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Abstract 

The upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents 

a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements 

of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the 

acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous 

manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation 

frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to 

additional measurement errors of the navigation system. Using the model, the worst and best case suspension 

oscillation frequencies can be determined, which will help during the design of a navigation system. 

Keywords: hypersonic technologies, gimbals,  oscillation modes, acoustic transparency, navigation system. 
 

© 2017 Polish Academy of Sciences. All rights reserved

 

1. Introduction 
 

Today, ships are armed with 100−145 mm calibre automatic cannons which have not only 
limited range but also insufficient shooting accuracy in a modern combat. Therefore, the main 
range of possible targets is acquired by missiles, which are very expensive and, besides, have 

considerable dimensions. To solve this problem, the United States Navy plans by 2025 to supply 
a rail gun capable of destroying any targets with cheap projectiles and at long ranges. The 
electromagnetic rail gun is developed by BAE SYSTEMS and GENERAL ATOMICS  (Fig. 1). 
The testing is scheduled to take place on board of the newest high-speed vessel JHSV 

Millinocket. 
Moreover, the developers of railguns offer to equip also usual powder cannons with 

hypersonic projectiles, which would dramatically improve their ability to hit any targets, 

including airborne ones. 
Rail guns can project at a speed of 5M at a distance of 400 km. According to the military 

forecasts, such guns can hit any target. According to the Department for Development of Marine 
Systems of NAVSEA NAVY, the rail gun features are planned to be partly implemented in 

traditional powder cannons. It means, that an HVR hypersonic projectile is planned to be 
developed in two major United States Navy calibres: 155 mm and 127 mm. Thus, a universal 
core would serve for two types of both powder cannon and rail gun. Naturally, when firing from 

a powder cannon, the HVR speed would be lower than when firing from a rail gun. The 
difference would be 3 M and 5 M, respectively. Nevertheless, the speed will be twice higher 

than while using gunpowder. An HVR projectile should become an alternative to expensive 
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anti-aircraft missiles and 155 mm LRLAP projectiles which cost $ 400,000 per unit for 
Zumwalt class destroyers. 

 

 
Fig. 1. A hypersonic projectile of a rail gun can replace expensive missiles. 

 
However, advantages that create new means of fire support give rise to a lot of air navigation 

problems. They consist in high temperatures, extreme vibration, shock N-wave and penetrating 
acoustic radiation. Diffuse sound fields would fundamentally change the dynamics of on-board 
equipment mechanical systems’ features and affect the performance characteristics of avionic 
instruments in general, such as inertial navigation systems. 

Two-stage gyroscopic instruments are widely used as sensitive elements of gyroscopically 
stabilized platforms and inertial navigation systems. Therefore, the requirement of high 
precision indications is crucial for accurate building of reference directions on mobile objects. 
This applies primarily to the launch vehicles (LV) and hypersonic aircraft, the propulsion 
systems of which create a high sound pressure (up to 180 dB) in a rather broad frequency range. 
This will also apply to hypersonic projectiles, since the existing solid-state and MEMS systems 
are not accurate and simultaneously robust enough for such applications. 

The main feature of penetrating radiation impact is its spatial nature. On the one hand, 
traditional means of combating external perturbations are ineffective, and, on the other hand, 
there is a need of a fundamentally new approach to design diagrams, namely a change from 
lumped parameter systems to distributed parameter systems. Let us demonstrate how this is 
applied to gimbals’ flat fragments. 

The goal of the research is to evaluate the risk of manifestation of local resonance 
peculiarities in gimbals when using an aircraft.  

In order to achieve the aim, the following tasks should be accomplished: 
1. Building a design diagram of the studied phenomenon. 
2. Choosing a method of building a mathematical model with which particularities of resonance 

type would have been obvious and visible for further analysis when studying the dynamics 
of gimbals in general, especially to evaluate additional errors of autonomous positioning. 

3. Evaluating feasibility and effectiveness of studying the phenomena using two-fold 
trigonometric series by normal functions in the rectangular area. 

4. Assessing, according to two mutually perpendicular directions, the degree of influence of the 
plate vibration mode on the fullness of sound energy transmission through a flat barrier. 

 

2. Material and methods 

 

2.1. Sound wave diffraction at cross elastic gyroscope suspension 

 

Supports with elasticity friction are used mainly in systems having limited rotation angles. 
In practice, such supports do not create a friction torque (as the value of elasticity friction is 
very low), have low accuracy of fixing the axis direction, but operate satisfactorily under heavy 
vibration. Depending on a type of elastic element deformation, there are bending supports and 
torsion supports. 
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A simple ribbon hinge is a plate connecting the fixed element to the moving element. This 

hinge is used, for example, as a pendulum suspension. The elastic hinge consists of a lever, two 
resilient plates and a fixed base. Such a hinge is used for small rotation angles of the moving 
part (1 ... 2 degrees). The track formed by intersection of extensions of the middle planes 

of elastic plates is taken as the rotation centre. 
Figure 2 shows a cross hinge for two-stage gyroscope suspension 3, which is mounted on 

plate 1. Plate 1 is fixed on base  4 with a support consisting of four elastic plates 2, intersecting 

at an angle of α = 60º... 90º and attached to base 4 and plate 1. The rotation angle of these hinges 
may reach 30º. 

 

Fig. 2. A cross elastic hinge for a two-stage gyroscope suspension. 

 
2.2. Cross elastic hinge. Mechanical model of interaction with acoustic radiation 
 

We assume the cross angle 
2

rad
π

α =  and analyse the structure of elastic interaction 

of acoustic radiation with a two-stage gyroscope suspension mounted on two cross hinges. 

To better understand the nature of this phenomenon, we confine ourselves to consideration 
of the lowest forms of vibrations only. Moreover, for clarity, it is enough to study the waveform 

only in one direction. 
We suppose that under the influence of an acoustic wave, elastic plates make a bending 

movement, taking only the first, lower form. Then, in the normal direction, one will receive 

movement 
1
r  and the other − 

2
r , which are represented as components of 

11
, zy  and 

22
, zy , 

and enable establishing that the notional pivot axis of the movable part of gyroscope will be 

moving along axis Y − ( )
21
yy +  and axis Z − ( )

21
zz −  (Fig. 3a). If these forms are manifested 

in phase at both cross hinges, the angular oscillations occur in respect to the conditional output 
axis O-O of the device (Fig. 3d). If they are manifested in antiphase, the gyroscope torsional 

oscillations occur in respect to Z axis (Fig. 3c). 
If the first forms of plate flexural vibrations have a form shown in Fig. 3b, the form 

of gyroscope movements changes and upon the in-phase movement of the extreme points of O-

O axis, the gyroscope makes the reciprocating movement along Z  axis (Fig. 3e), while upon 

the antiphase movement the angular oscillations along the output axis occur. 
Thus, the gyroscope suspension, upon acoustic loading, will produce straight fluctuations 

relative to axes, Y, Z and angular oscillations relative to axes X, Z. In this case a two-stage 
differentiating gyroscope has a bias, whereas a two-stage integrating gyroscope has a systematic 
drift. Furthermore, the device output signal also shows periodic components.      

Leaving aside the issue of passing the acoustic wave through the proper gyroscope, 
a mechanical model of calculating the interaction of the overpressure wave P10 with the 

suspension can be represented in a form of two not interconnected elastic plates affected by 
a flat monochromatic wave (Fig. 4). Here, 1, 2, 3 are the falling, reflected and transmitted waves 

through the first plate, respectively, and 1′, 2′, 3′ − through the second plate.  
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                            a)                                                        b) 

 
 

                                         c)                                             d) 

                     
 

                                                       e) 

 

Fig. 3. A mechanism of elastic interaction of acoustic radiation with the device on an elastic suspension. 

 
A number of issues of the plate dynamics, their physical structure and others under the 

influence of acoustic radiation is not completely understood yet. First of all, it refers to 
consideration of the boundary conditions when studying the plate with finite extent, which leads 
to an infinite system of equations describing the mechanical model. 

 
 

 

Fig. 4. A mechanism of pressure wave passing through an elastic suspension. 

 

 
A characteristic feature of the geometry of boundary surfaces of elastic bodies is the presence 

of angular lines. Based on the formulation of boundary problems in the theory of elasticity in 
displacements (on the basis of the G. Lame’s vector equation), there are three basic boundary 
problems, i.e. setting the vector of external forces on the body surface, setting the elastic 
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displacement vector on the body surface, and a mixed problem consisting of the fact that 

the forces are set on a part of the boundary surface, and a displacement vector is defined on the 
rest of the surface. 

At present, two approaches have been developed, i.e. the method of homogeneous solutions, 

first applied by P. A. Schiff and V. A. Steklov, and the G. Lame’s method of exact solutions. 
The first became a powerful means of asymptotic analysis of approximate shell theories. 

A prerequisite for the revival of the second one was the presence of a coherent theory of infinite 
systems and the emergence of PCs. Here, it is appropriate to mention the opening of asymptotic 
expression law by B. M. Koyalovich, which enabled establishing the lack of features in the 

expressions for stresses at the corner points and solving the first basic boundary problem. The 
analysis of flexural vibrations of finite plane bodies, i.e. elastic suspension plates, can also be 

carried out using the method described in the works of S. P. Tymoshenko. Its essence is to 
represent a mechanical disturbance and deflection of the plate as a double row by normal 
functions in the rectangular region. This method has the simplest mathematical interpretation, 

but still enables to investigate the dynamics of finite bodies deep enough. The dynamic 

properties of a flat infinite barrier in acoustic field have been studied in [1−7]. Sandwich-type 

constructions have been considered in [8−12]. The effect of sound waves on gimbals and other 

materials  has been discussed in [13−24]. With regard to resonance manifestations in gimbals, 

they are usually focused on the impact of pedestal vibration and on the parametric resonance. 
Such external perturbations as spatial waves has not been studied in terms of manifestations 

of gimbals’ local peculiarities. We assume further that the elastic suspension plates have hinge 
fastenings at the ends, and thus the acoustic radiation energy will be absorbed completely by 
the oscillating plates, without affecting the adjacent structures. 

 
 

3. Model of occurrence of plate resonant peculiarities  

 
Transmission of acoustic waves through flat components in a form of infinite plates is 

thoroughly described by a simplified mathematical apparatus and significantly reduces analysis 
effort. This is quite enough for studying certain issues. Study of the dynamics of elastic 

interaction between flat barriers and an acoustic wave is limited to such models.  
However, the approximate simulation modelling process has led to simplifications in which 

theoretical and experimental results lead to inconsistent findings. This primarily concerns the 

occurrence of local peculiarities. 
The way out is to maximally approximate simulation models to real designs. In relation to 

the studied phenomena, it requires a transition from infinite to finite plates. 
In this case flexural motion of finite flat bodies is advisable to be studied on the basis 

of external impact and plate flexure in a form of trigonometric series in the rectangular area. 

Let us consider a bi-dimensional problem. Let us suppose that the plate length is equal to a , 

its width to b , thickness to δ2  and is constant in the cross section. We also assume that the 

plate thickness is much less than other dimensions, i.e.: ;2 a<<δ .2 b<<δ  

The plate material would be absolutely elastic, homogeneous and isotropic. The length 
of flexural waves would be more than six times greater than the plate thickness, which would 

enable to use the equation of a thin plate. 
Let us consider an acoustic field to be diffused. 

In the light of those simplifications, it can be argued that the lateral sides of area element 

with a length of dy  and width of dx  remain in their motion parallel to xOz  and yOz  planes 

and perpendicular to the median plane (Fig. 5). 
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Fig. 5. A diagram of loading a spatial plate.  

 

Whatever function of coordinates x, y would the plate flexion W  be of, it can always be 
expressed by a two-fold series in the rectangular area in normal functions, i.e.: 

                                          
b
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where: m = 1, 2, …, n = 1, 2, … are numbers of flexion half-waves along x and y axes, 

respectively; ),( yxW  is transmission of plate surface with coordinates x, y in the direction of z; 

( )tWW
mnmn

=  (Fig. 6). 

It is easy to see that each term of series (1) meets the boundary conditions of: 
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The relations (1) enable to calculate the maximum potential energy M0, which accumulates 

in flexural plate deformation. For this purpose, it is sufficient to determine the maximum value 
of potential energy dM0 of a surface element and then integrate the expression obtained in two 

ways:  
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where: ( )[ ] 13
1128

−

−= σδED  is cylindrical plate stiffness; E is the modulus of elasticity; σ is 

the Poisson’s ratio.  

The value of maximum kinetic energy T0 at lateral oscillations of a plate is determined by the 
formula:  
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                                               ( )dxdyyxWT

b a

∫ ∫=

0 0

22

0
,

2

1
µω ,                                                         (4) 

where: µ is the specific weight; ω is a cyclical frequency. 
 

 
Fig. 6. Distribution of plate flexures: m, n are numbers of half-waves. 

 
Let us apply the general equation of dynamics to build a differential equation of the plate 

in principal coordinates. This gives the following:  
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 is a natural oscillation frequency; 

11
nm

Q  is a generalized force. 

So, if an incident sound wave P(x, y)would be represented in a form of: 
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where: 
11
nm

P is a pressure amplitude of the appropriate form; 
1

m , 
1
n  are forms of sound pressure 

half-waves occurring both in length and width, then its virtual work will be calculated according 

to the formula:  
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Setting for specificity:  
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where: P10 is a pressure amplitude; k is a wave number, we obtain: 
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from the expression (7). 

When 10
1
<<<m , 10

1
<<< n , which corresponds to loading evenly distributed over 

the plate area, the formula (9) would be converted to the form: 

                                   ( ) ( )( )ππ
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.                                      (10) 
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The generalized force Q will be zero for even values m1 and n1, i.e.:  

                                                          0
11

=
nm

Q .                                                                 (11) 

And vice versa, for odd values: 
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.                                                       (12) 

By calculating the maximum work A0 of an incident sound pressure wave, according to the 

formula:  

                                               ( ) ( )dxdyyxWyxPA

b a

,,

0 0

0 ∫ ∫= ,                                                      (13) 

let us establish the law of plate flexural vibrations on the basis of extreme properties of its 

bending: 
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If consideration of energy dissipation due to the internal friction is required, it would be 

enough to consider the work of these forces in the expression (14), i.e.: 
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2

mn
ηµωχ =  is an internal friction coefficient; η  is a coefficient of losses. 

Let us suppose that mm =
1

, nn =
1

. 

These conditions imply the coincidence of a number of acoustic radiation half-waves and 

plate vibration generated in two directions: along axis x  ( mm =
1

 ) and along axis y  ( nn =
1

).  

Substituting the relation (1), (8) in the expressions (3), (4) and (13), we obtain the following:  
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On the basis of the extrenality condition (15), the expressions (17) give an opportunity 
to find out the value of bend for each pair of indices m and n:  

                                                      ( )
( )22

,

ωωµ −

=

mn

mn

mn

P
yxW ,                                                         (18) 

where 
mn
ω  is a natural frequency calculated from the above formula. 

It is clear that under the occurrence of 
mn
ωω = , the plate flexure constantly grows and it 

becomes acoustically transparent. 

Substituting the value of generalized force 
mn

Q  (19) in the differential equation of motion 

(5), the law of plate flexural vibrations can be established on the mnform at the continuous 
action of sound radiation in a time interval [0, t]. It contains its natural and forced vibrations, 
i.e.: 
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Finally, considering the relation (19) we obtain: 
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from the expression (1),where: ( ) ( ) ( )[ ]2
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The same is for the case of acoustic loading uniformly distributed over the plate area. For 
this purpose, it is enough to substitute the relations (12) in (5). We obtain: 
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Now the pattern of plate flexural motion can be established:  
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where m and n  are odd numbers.  
For a finite plate, the flexural motion can be represented as the superposition of forced 

vibrations of an infinite plate and natural vibrations that occur in the plate given its size. 
If a plate impedance on the mn form is: 
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then it becomes clear that − even fulfilling the wave coincidence condition θ
1
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= cc , but 

if there is no equality of frequencies ωmn of finite plate natural vibrations and frequencies ω 

of infinite plate forced vibrations − the flexures would have a fixed value. The plate would be 

acoustically transparent, i.e. the equality 0=
mn

Z  would occur only if both conditions are 

fulfilled:  
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4. Discussion of results of plate flexures by vibration forms 

 

Let us perform a numerical analysis of lower vibration forms, having assumed the following 

parameters for the sake of clarity: 3
2 2 10 ,mδ

−

= ⋅  0,3,σ =  2
710 .E Nm

−

=  ,
4
rad

π
θ =  1

100 ,sω
−

=

0,1 ,а m=  0,2 .b m=  The quantitative analysis shows that the maximum deflection of an elastic 

suspension plate is observed at the first (lowest) waveform, that is when 
1

1,
k

m m= =  
1

1.
k

n n= =  

Higher waveforms have a more complex structure of the bending motion. For example, upon 

1 1
1 , 2,

k k
m m n n= = = =  each of the plates has, unlike the first form, two local extrema 

of opposite polarity, while upon 
1 1

1 , 3
k k

m m n n= = = =  they have three extrema. The higher 

the form number, the more complex the bending movement of the suspension plates. Obviously, 

the number of extrema is determined by the product .

k k
m n⋅  

The analysis shows that upon an odd n, the bend magnitude is much larger in absolute terms 
than upon an even n. Thus, these forms will contribute to a more intense sonic energy pumping. 
The numerical values of maximum plate flexures for the first five forms of vibration are shown 

in Table 1. The values of natural frequencies 
mn
ω  of vibration 

k k
m n −  forms are shown in 

Table 2. Here, P10 is a normalizing factor. 

The numerical analysis proves that the maximum plate flexures are on the first − the lowest 

− form, i.e. when 
1

1;m m= =
1

1.n n= =  

Thus, the most favourable for the device is a combination of 1 waveforms of one plate with 
even waveforms of the other one, i.e. 2, 4, 6, etc. (Fig. 7a). In this case, as can be seen, the 

movement of the device output axis in the direction of Y  axis is only due to fluctuations of the 

first plate 
1
r , and there is no movement towards Z  axis. If there is a combination of the first 

waveform of one plate and odd forms (1, 3, 5, 7, etc.) of the other, there is the most complex 

motion of the suspension axis, both in the direction of Y axis and in the direction of Z axis 
(Fig. 7b). There is both translational and angular acoustic suspension vibration. 

 
                                 a)                                                         b) 

 

Fig. 7. The effect of a plate waveform on the movement of the device output axis. 

 
Table 1. The maximum plate flexures. 

m = m1 n = n1 Wmax/P10, m  

1 1 15 

1 2 12*10−4 

1 3 4,8 

1 4 5,9*10−4 

1 5 2,9 

2 2 11,8*10−4 

3 3 4,8 

4 4 5,6*10−4 

5 5 2,9 
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Table 2. The values of natural plate frequencies. 

m = m1 n = n1 
mn
ω , s-1 m = m1 n = n1 

mn
ω , s-1 

1 

1 0,376 

4 

1 4,888 

2 0,602 2 5,114 

3 0,978 3 5,490 

4 1,504 4 6,016 

5 2,181 5 6,693 

2 

1 1,278 

5 

1 7,595 

2 1,504 2 7,821 

3 1,880 3 8,197 

4 2,406 4 8,723 

5 3,083 5 9,340 

3 

1 2, 782    

2 3,008 

3 3,384 

4 3,910 

5 4,587 

 

Thus, the elastic interaction of a gyroscope suspension with acoustic radiation perturbs 
the device motion and, consequently, leads to the emergence of measurement errors. The most 

dangerous are odd vibration forms, which transmit maximum sound energy 
 

5. Conclusions 

 
The research show that, regarding the operating conditions, the base element of gimbals and 

its components goes into the category of impedance structures interacting elastically with 
penetrating acoustic radiation. Therefore, the on-board equipment needs to be placed in acoustic 
comfort. 

Methods for solving this task depend on what is more important - high positioning accuracy 
or weight of the missile/aircraft. 

Finally, special attention should be paid to the risk of resonance phenomena, in particular 
the spatial-frequency resonance. Ways to solve this problem have not yet been sufficiently 

developed, because of the spatial nature of N-wave and penetrating radiation, unlike force and 
kinematic impacts penetrating into devices only through supports. 
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