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Abstract 

We present an alternative method to detect and measure the concentration changes in liquid solutions. The method 

uses Digital Holographic Interferometry (DHI) and is based on measuring refractive index variations. The first 
hologram is recorded when a wavefront from light comes across an ordinary cylindrical glass container filled with 

a liquid solution. The second hologram is recorded after slight changing the liquid’s concentration. Differences in 

phase obtained from the correlation of the first hologram with the second one provide information about the 

refractive index variation, which is directly related to the changes in physical properties related to the 

concentration. The method can be used − with high sensitivity, accuracy, and speed − either to detect adulterations 

or to measure a slight change of concentration in the order of 0.001 moles which is equivalent to a difference 

of 0.003 g of sodium chloride in solutions. The method also enables to measure and calculate the phase difference 

among each pixel of two samples. This makes it possible to generate a global measurement of the phase difference 

of the entire sensed region. 

Keywords: Digital Holographic Interferometry, refractive index measurements, phase difference, full-field 

measurements. 
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1. Introduction 
 

Liquid mixtures can be classified based on their physical properties such as concentration, 
weight, colour, and boiling temperature, among others [1]. The concentration of a liquid 

solution refers to the amount of solute (in moles or mass) dissolved in a certain quantity 
of solvent [2]. Methods and tools for accurate measurements that can detect slight concentration 

variations are greatly important for science, regulatory agencies, food processors, and 
consumers. Expensive liquids , including olive oil, fruit juices, honey, alcoholic drinks, and 
gasoline, are especially vulnerable to adulteration. For this reason, a fast and accurate technique 

is required to validate the concentrations of products or liquid mixtures. Optical techniques are 
non-destructive and are generally preferred for this purpose. 

The index of refraction is one of the most important optical properties of an object [3]. 
In liquid solutions, this parameter is unique and proportional to the concentration of a substance 
[4]. Commonly, the refractive index is determined using Snell’s law, which involves the 

displacement of the angle of an incident beam with respect to a refracted beam by a phase 

object. Some methods based on this law use prisms [5−8], squares [9, 10], and special containers 
[11]. However, these methods require a good estimation of the angles, which reduces their 
accuracy. Other disadvantages are that they use only a small region (scarcely a point) to obtain 
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the refractive index of a sample, and the systems are difficult to calibrate and apply in real 

environments. 
New full-field optical techniques have been developed that are more precise, accurate, non-

destructive, and non-invasive. These methods have high resolution and stability, and they can 

measure profiles of physical variations in mixtures [12−14]. The traditional techniques that 

have been used to measure and visualize refractive index variations are the Schlieren, 
shadowgraph, and interferometry techniques, from which Digital Holographic Interferometry 

(DHI) has been developed [15]. Important efforts have been made to establish refractive index 

values using DHI [16]. They are related to concentration variations in liquid samples [17−18]. 
However, these methods use a special container and require knowledge of the dimensions of the 

container in advance. Also, they provide point measurements and are not able to take global 
measurements of a sample. 

We present a fast, simple, high-precision, non-destructive, full-field optical technique for 
measuring concentration differences between liquid mixtures. The proposed method can obtain 
information from every small region of the wavefront coming from each sample being analyzed. 

All the regions are then used to calculate the global variation using the concentration variations 
of the samples. The process of phase retrieval is carried out digitally using the Fourier method 

[19]. This method uses an ordinary cylindrical container, which makes its implementation easier 
for industrial processes. Commonly, tubes are used to transport liquid products, and the 
proposed method makes it possible to monitor the concentration of liquid products during 

transport. 
The remaining of the paper is organized as follows: in Section 2, we explain operation of the 

proposed optical system. Section 3 presents the numerical principles, the phase estimation 
method and the relation between a phase difference and a concentration variation of two liquid 
solutions. The experimental results are reported in Section 4. Finally, in Section 5, we 

summarize the conclusions of our work. 
 
 

2. Experimental setup 

 
A schematic diagram for detecting and measuring the concentration changes using DHI is 

shown in Fig. 1.  
 

 
 

Fig. 1. A schematic diagram of the experimental setup using DHI. BS1, BS2: cubic beam splitters;  

FC1− a fibre collimator; M1 − a mirror; L1, L2, L3 − lenses; SSMF1 − a single-mode fibre; S − a liquid sample;  

D1 − a diffuser; A1 − an aperture; O − an object beam; R − a reference beam; θ1 represents the carrier spatial 

frequency along the direction x of the sensor plane. The wavefront comes from the green region in the glass 

view; x′ and y′are the rectangular coordinates of the container with the liquid inside. 
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Monochromatic He-Ne laser light with nm 543=λ  and a maximum output power of 15 mW 

is split into two beams by a beam splitter BS1. The reflected beam (the “object beam”) from 

mirror M1 is reflected towards lenses L1  and L2  (expanded and collimated ones, respectively) 
and a diffuser D1. The beam passes through an ordinary glass tube with unknown inner 

dimensions di and containing a liquid sample S . This object beam enters through a rectangular 

aperture A1  and is collected by a positive lens L3, which creates on a CCD sensor an image 

of the tube containing the sample. The transmitted beam (the “reference beam”) travels through 

a single-mode optical fibre SSMF1. It is sent into a cubic beam splitter BS2, which is placed 
in front of the CCD in such a way that it interferes with the object beam. Thus, a hologram (HS) 

is recorded from the aqueous sample. The liquid solutions to be analysed are injected into the 

tube at a constant rate (∼36 ml/s), and the interference patterns are recorded using a CCD, which 
is a monochromatic sensor with 1280 × 1024 pixels (1.3 MP) and a pixel size of 

6.7 µm × 6.7 µm. All digital processing is done using Matlab. When recording the holograms, 

the temperature was stabilized at 20°C.  
 
 

3. Method 

 
The holographic technique can record the amplitude and phase (complete information) of a 

wave-front scattered by an object. The holographic interferometry setup uses the holography 

method to interferometrically compare two or more wave-fronts recorded at different moments 
or states [14]. The results of the comparison are used to obtain the phase difference map, which 

shows the physical variations between two liquids.  
In order to measure the concentration difference between two liquid mixtures, we recorded 

two holograms that describe the substance coming from each liquid sample. By using the DHI 

double exposure method and an ordinary glass tube as an object, we obtained a hologram 
1
S

H  

from a wave-front coming from the tube filled with a certain liquid solution S1 in the optical 
system (see Fig. 1). This can be represented using: 

                                                      
1 1 1

S
=  ( , )  exp[  ( , )]

S S
U u x y i x yφ ,                                                    (1) 

where:  
1
S

u represents the amplitude; 
1

S
ϕ  is the phase of the wavefront; and x and y are 

rectangular coordinates of the recording sensor plane. A second hologram 
2

S
H  is then recorded 

either using another liquid solution or after slightly modifying the concentration of the liquid 

sample (creating S2). The new phase is 
2

S
ϕ , which indicates a change in the optical path length. 

1212
SSSS −

∆+= ϕϕϕ , which creates a wavefront that can be expressed as:  

                                           
2 2 1 2 1

-

 ( , )  exp{ [  ( , ) ( , )]}
S S S S S

U u x y i x y x yφ φ= +∆ ,                                    (2) 

or simply: 

                                                       
2 2 2

 ( , )  exp[  ( , )].
S S S

U u x y i x yφ=                                                (3) 

The two wave-fronts scattered by the tube have a phase distribution due to the morphological 

and physical properties of the object phase (see the red part of Fig. 1). The phase of the wave-
fronts can be represented as: 

                                     {[ ( , ) ( , )] ( , ) ( , ) ( , )},     1,2,
m

m t i g i Sk d x y d x y n x y d x y n x y mφ = − + =                     (4) 

where λπ /2=k ; 
i

d  and 
t
d  are the inner and outer transversal distances of the glass tube; 

m
S

n  

and 
g

n  are the refractive indices of the mixture and the glass walls, respectively.  
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3.1. Phase measurement 
 
The total intensity recorded on the electronic sensor using any liquid sample in the tube is 

expressed by: 

                         ),,(),(),(),(),(),(),(
**22

yxUyxRyxRyxUyxUyxRyxI +++=                 (5) 

where )],(exp[),(),( yxiyxuyxU ϕ=  and )](2exp[),(),( yfxfiyxryxR
yx

+−= π , which are 

the complex amplitudes of the liquid mixture and the reference beam, respectively. 

λθ /)1(sin=
x
f  and λθ /)2(sin=

y
f  create a spatial frequency along the x  and y  directions 

caused by a small inclination 1θ  and 2θ of the reference beam, since only the phase of the 

reference beam changes according to the register media, and “∗” denotes the complex 

conjugate.  
Equation (5) can be written as:  

                  )],(2exp[),()](2exp[),(),(),( * yfxfiyxcyfxfiyxcyxayxI
yxyx

+−+++= ππ     (6) 

where ),(),(),( 22
yxryxuyxa +=  and )],(exp[),(),(),( yxiyxuyxryxc ϕ= . 

The size of the aperture was chosen in order to obtain a greater amount of high frequencies 

in the Fourier spectrum. In order to obtain the phase term in every hologram, a Fourier transform 
must be performed on (6), which is expressed as: 

                                  
*{ ( , )} ( , ) ( , ) ( , ),

x y x y
FT I x y A C f f C f fµ ν µ ν µ ν= + − − + + −                            (7) 

where capital letters represent the Fourier transform (see Fig. 2), while ),( νµ  are the spatial 

frequencies in the x  and y  directions, respectively.  

 

 
 

Fig. 2. A Fourier spectrum with the aperture. 

 

 

The complex conjugate terms C  or *
C  are used to obtain the required phase term of the 

reconstructed wave-fronts. From this, only one of the three terms is filtered. Its inverse Fourier 
transform is then calculated to obtain the phase distribution: 

                                       .
)],(Re[

)],(Im[
arctan)(2),(

yxc

yxc
yfxfyx

yx
=++ πϕ                                     (8) 

The complete phase recovery process is visualized in Fig. 3 and can also be seen in previous 
studies [19, 21].  
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Fig. 3. The phase recovery process. 

 

 

3.2. Concentration difference in liquid 
 

With the individual phase terms 
1

S
H  and 

2
S

H , the procedure continues with the calculation 

of the phase difference 
1212

SSSS
ϕϕϕ −=∆

−

. A phase term depends on the transverse distances 

and the refractive index of the liquid mixture inside a glass tube. Thus, we can represent this 
phase difference as: 

                                             
2 1 2 1

i
( , ) {d ( , )[ ( , )]},

S S S S
x y k x y n x yφ

− −

∆ = ∆                                             (9) 

where ),(
12

SS
yxn

−

∆  is the refractive index difference between substances 
2

S  and 
1
S . 

The refractive index difference is related to the change of concentration CON  and the 

temperature T  between substances. Then, 
12

SS −

∆n  in (9) can be expressed as: 

           
2 1 2 1 2 1

( , ) [ ( , ) ( , )] [ ( , ) ( , )],S S

S S S S S S

T CON

n n
n x y CON x y CON x y T x y T x y

CON T
−

∂ ∂   
∆ = − + −   ∂ ∂   

      (10) 

where S

T

n

CON

∂ 
 ∂ 

and S

CON

n

T

∂ 
 ∂ 

 are values that represent the dependence of the refractive index 

on CON  and T , respectively. 
2

S
CON  and 

2
S

T  are the concentration and the temperature of 
2
,S  

whereas 
1

S
CON  and 

1
S

T  are those of 
1
.S   

Aqueous salt mixtures (NaCl + H2O) have a linear relationship between n  and CON   

,

S

T

n

CON

 ∂ 
  ∂  

 which is considered to be constant at  1.71 × 10−3 at a temperature of °C20 . Then, 

(9) can be written as: 

                                   
2 1 2 1

3

i
( , ) {d ( , )[1.71 10 ][ ( , ) ( , )]},

S S S S
x y k x y CON x y CON x yφ −

−

∆ = × −                     (11) 

Using (11), we can calculate the concentration difference between 
1
S  and 

2
S , but 

i
d  is not 

known because we used an ordinary glass cylinder whose walls are optically imperfect. To 

solve this issue, we used a reference solution 
OH

2

S  and another liquid mixture (
2

H O+NaCl
S ) with 

known parameters to create an independent expression that eliminates the dependence on 
i

d .  

Then, we need to create another phase difference 
ref

ϕ∆  using these two solutions. We employed 

it to obtain 
i

d  as: 
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1

3

( , )
( , ) ,

[1.71 10 ][ ( , )]
ref

ref

i

S

x y
d x y k

CON x y

φ
−

−

∆
=

× ∆
                                    (12) 

where 
OHNaClOHref

22

ϕϕϕ −=∆
+

 and 
OHNaClOHref CONCONCON

22

−=∆
+

. 

Using (11) and (12), we can calculate the concentration difference between two substances 

as: 

                                                 
2 1

2 1

( , )
( , ) ( , )

( , )

S S

S S ref
ref

x y
CON x y CON x y

x y

φ

φ

−

−

∆
 ∆ = ∆ ∆

.                             (13) 

By employing (13), the full-field distribution of the concentration difference in a glass tube 
can be calculated and visualized.  

 

4. Results 

 

In order to verify operation of the experimental setup, we calculated and visualized the global 
concentration difference distribution between saline mixtures. The liquid samples were 

prepared by mixing distilled water (
OH

2

S ) (50 ml) and definite quantities of NaCl (0.25, 0.5, 

0.75, 1, 1.25 and 1.5 g) to create each mixed solution (NaCl + H2O) with specific molarities 

of 086.0
1

=
mol

S , 172.0
2

=
mol

S , 258.0
3

=
mol

S , 344.0
4

=molS , 43.0
5

=
mol

S , and 516.0
6

=
mol

S  

moles. A set of 
12

SS −

∆ϕ  was calculated for solutions with concentration differences of 0.086 mol 

between them. The first solution with a lower concentration is taken as 
1
S , and the next liquid 

solution with a higher concentration − as 
2

S  (see Figs. 4a−4f).  

 
                   a) 

OHmol
SS

21

−                       b) 
12

molmol
SS −                     c) 

23
molmol

SS −  

         
 

                   d) 
34

molmol
SS −                     e) 

45
molmol

SS −                      f) 
56

molmol
SS −  

         
 

                                                                   g) 
OHmol

SS
26

−  

 
 

Fig. 4. Wrapped phase difference maps. 
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refϕ∆  was calculated in all the experiments using 
OH

2

S  and 
1

mol
S  as 

NaClOH
2

+
S . For example, 

to calculate the concentration difference between 
5

mol
S  and 

6
mol

S , we took the first one as 
1
S  

and the second (with a higher molarity) as 
2

S  to create 
2 1
S S
φ

−

∆ , together with the other values    

(
refϕ∆  and refCON∆ ). Then, the distribution of the concentration difference between the 

mixtures can be calculated using (13). The values of CON  and n   of these last two solutions 

were obtained from [1] and [20]. The concentration difference values obtained with the 
proposed method are presented in Table 1. 

 
Table 1. Comparisons of concentration values measured by the DHI and those found in [20]. 

 

Solutions compared 12
SS −

∆CON  (value in Ref. 20) 

[mol] 
12

SS −

∆CON  (with DHI) 

[mol] 
Deviation 

OHmol
SS

21

−  0.083 0.083 0.0 

12
molmol

SS −  0.086 0.086 0.0 

23
molmol

SS −  0.086 0.088 +0.002 

34
molmol

SS −  0.086 0.081 −0.005 

45
molmol

SS −  0.086 0.082 −0.004 

56
molmol

SS −  0.086 0.085 −0.001 

 
The performance of the CCD sensor employed in this experiment was assessed using liquid 

substances with concentration differences of 0.086 moles between them. Substances with 
a higher concentration difference generate a wrapped phase map with a high frequency, which 

is more difficult to unwrap and does not enable to obtain the concentration differences. For 

example, if we generate a phase difference between the liquid samples of 
OH

2

S  and 
6

mol
S , we 

obtain the phase difference map shown in Fig. 4g.  

 
5. Conclusions 

 

This work has presented a method of detecting and measuring the global concentration 
variations in liquid mixtures using DHI. The process measures phase variations between wave-
fronts scattered by an ordinary glass tube and converts them with a phase change into 

a concentration variation. The method is non-invasive, simple, fast, and easy to develop in 
a laboratory and real work environments. The technique can resolve extremely small changes 

of concentration in the order of −0.001 moles, which is equivalent to a difference of 0.003 g 
of sodium chloride in saline solutions. In other words, since we used 50 ml of distilled water, 

the method can distinguish changes in salt concentration of  6 × 10−5 by weight. Additionally, 
the method does not require a special device to contain the saline sample. The results are in 

accordance with concentration values published in [20] on aqueous salt solutions (NaCl + H2O). 
Our method can be used to identify or confirm the identity of a sample, as well as to detect 

adulterations or fake solutions.  
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