE) were used 
to assess the performance of fi nal models built with particular tested algorithms. The 
evaluation was done for both individual time points as well as for the prediction of 
ISA change. 
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As in each cross-validation fold individual models were trained and tested using 
identically resampled datasets, their accuracies could be compared with approach 
proposed by Hothorn et al. (2005) and Eugster et al. (2008). A paired t-test with 
Bonferroni correction for multiple comparisons (Dunn, 1961) was used to determine 
if the differences between accuracies of models trained using different algorithms 
are statistically signifi cant. The same approach was also used to compare the results 
obtained for validation dataset.

3.5. Model ensembles

According to Mendes-Moreira et al. (2012) the process of ensemble learning can 
be divided into three stages: ensemble generation, ensemble pruning and ensemble 
integration. In the fi rst step a set of models for ensemble is created. During the pruning 
stage some of them are eliminated. The last step is to defi ne a way of combining the 
models remaining in the set after the pruning. In some cases a strategy adopted for 
models combination have to be chosen before pruning as decision about selection or 
elimination of particular model is taken based on the performance of the ensemble 
(Coelho and Von Zuben, 2006). A wide range of methods have been proposed for 
each of ensemble learning stages. Mendes-Moreira et al. (2012) reviews the ones used 
for regression model ensembles.

In presented research the initial set of models for individual time points consisted 
of the best models generated with particular algorithms. Then model ensembles 
were created using forward and backward selection search schemas (FSS and BSS, 
respectively) proposed by Perrone and Cooper (1993) and Coelho and Von Zuben 
(2006). All candidate models were ranked according to their performance (RMSE) 
during cross-validation. The FSS approach starts from inserting the best model into 
the ensemble. Then the next one (the second best) is added and the performance of 
created ensemble evaluated. If it improves, the added model stays in the ensemble. 
Otherwise, it is removed and the next one is tested. The process is repeated till the 
ensemble performance can not be improved by adding subsequent model. In BSS 
approach all models are initially inserted into the ensemble. Then, the model which 
performed the worst is removed. If the performance of the ensemble is improved, 
the model is dropped. Otherwise, the model returns into the ensemble set and the 
second worst is tested. The process is repeated till the ensemble performance does 
not improve after removal of any model. In cases when different sets of model were 
obtained from FSS and BSS approaches, the model ensemble having lower RMS 
error was chosen as the fi nal one.

As the approach adopted for ensemble pruning requires ensemble performance 
evaluation, the ensemble integration method has to be defi ned as well. In this study 
the Basic Ensemble Method (BEM) (Perrone and Cooper, 1993) was used and the 
prediction of the ensemble calculated simply as the mean of the predictions of the 
models in the ensemble set.
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The accuracies of ISA and ISA change predictions obtained using model ensembles 
were assessed in the same manner as for single models and compared to the best of 
them.

4. Results

4.1. Performance of individual machine learning algorithms
 

This section presents the results obtained using individual tested machine learning 
approaches for sub-pixel ISA and ISA change mapping in researched study areas. 
Table 4 presents the values of model parameters for particular machine learning 
algorithms established in model tuning procedure described in Sect. 3.3.

The performance measures (RMSE and MAE) of these models calculated in cross-
validation approach are shown in Tab. 5–7 and for validation dataset in Tab. 8–10. The 
lowest errors are bolded. Values of errors for models which performed equally well 
according to paired t-test are also indicated and information on statistical signifi cance 
is provided. The results for Raba dataset were published earlier in Drzewiecki (2016). 
However, they are included here as they are necessary both for comparison with 
results obtained in other study areas and for presentation of model ensembling effect.

Table 4. Values of model parameters

Machine 
learning 
model

Model parameter Raba Dunajec Sola

Mid 
1990s

Late 
2000s

Mid 
1990s

Late 
2000s

Mid 
1990s

Late 
2000s

Cubist
number of 
committees 100 100 100 100 75 75

neighbors 7 0 9 7 8 7
RF

(500 trees)
number of randomly 
selected predictors 11 29 43 83 38 64

GBM

number of iterations 
(trees) 1500 1200 1500 1500 1500 1000

complexity of the 
tree (tree depth) 9 8 9 9 9 9

learning rate 0.01 0.01 0.01 0.01 0.01 0.01
minimum number of 
training set samples 

in a node
6 2 6 4 4 6

kNN

number of neighbors 11 12 7 8 9 8
kernel functions to 

weight the neighbors triangulal triangulal triangulal triangulal triangulal optimal

parameter of 
Minkowski distance 3 2 3 2 1 1
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Machine 
learning 
model

Model parameter Raba Dunajec Sola

Mid 
1990s

Late 
2000s

Mid 
1990s

Late 
2000s

Mid 
1990s

Late 
2000s

rkNN
(500 kNNs)

number of randomly 
selected predictors 29 15 34 48 20 22

number of neighbors 5 5 5 5 5 5

MARS

maximum degree of 
interaction 1 2 2 2 2 2

maximum number of 
terms 19 29 11 14 27 38

avNN
5 feed-
forward 
neural 

networks 
with 

a single 
hidden 
layer

(maximum 
number of 
iterations = 

500)

number of neurons in 
the hidden layer 12 12 12 8 8 12

weight decay 0.1 0.001 0.001 0.01 0.01 0.1

SVMp
degree 2 2 2 3 3 3

cost 0.25 8 0.25 1 4 0.5
scale factor 0.001 0.05 0.05 0.005 0.005 0.01

SVMr cost 4 4 8 4 2 2

Table 5. ISA models performance (values averaged from cross-validation on calibration dataset) 
– Raba dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change
RMSE MAE RMSE MAE RMSE MAE

avNN 0.1149 0.0680 0.1154 0.0675 0.5813 0.1053 0.0626
RF 0.1099 0.0653 0.1116b 0.0650 0.6680b 0.0902a 0.0520

Cubist 0.1074b 0.0608c 0.1115a 0.0619a 0.6246 0.0953 0.0531
GBM 0.1073a 0.0617 0.1119b 0.0640 0.6268 0.0947 0.0540
kNN 0.1080b 0.0599a 0.1166 0.0656 0.6226 0.0978 0.0543
rkNN 0.1074b 0.0620 0.1165 0.0664 0.6680a 0.0917b 0.0505a

SVMp 0.1267 0.0734 0.1132c 0.0643 0.5893 0.1095 0.0640
SVMr 0.1085b 0.0613 0.1153 0.0647 0.6269 0.0967 0.0575
MARS 0.1191 0.0731 0.1179 0.0680 0.5840 0.1081 0.0656

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.001 
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Table 6. ISA models performance (values averaged from cross-validation on calibration dataset) 
– Dunajec dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

avNN RMSE 0.1098 0.1414 0.0961 0.5384 0.1467 0.1043

RF 0.1623c 0.1089d 0.1390 0.0956 0.6344a 0.1286a 0.0889a

Cubist 0.1590a 0.1070b 0.1312a 0.0876a 0.5632 0.1389 0.0954

GBM 0.1609b 0.1068b 0.1324b 0.0893d 0.5865 0.1346 0.0923

kNN 0.1594b 0.1063b 0.1434 0.0932 0.5292 0.1516 0.1004

rkNN 0.1668 0.1131 0.1464 0.0979 0.5644 0.1497 0.1015

SVMp 0.1716 0.1160 0.1462 0.0978 0.5884 0.1538 0.1032

SVMr 0.1839 0.1062a 0.1350c 0.0927 0.5548 0.1474 0.1000

MARS 0.1698 0.1245 0.1616 0.1113 0.5350 0.1655 0.1158

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.01 
d) No signifi cant difference to the best performed model at p-value>0.001 

Table 7. ISA models performance (values averaged from cross-validation on calibration dataset) 
– Sola dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

avNN 0.1338 0.0822 0.1360 0.0861 0.5416 0.1290 0.8340

RF 0.1257 0.0787 0.1210 0.0756 0.6185a 0.1077a 0.0667a

Cubist 0.1213b 0.0720a 0.1178a 0.0703a 0.5564 0.1124 0.0695

GBM 0.1205a 0.0728b 0.1196b 0.0723 0.5820 0.1096b 0.0677b

kNN 0.1289 0.0740d 0.1276 0.0755 0.5206 0.1257 0.0760

rkNN 0.1293 0.0778 0.1288 0.0799 0.5936d 0.1163 0.0704

SVMp 0.1279 0.0776 0.1254 0.0768 0.6179b 0.1107b 0.0685b

SVMr 0.1255 0.0762 0.1262 0.0767 0.5450 0.1199 0.0746

MARS 0.1346 0.0836 0.1310 0.0799 0.5492 0.1290 0.0791

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.01 
d) No signifi cant difference to the best performed model at p-value>0.001 
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Table 8. ISA models performance on validation dataset – Raba dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

avNN 0.1218c 0.0736 0.1131b 0.0679d 0.6410 0.0998c 0.0629

RF 0.1128b 0.0678c 0.1120b 0.0647b 0.7124 0.0853 a 0.0504b

Cubist 0.1086a 0.0624a 0.1084a 0.0611a 0.6787 0.0875b 0.0505b

GBM 0.1117b 0.0639b 0.1116b 0.0639b 0.6939 0.0873b 0.0505b

kNN 0.1117b 0.0636b 0.1182b 0.0680c 0.6704 0.0938b 0.0534c

rkNN 0.1098b 0.0640b 0.1167b 0.0684 0.7118 0.0863b 0.0486a

SVMp 0.1334 0.0783 0.1091b 0.0625b 0.6656 0.1012c 0.0620

SVMr 0.1154b 0.0665b 0.1120b 0.0654b 0.7174 a 0.0854b 0.0522b

MARS 0.1248d 0.0768 0.1110b 0.0629b 0.7050 0.0915b 0.0594

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.01 
d) No signifi cant difference to the best performed model at p-value>0.001 

Table 9. ISA models performance on validation dataset – Dunajec dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

avNN 0.1496a 0.1041b 0.1396b 0.0954b 0.5458 0.1383b 0.0987b

RF 0.1500b 0.1051b 0.1368b 0.0951c 0.5793 0.1316b 0.0889b

Cubist 0.1538b 0.1008b 0.1441b 0.0948b 0.4966 0.1494b 0.0954b

GBM 0.1509b 0.1039b 0.1335b 0.0895a 0.5825 0.1307a 0.0873a

kNN 0.1670b 0.1046b 0.1478b 0.0961b 0.5505 0.1493b 0.0952b

rkNN 0.1638b 0.1101c 0.1452b 0.0977b 0.5867 a 0.1403b 0.0929b

SVMp 0.1543b 0.0987b 0.1384b 0.0941b 0.5707 0.1366b 0.0920b

SVMr 0.1533b 0.0962a 0.1332a 0.0917b 0.5571 0.1364b 0.0921b

MARS 0.1662b 0.1176 0.1534b 0.1104 0.5348 0.1542b 0.1069d

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.01 
d) No signifi cant difference to the best performed model at p-value>0.001
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Table 10. ISA models performance on validation dataset – Sola dataset

Method Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

avNN 0.1156b 0.0702c 0.1386c 0.0818 0.4103 0.1396 0.0856

RF 0.1062b 0.0645b 0.1113b 0.0676b 0.5266 0.1060b 0.0632b

Cubist 0.1074b 0.0608b 0.1158b 0.0670b 0.4489 0.1176b 0.0692b

GBM 0.1002a 0.0592a 0.1171b 0.0692b 0.4431 0.1157b 0.0688b

kNN 0.1203b 0.0641b 0.1104b 0.0633a 0.4372 0.1227b 0.0687b

rkNN 0.1139b 0.0656b 0.1113b 0.0670b 0.5604 a 0.1057a 0.0618a

SVMp 0.1206b 0.0689b 0.1104a 0.0648b 0.5510 0.1097b 0.0634b

SVMr 0.1061b 0.0617b 0.1154b 0.0690b 0.4751 0.1139b 0.0682b

MARS 0.1199b 0.0736d 0.1245b 0.0745b 0.4085 0.1330b 0.0809d

a) The best performed model
b) No signifi cant difference to the best performed model at p-value>0.1 
c) No signifi cant difference to the best performed model at p-value>0.01 
d) No signifi cant difference to the best performed model at p-value>0.001

Following observations can be made when looking into presented results:
• In cross-validation based evaluation of imperviousness mapping accuracy for 

individual time points, the best result according to RMSE measure were obtained 
using regression trees algorithms. For late 2000s the Cubist algorithm performed 
the best in every study area. For mid 1990s GBM gave the highest accuracy in 
Raba and Sola catchments, and RF performed the best for Dunajec dataset. It 
should be noted that in every case the Cubist and GBM methods were the best or 
did not differ signifi cantly from the best approaches.

•  When MAE measure is considered the set of the best algorithms for individual 
time point ISA mapping differs. The k-nearest neighbors algorithm is the best for 
mid 1990s Raba assessment, SVM approach with radial basis function kernel – for 
mid 1990s in Dunajec catchment and Cubist for the four remaining evaluations. 
The last one (Cubist) is the only one which is the best or not signifi cantly different 
from the best one in every case of individual time point assessments.

• When looking from the ISA change mapping point of view the image is a little bit 
different. According to cross-validation results the Random Forest approach gave 
the lowest RMS errors in every area and the lowest MAE for Dunajec and Sola 
datasets. In case of Raba dataset the lowest mean absolute error was obtained 
with random k-NN algorithm. The Random Forest method gave the second best 
result, however signifi cantly worse than rkNN.

• In cross-validation the best ISA change assessment was obtained using algorithms 
which gave the most correlated errors of individual time point evaluations. In case 
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of Random Forest algorithm in each study area the average correlation coeffi cient 
was the highest or did not differ signifi cantly from the highest one.

• Evaluation based on validation dataset do not give clear results as for most 
of the evaluated algorithms the accuracy measures do not differ signifi cantly. 
Nevertheless, it should be stressed that the values of both performance measures 
are at similar levels as in cross-validation approach. The infl uence of correlation 
between the individual time point assessments errors on the ISA change accuracy 
is also noticeable.

4.2. Model ensembles

Table 11 presents the best model ensembles obtained for individual time point 
assessments using forward and backward selection search schemas (as described in 
section 3.5) together with their average RMSE and MAE values from cross-validation. 
In every case the best (giving the lowest RMSE) ensambles were constructed using 
BSS approach. Accuracy parameters of ISA change evaluation based on these models 
were calculated as well. 

Table 11. Performance of model ensembles 
(values averaged from cross-validation on calibration dataset) 

Dataset

Mid 1990s Late 2000s

Correlation 
coeffi cient 

of 
prediction 

errors

ISA Change

Ensembled 
models

Selection 
search 
schema

RMSE MAE Ensembled 
models

Selection 
search 
schema

RMSE MAE RMSE MAE

Raba

GBM, 
CUB, 
kNN, 

SVMr, 
avNN

BSS 0.1039 0.0597

CUB,
RF,

GBM, 
avNN, 
kNN, 
SVMp

FSS/BSS 0.1094 0.0626 0.6607 0.0879 0.0498

Dunajec

avNN, 
RF, 

GBM, 
kNN

BSS 0.1544 0.1036
CUB, 
GBM, 
SVMr

FSS/BSS 0.1279 0.0870 0.6041 0.1275 0.0879

Sola

GBM, 
CUB, 
SVMr, 
kNN

FSS/BSS 0.1185 0.0713

CUB, 
GBM, 
kNN, 
SVMp

BSS 0.1167 0.0710 0.6032 0.1047 0.0646
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In every case model ensembles resulted in lower RMSE values than obtained 
using the best models trained with individual algorithms. Only for late 2000s Sola 
assessment no signifi cant difference to the best performed individual model (Cubist) 
was observed (p-value = 0.022). The remaining fi ve assessments gave signifi cantly 
lower RMS errors. However, MAE value is signifi cantly lower only for mid 1990s 
Dunajec evaluation. Moreover, for late 2000s Raba assessment the individual model 
(Cubist) gave even signifi cantly better result.

When ISA change assessment is considered, the model ensembles gave 
better results. In every study area both, RMSE and MAE values are lower than 
for the best individual algorithms. Statistical signifi cance is observed however 
only in three cases (Raba RMSE as well as Sola RMSE and MAE). It should 
be noted that correlation between errors of individual assessments giving the 
highest ISA change prediction accuracy is higher than for model ensembles. But 
their fi nal performance is worse due to lower individual time points prediction 
accuracies.

Model ensembles were also used to predict imperviousness for validation datasets 
(Table 12). In this case no statistically signifi cant differences to the best individual 
models were observed. Nevertheless, what should be noted are lower errors (both 
RMSE and MAE) of ISA change prediction in every study area. Also RMSE values 
obtained for individual time point ISA evaluations are better for model ensembles, 
except for mid 1990s Sola assessment.

Table 12. Performance of model ensembles on validation datasets

Dataset Mid 1990s Late 2000s Correlation coeffi cient 
of prediction errors

ISA Change

RMSE MAE RMSE MAE RMSE MAE

Raba 0.1082 0.0629 0.1081 0.0630 0.7272 0.0799 0.0470

Dunajec 0.1471 0.1007 0.1322 0.0880 0.5873 0.1272 0.0841

Sola 0.1013 0.0578 0.1068 0.0630 0.5169 0.1025 0.0614

5. Discussion

Regarding the accuracy of imperviousness maps made for individual time points, 
the Cubist algorithm outperformed the other ones. It was the only one constantly 
present in the group of the best models, irrespectively of the dataset and the measure 
used for performance evaluation (RMSE or MAE). This fi nding is consistent with 
the previously reported in the literature. Cubist was compared with other machine 
learning approaches to imperviousness mapping in studies presented by Walton 
(2008) and Mohapatra and Wu (2010). Walton (2008) mapped imperviousness in the 
city of Syracuse (USA) from Landsat-7 ETM+ images. He compared Cubist, Random 
Forest and support vector regression algorithms and found Cubist the best of them. 
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Mohapatra and Wu (2010) evaluated ISA in Grafton (USA) using prediction variables 
derived from Ikonos and Landsat TM images. In their study linear regression was 
compared to Cubist and artifi cial neural network (MLP with a single hidden layer). 
Cubist gave the best results, however the differences between this method and MLP 
were not statistically signifi cant.

Despite the best results yielded by Cubist algorithm for individual time points 
evaluations, this method was not the best one for ISA change assessment. When 
comparing individual algorithms for such application, Random Forest seems to be 
better than others. Having lower accuracies for individual time point assessments, 
this method allowed for more accurate ISA change evaluation in every study area. 
These results cannot be confronted with other fi ndings as any comparison of machine 
learning algorithms for sub-pixel ISA change assessment was published before. One 
should remember, however, that as performance of machine learning algorithms 
is problem-depended, the best method may differ depending on application. The 
fi ndings of Walton (2008) may be recalled as the example – in his study the Cubist 
algorithm was the best for imperviousness mapping, but support vector regression 
was found the best for sub-pixel forest canopy cover assessment using the same 
image dataset.

The explanation of differences in the most accurate methods for sub-pixel 
imperviousness mapping in individual time points and ISA change evaluation can 
be found in differences of correlation of individual time points prediction errors, as 
illustrated in Eq.1. The implication of this formula, confi rmed experimentally in this 
research, is that the most accurate assessment of change not necessarily is based on 
the most accurate assessments of individual states. It should be stressed that these 
rule, although proved here on the example of imperviousness change evaluation, is 
universal and valid for all studies where the change is predicted as the difference of 
two values obtained from independent non-linear regression models.

As expected, when RMSE is considered ensembles of heterogeneous non-
linear regression models outperformed the best single approaches for mapping 
imperviousness in individual time points. They always gave lower RMS errors in 
cross-validation and in fi ve of six cases the difference was statistically signifi cant. For 
validation datasets the differences between RMS errors of the best individual method 
and model ensembles were not signifi cant. Nevertheless, model ensembles were more 
accurate in fi ve of six assessments.

When MAE measure is considered, performance of model ensembles for individual 
time points ISA assessment is also usually better than performance of single models. 
However, in some cases single models gave lower mean absolute errors. This can 
be explained by the fact that the ensembles were constructed to minimize RMS 
errors.

From ISA change assessment point of view, model ensembles always outperformed 
single model approaches. In every study area, both in cross-validation and using 
validation dataset, values of RMSE and MAE were lower for ensembled models. 
It means that by constructing ensembles based on model performances for individual 
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time points solely, one can obtain ensembled model which is at least as good as the 
best of individual models both for individual time points imperviousness assessment 
and ISA change evaluation. To construct such ensembles we do not need reference 
data for ISA change. Reference information about imperviousness in single dates is 
enough, whereas existence of ISA change reference data is necessary to determine 
the best performing individual model. This is very important as in many cases it is 
not possible to verify the accuracy of ISA change evaluation due to the lack of the 
reference areas (Yang et al., 2003; Dams et al. 2013). 

6. Conclusions

The fi rst aim of the presented study was to compare selected non-linear regression 
algorithms in the context of sub-pixel imperviousness mapping from Landsat 
images, both for individual time points assessments and for ISA change evaluation. 
Comparison was done for nine machine learning methods: Cubist, Random Forest, 
stochastic gradient boosting of regression trees, k-nearest neighbors regression, 
random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, 
averaged neural networks, and support vector machines with polynomial and radial 
kernels. Obtained results confi rmed the ones presented by Drzewiecki (2016). Cubist 
algorithm outperformed the other techniques for imperviousness evaluation in single 
time steps. However, when the goal is to assess imperviousness change Random 
Forest would be better choice. Despite lower accuracies for individual time point 
predictions, it allowed for more accurate change evaluation thanks to more correlated 
errors of individual assessments. 

Presented study was also designed to answer a question if ensembling of 
heterogeneous non-linear regression models may increase the accuracy of both, 
individual time points ISA assessments and ISA change evaluation. Obtained results 
are encouraging. Using backward selection schema approach it was possible to 
construct from the best models trained using individual algorithms model ensembles 
which performed at least not worse than best individual models for single time points. 
These ensembles outperformed individual algorithms in ISA change evaluation. It is 
important as it means that one can possibly improve sub-pixel imperviousness change 
assessment even without reference change information.
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