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MULTIPLE FAULT PARAMETER ESTIMATION OF A FULLY
ASSEMBLED TURBOGENERATOR SYSTEM

The present article investigates the dynamic behavior of a fully assembled tur-
bogenerator system influenced by misalignment. In the past, most of the researchers
have neglected the foundation flexibility in the turbogenerator systems in their study,
to overcome this modelling error a more realistic model of a turbogenerator system has
been attempted by considering flexible shafts, flexible coupling, flexible bearings and
flexible foundation. Equations of motion for fully assembled turbogenerator system
including flexible foundations have been derived by using finite element method. The
methodology developed based on least squares technique requires forced response
information to quantify the bearing–coupling–foundation dynamic parameters of the
system associated with different faults along with residual unbalances. The proposed
methodology is tested for the various level of measurement noise and modelling error
in the system parameters, i.e., 5% deviation in E (modulus of elasticity) and ρ (den-
sity), respectively, for robustness of the algorithm. In a practical sense, the condition
analyzed in the present article relates to the identification of misalignment and other
dynamic parameters viz. bearing and residual unbalance in a rotor integrated with
flexible foundation.

1. Introduction

The most common turbogenerator system comprises the driver and driven
shafts connected with coupling, mounted on bearings, and the complete system is
laid on a flexible foundation. Such category of the dynamic systemneeds accurate as
well as reliable prediction of its dynamic behavior of components and identification
of impending faults associated with it.

To identify various faults present in turbogenerator systems such as residual
unbalance, rotor cracks, shaft misalignments, gear faults etc., multiple techniques
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have been developed [1–6] based on feature-basedmethod (like fuzzy-logic, support
vector machine, artificial neural network (ANN)). Due to incomplete information
available with feature extraction methods, scholars and personnel working in this
are moving towards more appropriate technique of identification, i.e., model-based
technology. Model-based techniques not only classify the faults but also gives
quantitative information regarding the various flaws present in the system.

Authors of [7] used higher-order finite element method to incorporate eight
degrees of freedom per node. In this analysis, they modelled the faults as equiv-
alent force system and obtained fault parameters numerically. Ref. [8] presented
a method to calculate the force applied to the bearing by securing response at
the bearing, and this information is further processed to estimate foundation pa-
rameters. The present method requires prior knowledge of unbalance. Also, this
technique was demonstrated by using a simple rotor bearing model. They reported
vibration responses corresponding to 2× represents significant variations due to
misalignment. A similar approach as used in [8] except using a Kalman filter to
estimate the foundation parameters is used in [9]. Moreover, no experimental result
was presented in this analysis.

Authors of [10] proposed a novel approach to take measurement that reduces
the requirement of prior knowledge of the rotor bearing model. To check the accu-
racy of the developed algorithm considered frequency range was split into various
frequency bands, and for each frequency band estimates were obtained. Articles
[11, 12] presented a technique to include a modal model of foundation structure in
the equations of motion (EOMs). The method shows that there were no constraints
in the modelling of foundation structure. The identification algorithm developed
in the frequency domain can be integrated with a modal model of the foundation.
In this method, modal test is not required to estimate modal parameters. Phase
modification and numerical optimization to improve the accuracy of foundation
model is presented in [13]. Frequency response function was used to estimate the
foundation parameters of the system, and it was concluded that implementation
of pseudo mode shape method (PMSM) improves the accuracy of identification
algorithm.

Authors of [14] reviewed the various methods of machine prognosis that fore-
cast the operational life, future condition and probability of reliable operation of a
component. They categorized multiple methods used for estimating rotating ma-
chinery fault as conventional reliability model, condition based prognostic model,
and model integrating reliability and prognostics. Ref. [15] presented a method to
evaluate the effect of supporting structure on a rotor bearing system by considering
physical coordinate of the rotor bearing system and the principal coordinate of foun-
dation a frequency response analysis of the whole operation was done. They used
directional frequency response function to estimate the parameters and compared
the results obtained with the conventional frequency response function procedure.
An algorithm developed based on least squares fit to estimate multiple faults of a
turbogenerator system is presented in [16]. They used an analytical approach, i.e.,
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Lagrange’s method to develop equations of motion. The accuracy of the developed
algorithm is checked for the different level of measurement noise and modeling er-
ror. The aforementioned identification algorithm is extended for the more realistic
model to estimate dynamic parameters of the turbogenerator system and a novel
condensation scheme is proposed in [17]. Authors of [18] reviewed the various
methods used in signal based condition monitoring technique and concluded that
empirical mode decomposition technique (EDM) is one of the most powerful tools
for rotor fault detection and diagnosis. Ref. [19] presented an approach to identify
foundation parameters by equation decoupling method. In this analysis, they com-
pared and reported fair agreement between the numerical simulation results with
the ANSYS.

In this article, a more realistic turbogenerator model with the flexible foun-
dation is considered, and its effect on the estimation of misalignment and other
dynamic parameters of the turbogenerator system has been analyzed. A more prac-
tical approach, i.e., finite element method (FEM) is used to obtain system equations
ofmotion (EOMs). To quantitatively estimate the dynamic parameters of the system
a methodology has been developed based on least squares technique. To evaluate
the correctness of the developed methodology measurement noise (up to 5%) has
been considered. Moreover, modeling error, i.e., 5% deviation in E (modulus of
elasticity) and ρ (density) has also been added for some physical parameters, and
the algorithm is found to be robust.

2. Theoretical development

Assumptions involved in the modeling of the system and an approach to
evaluate dynamic system parameters along with foundation parameters have been
discussed in this section.

2.1. Model description

Schematic representation of the model considered in this analysis is shown in
Fig. 1. The model consists of two flexible shafts connected with the help of flexible
coupling, each shaft is mounted on two flexible bearings (anisotropic) at the ends
and the fully assembled model is supported on a flexible foundation. Timoshenko
beam theory is applied to model flexible shafts having mass (ms) and diametral
mass moment of inertia (Isd). Each shaft is having two rigid discs of mass (md

i ),
diametral mass moment of inertia (Idi ) and the residual unbalance (ui) where i = 1,
2, 3, 4. FEM is used to obtain mass, damping (Rayleigh’s damping) and stiffness
matrix of the shaft. The finite element (FE) model of system is shown in Fig. 2, each
node is having four degrees of freedom (DOFs) i.e., two translational (x, y) and two
rotational (ϕx, ϕy).Where Bi, Di and Fi, (i = 1, 2, 3, 4) represents bearing, disc and
foundation location, respectively. The foundation is modeled similar as bearings
and having eight linearized stiffness kbn

i j , k fn
i j and damping cbn

i j , c fn
i j coefficients.
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Subscripts i and j represent two orthogonal directions x and y. Superscripts b, d,
f and s represent bearing, disc, foundation and shaft, respectively. While n = 1,
2, 3, 4 is used to represent number of bearings, disc and foundations. For brevity
internal damping, gyroscopic effect is neglected and speed independent parameters
are considered to develop identification algorithm in the present study.

Fig. 1. A flexible rotor–bearing–coupling–foundation system
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Fig. 2. Finite element model of flexible rotor–bearing–coupling–foundation system

2.2. Shaft and disc model

Flexible shafts and rigid discs are considered in this analysis. Shafts are mod-
elled with the help of Timoshenko beam theory. The elemental mass [M], stiffness
[K] and damping [C] matrices for Timoshenko beam theory are well established
in [20, 21]. Elemental EOMs of the shaft and disc could be expressed as

[M]s {η̈(t)}s + [C]s {η̇(t)}s + [K]s {η(t)}s = { f (t)}s (1)

and
[M]d {η̈(t)}d = { f (t)}d . (2)
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2.3. Rotor model

The rotor consists of two substructures namely shaft and disc. Elemental EOMs
for rotor could be obtained by adding individual elemental EOMs of shaft and disc,
i.e., Eq. (1) and (2), respectively and could be expressed as

[M]R {η̈(t)}R + [C]R {η̇(t)}R + [K]R {η(t)}R = { f (t)}R, (3)

where

[M]R = [M]s+[M]d; [C]R = [C]s; [K]R = [K]s and { f }R = { f }s+ { f }d .

2.4. Bearing and foundation model

Bearings and foundations are formulated with short bearing approximation
theory and modeled as having eight linearized stiffness and damping coefficients.
The elemental EOMs for each bearing and foundation could be written as

[C]B {η̇(t)}B + [K]B{η(t)}B = { f (t)}B (4)

and
[C]F {η̇(t)}F + [K]F {η(t)}F = { f (t)}F . (5)

Details of elemental matrices for bearing and foundation could be given as

[K]B =


kb1
xx kb1

xy

kb1
yx kb1

yy


; [C]B =



cb1
xx cb1

xy

cb1
yx cb1

yy



and

[C]F =


c f1
xx c f1

xy

c f1
yx c f1

yy


; [K]F =



k f1
xx k f1

xy

k f1
yx k f1

yy


.

2.5. Coupling misalignment model

A flexible coupling consists of linear and torsional springs and linear dampers
to accommodate combined misalignment effect into account are considered. The
restoring and damping force has been included in stiffness and damping matrix.
The amount of misalignment significantly depends upon the different modes of
excitation and would reflect in term of damping and stiffness force during motion
that will change with speed. The EOMs for coupling could be expressed as

[C]c {η̇(t)}c + [K]c {η(t)}c = { f (t)}c, (6)

where superscript ‘c’ represents coupling. Details of the elemental matrix as well
as misalignment forces and moments equations are taken from [16].
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2.6. Residual unbalance force model

Residual unbalance force could be expressed as

{ funb(t)} = {Funb(t)}e jωt, (7)

where {Funb(t)} is complex residual unbalance force vector containing amplitude
and phase information.

2.7. System equations of motion

The elemental EOMs of the rotor, bearing, foundation and coupling as sub-
structure are presented in Eqs. (3)–(6), respectively. Force is expressed as shown
in Eq. (7). Upon consideration of solution of Eqs. (3)–(6) as {η(t)} = {η} e jωt .
The governing equation for rotor, bearing, foundation and coupling, respectively
in frequency domain could be represented as

[ZR]48×48{ηR}48×1 = {FR}48×1, (8)

[ZB]8×8 {ηB}8×1 = {FB}8×1 , (9)

[ZF ]8×8
{
η f

}
8×1
= {FF }8×1 (10)

and
[ZC]8×8 {ηC }8×1 = {FC }8×1 . (11)

Numbers shown at subscripts in the above equations represent the size of the
respective matrices, where [ZR], [ZB], [ZF ] and [ZC] are the dynamic matrix for
the rotor, bearing, foundation and coupling, respectively. Details of these dynamic
matrices are:

[ZR]48×48 =
(
[KR] + jω[CR] − ω2[MR]

)
, (12)

[ZB]8×8 = ([KB] + jω[CB]) , (13)
[ZF ]8×8 = ([KF ] + jω[CC]) (14)

and
[ZC]8×8 = ([KC] + jω[CC]) . (15)

All DOFs of the rotor system are divided into two parts, namely internal and
connection DOFs. Linear DOFs at bearing as well as foundation and all DOFs at
coupling (linear as well as angular) are considered as connection DOFs, whereas
apart from these all, other DOFs are regarded as internal DOFs. Eqs. (12)–(15),
are divided into connection and internal DOFs and it could be expressed as,



[ZR,I I ] [ZR,IB] [ZR,IC] [ZR,IF ]
[ZR,BI ] [ZR,BB] [ZR,CC] [ZR,BF ]
[ZR,CI ] [ZR,CB] [ZR,CC] [ZR,CF ]
[ZR,FI ] [ZR,FB] [ZR,FC] [ZR,FF ]






{
ηR,I
}{

ηR,B
}{

ηR,C
}{

ηF,B
}



=




{
FR,I
}

−
{
FR,B
}

−
{
FR,C
}

−
{
FF,B
}



, (16)
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ZB,BB

] {
ηR,B
}
−
[
ZB,BB

] {
ηF,B
}
=
{
FB,B
}
, (17)

−
[
ZB,BB

] {
ηR,B
}
+
[
ZF,FF

] {
ηR,F
}
+
[
ZB,BB

] {
ηF,B
}
=
[
FF,F
]

(18)

and [
ZC,CC

]
8×8
{
ηR,C
}
8×1 =

{
FC,CC

}
8×1 , (19)

where subscripts B, C, F, I and R represent bearing, coupling, foundation, internal
and rotor DOFs, respectively. Dynamic matrices may be read as (‘ZR,I I ’ rotor dy-
namic matrix correspond to internal–internal DOFs, ‘ZR,BI ’ rotor dynamic matrix
correspond to bearing–internal DOFs, ‘ZR,BI ’ bearing dynamic matrix correspond
to bearing–bearingDOFs, etc.). Combining Eqs. (16)–(19), results in systemEOMs
in frequency domain and could be expressed as



[ZR,I I ] [ZR,IB] [ZR,IC] [ZR,IF ]

[ZR,BI ] [ZR,BB]+[ZB,BB] [ZR,BC] [ZR,BF ]−[ZB,BB]

[ZR,CI ] [ZR,CB] [ZR,CC]+[ZC,CC] [ZR,CF ]

[ZR,FI ] [ZR,FB]−[ZB,BB] [ZR,FC] [ZR,FF ]+[ZF,FF ]+[ZB,BB]






{ηR,I }

{ηR,B}

{ηR,C }

{ηF,B}




=




{FR,I }

{0}

{0}

{0}




, (20)

where {ηR,I }, {ηR,B}, {ηR,C } and {ηF,B} are rotor internal, rotor bearing, rotor
coupling and foundation bearing DOFs, respectively. Eq. (20), would be used in
subsequent section to develop amethodology for the simultaneous estimation of the
bearing–coupling–foundation dynamic parameters (BCFDPs) along with residual
unbalances (RUs). In the section of numerical experiments, the same equation
would be used to get simulated responses for testing the proposed multi-fault
identification methodology.

3. Formulation of the quantification methodology

Eq. (20) represents the governing equation for multi-degree of freedom flexible
rotor–bearing–coupling–foundation system, considered to develop a methodology
to estimate the BCFDPs along with RUs. Eq. (20), could be split and rearranged to
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eliminate internal DOFs (ηR,I ) from EOMs as



[ZB,BB]8×8 [0]8×8 [−ZB,BB]8×8

[0]8×8 [ZC,CC]8×8 [0]8×8

[−ZB,BB]8×8 [0]8×8 [ZB,BB]8×8 + [ZF,FF ]8×8

 (24×24)




ηR,B

ηR,C

ηF,B


(24×1)

+



[ZR,BI ][ZR,I I ]−1

[ZR,CI ][ZR,I I ]−1

[ZR,FI ][ZR,I I ]−1

 (24×32)

{
FR,I
}

(32×1) =




Pn1

Pn2

Pn3


(24×1)

, (21)

where {
Pn1

}
=
( [

ZR,IB
] [

ZR,I I
]−1 [ZR,BI

]
−
[
ZR,BB

] ) {
ηR,B
}
+( [

ZR,BI
] [

ZR,I I
]−1 [ZR,IC

]
−
[
ZR,BC

] ) {
ηR,C
}
+( [

ZR,BI
] [

ZR,I I
]−1 [ZR,IF

]
−
[
ZR,BF

] ) {
ηF,B
}
,{

Pn2

}
=
( [

ZR,CI
] [

ZR,I I
]−1 [ZR,IB

]
−
[
ZR,CB

] ) {
ηR,B
}
+( [

ZR,CI
] [

ZR,I I
]−1 [ZR,IC

]
−
[
ZR,CC

] ) {
ηR,C
}
+( [

ZR,CI
] [

ZR,I I
]−1 [ZR,IF

]
−
[
ZR,CF

] ) {
ηF,B
}
,{

Pn3

}
=
( [

ZR,FI
] [

ZR,I I
]−1 [ZR,IB

]
−
[
ZR,FB

] ) {
ηR,B
}
+( [

ZR,FI
] [

ZR,I I
]−1 [ZR,IC

]
−
[
ZR,FC

] ) {
ηR,C
}
+( [

ZR,FI
] [

ZR,I I
]−1 [ZR,IF

]
−
[
ZR,FF

] ) {
ηF,B
}
,{

FR,I
}
= ω2 [T]32×8 {U }8×1

with

T31 = 1, T32 = j, T41 = − j, T42 = 1, T11,3 = 1, T11,4 = j, T12,3 = − j, T12,4 = 1,

T19,5 = 1, T19,6 = j, T20,5 = − j, T20,6 = 1, T27,7 = 1, T27,8 = j, T28,7 = − j, T28,8 = 1,

{U }8×1 =
{
urx1 uix1 urx2 uix2 urx3 uix3 urx4 uix4

}T
,

where [T] is transformationmatrix, rest of the elements of the transformationmatrix
is zero. Superscripts r and i represent the real and imaginary parts, respectively.
Rearrangement of Eq. (21), could be expressed as

[WN ]24×74{β}74×1 + [RN ]24×8{U }8×1 = {PN }24×1. (22)

Here all the unknowns (stiffness and damping parameters of bearing, coupling
and foundation and unbalance) are arranged in vector {β} and {U }, respectively.
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Matrices [W ]] and [R] contains the response parameters corresponding to stiffness
and damping and unbalance, respectively. Separating real and imaginary parts,
Eq. (22) could be written as



[
W r

N

]
[
W i

N

]
48×72

{β}72×1 +



[
Rr
N

]
[
Ri
N

]
48×8

{u}8×1 =



{
PR
N

}
{
Pi
N

}

48×1

, (23)

[W ]48×74{β}74×1 + [R]48×8{U }8×1 = {P}48×1, (24)

[[W ]48×74 [R]48×8]



{β}74×1

{U }8×1



= {P}48×1, (25)

[A]48×82{X }82×1 = {P}48×1 (26)

with

{X } =




kb1
xx, kb1

xy, kb1
yx, kb1

yy, kb2
xx, kb2

xy, kb2
yx, kb2

yy, kb3
xx, kb3

xy, kb3
yx, kb3

yy, kb4
xx, kb4

xy,

kb4
yx, kb4

yy, kc
xx, kc

xy, kc
yx, kc

yy, kc
ϕx
, kc

ϕy
, k f1

xx, k f1
xy, k f1

yx, k f1
yy, k f2

xx, k f2
xy,

k f2
yx, k f2

yy, k f3
xx, k f3

xy, k f3
yx, k f3

yy, k f4
xx, k f4

xy, k f4
yx, k f4

yy, c
b1
xx, c

b1
xy, c

b1
yx, c

b1
yy,

cb2
xx, c

b2
xy, c

b2
yx, c

b2
yy, c

b3
xx, c

b3
xy, c

b3
yx, c

b3
yy, c

b4
xx, c

b4
xy, c

b4
yx, c

b4
yy, c

c
xx, c

c
xy, c

c
yx,

ccyy, c
f1
xx, c

f1
xy, c

f1
yx, c

f1
yy, c

f2
xx, c

f2
xy, c

f2
yx, c

f2
yy, c

f3
xx, c

f3
xy, c

f3
yx, c

f3
yy,

c f4
xx, c

f4
xy, c

f4
yx, c

f4
yy, u

r
x1, u

i
x1, u

r
x2, u

i
x2, u

r
x3, u

i
x3, u

r
x4, u

i
x4




.

Eq. (26) is the final form of regression equation where all the unknowns are
stacked in the left side in column vector {X }. [A] is combined regression matrix
having the effect of stiffness, damping and residual unbalance. From Eq. (26), it
could be seen that this is the case of the underdetermined system of linear simul-
taneous equations in which number of unknowns (eighty two) are more than the
number of equations (forty eight). The complete unknowns could be estimated by
increasing the number of equation at least equal to or greater than the number of
unknowns. For the present case, to avoid undermined condition, at least two sets of
independent measurements are required. The advantage of current methodology is
that it needs only linear DOFs at bearing, coupling and foundation locations and
few angular DOFs at coupling location that are practically measurable quantities.
To obtain independent sets of measurement two different groups have been sug-
gested [16]:
Group A: Run the rotor in same sense at unlike speeds.
Group B: Run the rotor in CW (clockwise) and CCW (counter clockwise) direc-
tions, alternatively at alike or unlike spin speed. It is assumed that the bearing,
coupling and foundation parameters do not change with the speed.
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Under these techniques, three different methods have been proposed:
Method I: Run the rotor near critical speeds (i.e., near and outside the half power
points. Half power points are the two frequencies on both sides of the resonance.
Frequency on either side is referred as sideband which is equal to 0.707Xres where
Xres is the resonant amplitude).
Method II: Run the rotor away from the critical speeds.
Method III: Run the rotor at several speeds.

Eq. (25), could be rewritten for two different groups to estimate BCFDPs and
RUs of the system as
Group A:

[AI ]96×82{XI }82×1 = {PI }96×1 (27)

with

[AI ]96×82 =



A(ω1)48×82

A(ω2)48×82


; [PI ]96×82 =



P(ω1)48×82

P(ω2)48×82


,

where [AI ] and [PI ] are similar in the formulation as in Eq. (25), with unlike spin
speeds. Eq. (26), is the standard form of regression equation for Group A used to
obtain BCFDPs and RUs with the help of least−squares fit as

{XI }82×1 =
(
[AI (ω)]′82×96 [AI (ω)]96×82

)−1
[AI (ω)]′82×96 {PI (ω)}96×1 . (28)

Group B:
[AII]48×82 {XII}82×1 = {PII}48×1 (29)

with

[AII]96×82 =



A(ω1)48×82

A(−ω1)48×82


; [PII]96×82 =



P(ω1)48×82

P(−ω1)48×82


,

where [AII] and [PII] are similar in the formulation as in Eq. (25), with unlike spin
speeds. Eq. (28), is the standard form of regression equation for Group B used to
obtain BCFDPs and RUs with the help of least-squares fit as

{XII}82×1 =
(
[AII(ω)]′82×96 [AII(ω)]96×82

)−1
[AII(ω)]′82×96 {PII(ω)}96×1 . (30)

From Eq. (27) and (29), it could be seen that estimation of parameters re-
quire inversion of regression matrix, i.e.,

(
[AI (ω)]′82×96[AI (ω)]96×82

)−1
≈ 0 and(

[AII(ω)]′82×96[AII(ω)]96×82
)−1
≈ 0, respectively. The accuracy of estimated pa-

rameters highly depends on the condition of the regression matrix to be inverted.
To avoid ill-conditioning of regression matrix, column scaling (the columns corre-
sponding to damping and unbalance parameters are divided by the average of spin
speed (ωav) considered) has been performed for three methods suggested under
two groups namely Group A and Group B.
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4. Numerical experiments

To explain the present developed algorithm, fully assembled turbogenerator
system is considered (refer Fig. 1). Both shafts have same physical (diameter,
length) and mechanical (density, modulus of elasticity) properties as 0.02 m,
1.25 m, 7800 kg/m3 and 2.1 × 109 N/m2, respectively. To obtain the simulated
response required for developed identification methodology stiffness and damping
parameters of bearing, coupling and foundation along with residual unbalance are
assumed.

A typical variation of response (linear displacement at bearing 1) with respect
to spin speed is shown in Fig. 3a and Fig. 3b, for without and with foundation,
respectively. From Fig. 3a, first six critical frequencies of the system (without
consideration of foundation) could be noted as ωcr1 = 160 rad/s, ωcr2 = 210 rad/s,
ωcr3 = 290 rad/s,ωcr4 = 360 rad/s,ωcr5 = 650 rad/s, andωcr6 = 1170 rad/s. It could
be noted that, after incorporating foundation in the system, critical frequencies are
slightly varying refer Fig. 3b, these phenomenon is also reported in [22]. The
present identification methodology (Eq. (27) and (29)) requires forced response
data to estimate BCFDPs along with RUs for two different groups as discussed
above, i.e., Group A and Group B, respectively. In the subsequent sub-section
percentage deviation in estimation is compared with assumed values for different
methods discussed above. The percentage deviation is calculated as

% Deviation =
Assumed value – Estimated value

Assumed value
× 100.
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Fig. 3. Horizontal displacement at bearing location 1 (a) without foundation (b) with foundation
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Column scaling of regression matrices [AI ] and [AII] has been performed to
enhance the correctness of the estimated parameters. To have an idea of the effect
of column scaling, the comparison of percentage deviation in estimated parameter
before and after column scaling is performed. For example, the effect of column
scaling for Method I, II and III under Group A is reported in this article for
1% measurement noise in Fig. 4, Fig. 5 and Fig. 6, respectively. An appreciable
improvement in estimated parameters after column scaling could be observed
from Figs 4–6. Also, it could be observed that the maximum percentage deviation
occurred prior to column scaling for Method I, II and III under Group A for
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Fig. 4. Percentage deviation in estimated parameters before and after column scaling for Method I of
Group A (for 1% measurement noise)
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Fig. 5. Percentage deviation in estimated parameters before and after column scaling for Method II
of Group A (for 1% measurement noise)
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Fig. 6. Percentage deviation in estimated parameters before and after column scaling for Method III
of Group A (for 1% measurement noise)
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1% measurement noise is 1460%, 1168%, 986%, which is considerably decreased
after the column scaling, i.e., 45%, 32%, 31%, respectively. In Figs 4–13, the
number in the abscissa represents estimated parameter i.e., vector {X } of Eq. (26).
Another significant effect of column scaling is an improvement in condition number
presented in Table 1.

4.1. Group A: Run the rotor in same sense at unlike speeds

Method I:The two speeds selected near the critical speeds, however, outside the
half-power point to generate independent sets of measurement are ω1 = 145 rad/s
and ω2 = 175 rad/s. Generated response is used to estimate BCFDPs along with
RUs. From Fig. 7, it could be observed that most of the identified parameters
exhibit deviation with assumed values for 1% measurement noise and the variation
increases as the percentage noise increases. From Table 1, the improvement in the
condition number after column scaling of the order of 1016 could be observed. From
Table 2, it could be observed that the maximum error occurred in cross-coupling
damping parameter of the bearing is 45% and 113% for 1% and 5% measurement
noise, respectively.
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Fig. 7. Percentage deviation in estimated parameters for different level of measurement noise for
Method I of Group A

Method II: The two speeds selected away from critical speeds to generate
independent sets of measurement are ω1 = 110 rad/s and ω2 = 245 rad/s. From
Fig. 8, it could be seen that most of the bearing parameters are showing good agree-
ment for 1% measurement and varying slightly for 5% noise. Damping parameters
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Fig. 8. Percentage deviation in estimated parameters for different level of measurement noise for
Method II of Group A
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start deviating even at 1% measurement noise. From Table 1, the improvement in
the condition number after column scaling of the order of 1016 could be observed.
From Table 2, it could be concluded that Method II is better than Method I under
Group A to estimate the parameters. Cross-coupled damping parameter of foun-
dation occur maximum deviation in this case as 32% and 77% for 1% and 5%
measurement noise, respectively.

Method III: The number of measurement speed to generate a response is in-
creased up to 300 in numbers, i.e., ω = 0–1500 rad/s with an interval of 5 rad/s to
estimate the parameters. From Fig. 9, it could be observed that most of the param-
eters (except bearing and foundation damping parameters) show good agreement
with assumed values up to 5% measurement noise. From Table 2, it could be seen
that cross-coupled damping parameters of foundation show maximum deviation
31% and 50% for 1% and 5% measurement noise, respectively. From Table 1 and
Table 2 and by comparing Figs 7–9, it could be observed that Method III is the
best method to estimate the parameters under Group A.
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Fig. 9. Percentage deviation in estimated parameters for different level of measurement noise for
Method III of Group A

4.2. Technique 2: Run the rotor alternately in unlike direction
(i.e., CW and CCW)

From different methods discussed under Group A, it could be observed that
the estimated parameters show deviation with assumed parameters even at 1%
measurement noise and increases as the level of measurement noise increases.
To improve the closeness of developed methodology Group B is proposed where
response is generated by running the rotor alternatively in unlike, i.e., (CW and
CCW) directions.

Method I: The two speeds selected near the critical speeds however outside the
half-power point to generate independent sets of measurement are ω1 = 145 rad/s
(for CW) and ω1 = 145 rad/s (for CCW). Generated response is used to estimate
BCFDPs along with RUs. From Fig. 10, it could be observed that most of the
identified parameters exhibit good agreement with assumed values up to 5% mea-
surement noise. Some of the damping parameters mainly cross-coupled damping
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parameters of foundation show deviation at 5% measurement noise. From Table 1,
it could be observed that the condition number after column scaling is enhanced
by the order of 1016. From Table 2, it could be observed that the maximum error
occurred in cross-coupling damping parameter of the foundation is 28% and 95%
for 1% and 5% measurement noise, respectively.
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Fig. 10. Percentage deviation in estimated parameters for different level of measurement noise for
Method I of Group B

Method II: The two speeds selected away from critical speeds to generate
independent sets of measurement are ω1 = 110 rad/s (for CW) and ω1 = 110 rad/s
(for CCW). From Fig. 11, it could be observed that most of the parameters (ex-
cept few bearing and foundation damping parameters) show good agreement with
assumed values up to 5% measurement noise. The maximum deviation occurred
for the aforementioned case is 20% and 40% for 1% and 5% measurement noise,
respectively (refer Table 2). From Table 1, it could be observed that the condition
number after column scaling is enhanced by the order of 1018.
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Fig. 11. Percentage deviation in estimated parameters for different level of measurement noise for
Method II of Group B

Method III: The number of measurement speed to generate a response is
increased up to 300 in numbers, i.e., for CW ω = 0–1500 rad/s and for CCW
ω = 0−1500 rad/s with an interval of 10 rad/s to estimate the parameters. From
Fig. 12, it could be observed that all the parameters are identified well and show
good agreement with assumed values up to 5% measurement noise. From Fig. 12,
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it could be seen that the maximum error occurred, in this case, is 6% and 13% for
1% and 5% measurement noise, respectively. From Table 1, the improvement in
the condition number after column scaling of the order of 1021 could be observed
that is a maximum improvement under both the groups and all three methods.
By comparing Figs 7–12 and from Table 2, it could be observed that Method III
under Group B is the best method to estimate the parameters among both the
groups.
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Fig. 12. Percentage deviation in estimated parameters for different level of measurement noise for
Method III of Group B

The effect of modelling error on the developed algorithm is carried out for
best-estimated method (i.e., Method III under Group B) and shown in Fig. 13. The
effect of modelling error is consider by considering 5% deviation in modulus of
elasticity (E) and the density (ρ) for 5%measurement noise. FromFig. 13, it is clear
that the algorithm is robust against modelling error and show well agreement with
estimated parameters obtained for Method III under Group B for 5%measurement
noise. A comparison of response (horizontal displacement at bearing location 1)
generated from assumed values of parameters (i.e., true model) and estimated
values of parameters (i.e., identified model) for Method III of Group B for 5%
measurement noise condition is presented in Fig. 14. From Fig. 14, it could be
concluded that the response obtained from true model and estimated model exhibit
well agreement with each other.
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Fig. 14. Comparison of horizontal response at bearing location 1 for true model and estimated
model under Method III of Group B for 5% measurement noise

5. Conclusions

A quantification methodology based on least squares fit technique by using
forced response data system is developed in this article. The most common faults
that exist in turbine generator system, i.e., bearing fault, coupling misalignment
and foundation are successfully identified regarding their dynamic parameters. The
advantage of present identification methodology is in twofold: first, it requires mea-
surement at practically measurable and accessible locations, second, any number
of bearings, couplings, foundations, and rotor could be incorporated in the system.
An identification algorithm is developed in the MATLABR2012b environment on
HP build CPU with 4GB RAM and core i7 processor. The developed methodology
is analyzed for the different level of measurement noise and modeling error in the
system and found to be robust. A different method was proposed and implemented
to improve the conditioning of the regression matrix, and it is observed that the
improvement in the condition number plays a vital role in the accuracy of estimated
parameters. Since the least squares fitting approach is speedy due to its mathemati-
cal simplicity, it could be used to validate the proposedmethodology in a laboratory
test rig and an actual machine along with this, some other identification technique
such as Kalman Filter could be used as an identification algorithm to estimate the
parameters, in future.

Manuscript received by Editorial Board, November 20, 2017;
final version, February 14, 2018.
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