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00-645 Warszawa, Poland

Dedicated to Professor Andrzej Burghardt on the occasion of his 90th birthday

A microstructural model of Red Blood Cell (RBC) behaviour was proposed. The erythrocyte is treated
as a viscoelastic object, which is denoted by a network of virtual particles connected by elastic springs
and dampers (Kelvin-Voigt model). The RBC is submerged in plasma modelled by lattice Boltzmann
fluid. Fluid – structure interactions are taken into account. The simulations of RBC behaviour during
flow in a microchannel and wall impact were performed. The results of RBC deformation during the
flow are in good agreement with experimental data. The calculations of erythrocyte disaggregation
from the capillary surface show the impact of RBC structure stiffness on the process.
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1. INTRODUCTION

Blood is a suspension of morphotic elements (erythrocytes, leukocytes and thrombocytes) in plasma. Mor-
photic elements constitute 40–45% of blood volume. The volume fraction of morphotic elements is called
haematocrit and strongly influences the rheological properties of blood. Plasma is water with dissolved or-
ganic and inorganic compounds such as proteins, mainly albumin, globulin and fibrinogen and ions (Na+,
K+, Cl−). Plasma protects environmental stability of blood – pH, temperature, chemical composition and
suspensions of cells.

Simulation of the blood flow may play an important role in diagnostic of several diseases caused by patho-
logical changes in the mechanical properties of cells. In malaria or cancer, despite different source of the
diseases, the changing of mechanical behaviour of living cells is reported. The disease progression is
often accompanied by the changes in the mechanical properties of cells, such as a major change of elas-
ticity modulus. Healthy Red Blood Cells (RBCs) are able to deform and be transported in tiny capillaries
to deliver oxygen to various parts of the body but RBCs infected by protozoan Plasmodium falciparum
loose these abilities, became stiff (Suresh, 2006) and may block the capillaries and disrupt the blood flow,
leading to death.

The number of RBCs in 1 mm3 of blood is typically in the range of 4.5–5.9 million. Erythrocytes do
not have the nucleus or cytoplasmic cellular organelles. RBCs are shaped as biconcave discs which leads
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to higher specific surface area in comparison with the sphere and allows to intensify gas exchange. The
typical value of erythrocyte diameter is 6.9–9.0 µm, with the mean value of 7.5 µm. The surface of the
RBC is equal to 120 µm2. Philips et al. (2012) have estimated erythrocyte’s mass and volume as 27.2 pg
and 100.7 µm3, respectively. This gives specific surface of the RBC equal approximately to 1.19 m2/m3,
while for the sphere of similar diameter it is around 0.85.

Due to the high value of hematocrit, blood should be considered as a multiphase system. In the last decade
interesting alternative approaches to solving Navier-Stokes equation were developed for multiphase flows.
Lattice-Boltzmann method will be discussed later in more detail. Other models may be based on the
formalism of thermodynamically compatible hyperbolic systems (Romenski et al., 2007; Zeidan, 2011;
Zeidan, 2016; Zeidan et al., 2007). This approach recently became a base to formulate a model of viscous
fluids, which can be also used for irreversible deformation of solids (Peshkov and Romenski, 2016).

In this study erythrocyte is treated as a viscoelastic object, which is denoted by a network of virtual
particles connected by elastic springs and dampers. The modelled RBC is submerged in plasma modelled
by the lattice Boltzmann fluid, so fluid – structure interactions are incorporated. The aim of this work was
to check how elasticity of RBCs could influence their flow and interactions with blood capillary walls.

2. ERYTHROCYTE STRUCTURE, SHAPE AND PROPERTIES

Erythrocyte cell membrane consist of three layers:
• glycocalyx, the outer layer, built mainly of carbohydrates (galactose, glucose, glucosamine) connected

with proteins and lipids of the outer lipid layer. Sugar residues are used to recognise the cells.
• lipid bilayer – forms the main layer structure. It makes up to 60% of cell membrane mass. Its thickness

is approximately 7.5 nm. It contains, aside of lipids, many proteins. The mass ratio of lipids to proteins
is close to one, but the number of lipid cells is much higher.

• protein scaffold (cytoskeleton) – is a mechanical support for a lipid membrane.

The key layer influencing the geometry of RBS is the lipid one. It can be described by ’liquid mosaic’
model proposed by Singer and Nicolson (1972). According to this theory, biological membrane is built of
a liquid bilayer of lipids and freely immersed proteins. Stiffness of such structure depends on temperature
and the length of carbohydrate chains forming lipids. Additionally, the membrane has an asymmetrical
structure and dynamic character. Lipids and proteins can perform rotational or translational moves or jump
between the outer and inner layer (flip-flop movement). The bilayer structure of membrane is determined
by amphipathic properties of lipids (the molecules have a hydrophilic head and a hydrophobic chain).
Suspended in water environment, they spontaneously form a bilayer or spherical micelles.

There are three main groups of membrane lipids:
• phospholipids – the main lipid component of membranes. According to the group attached to phospho-

ric acid they are divided into amino phospholipids (e.g. phosphatidylserine, phosphatidylethanolamine)
present mainly on the inner side of membrane and cholino ones (e.g. lecithin, sphingomyelin) occur-
ring on the outer side.

• cholesterol – is distributed evenly in both layers. It stabilises the structure of membrane and keeps the
liquidity of the membrane constant in lower temperatures.

• glycolipids – built of lipid molecule (sphingosine with a fatty acid) with sugar one (e.g. galactose)
attached. They occur in the outer part exclusively.

The ratio between the lipid components in membrane influences the shape and mechanical properties
of erythrocytes. The change of cholesterol to phospholipids or sphingomyelin to lecithin ratios leads to
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stomatocyte (cells take an elongated shape) or echinocyte (cells have many, evenly distributed projections).
The stiffness of the bilayer changes. A stiffer cell loses the ability to multiple strains occurring during the
flow through blood capillaries. The main reason of deterioration of elastic properties is overabundance of
cholesterol, sphingomyelin or phosphatidylethanolamine in the membrane structure.

The cytoskeleton is built of fibrous structured proteins forming the net. The thickness of the net is in the
range of 40–90 nm (Lux, 2016). One of its tasks is keeping the ability to deform. Main proteins forming
the scaffold are spectrins (α and β ), ankyrin, actin and 4.1R. The key component is a spectrin forming
elastic chains connected in a hexagonal net (containing other proteins in nodes). The deficiency of spectrin
chains may lead to abnormalities in the net structure and loss of biconcave disc shape of the RBC (Ciana
et al., 2011).

Human erythrocytes, free of the stresses, have the regular shape of biconcave discs. Their volume and
shape depends on the osmotic pressure between the cell interior and the solution. In hypotonic solutions
water is transported inside the cell and the RBC takes the spherical shape. Too high inflow of water may
cause the burst of the cell membrane. In hypertonic environment the cell loses water.

The first geometrical model of mammal erythrocytes was proposed by Funaki (1955). The main assump-
tions were:

• RBC during the flow through both, large blood vessels and capillaries must minimise the drag;
• RBC have the negative charge and thus can be considered as a charged body;
• the shape of RBC should maximise gas exchange.

As a result the description of erythrocyte contour by Cassini oval was proposed. In polar coordinate system
it takes the form:

r4 +2a2r2 cosθ +a4 = c4 (1)

while in Cartesian one: (
x2 + y2 +a2)2 −4a2x2 = c4 (2)

where a, c are oval parameters, that can be related to sections p, q and L lengths (Fig. 1) by

L = 2c (3)

pq = a2 (4)

Fig. 1. Erythrocyte described by Cassini equation

The empirical equation of RBC shape was derived by Fung and Evans (1972):
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where h is erythrocyte’s thickness as a function radius, r, R0 is RBC’s radius and Ci’s are constant depend-
ing on solution osmolarity. For isotonic solution R0 = 3.91 µm, C0 = 0.207161 µm, C2 = 2.002558 µm
and C4 =−1.122762 µm.

Another approach was presented by Deuling and Helfrich (1976). The authors have used the theory of
elastic curves with foundations in description of liquid crystals, where bending energy per unit surface of
membrane, gc, is given by:

gc = 0.5kc (c1 + c2 − c0)
2 +0.5kcc1c2 (6)

Deuling and Helfrich (1976) have reported very good agreement of their model with the experimental
findings of Fung and Evans (1972).

The crucial property in oxygen delivery to the cells are biomechanical properties of the erythrocytes,
namely the ability for reversible deformation and to squeeze through blood capillaries with a size smaller
than theirs. RBC’s pliability depends on:

• ratio of surface to volume;
• viscosity of cytoplasm filling the cell interior;
• viscoelastic properties of cell membrane.

From the classical mechanics theory point of view, RBCs are viscoelastic biomaterials in which the prop-
erties of elastic (accumulating energy) and viscous (dissipating energy) body occur simultaneously.

As cytoplasm is a water solution, one can assume that a cell membrane is responsible for elastic properties
of the erythrocyte. By assumption that, regardless of the multilayer and inhomogeneous structure, mem-
brane can be treated as a continuous medium, pliability of membrane can be described by three modules
(Fig. 2):

• area expansion modulus;
• shear modulus;
• bending modulus.

a) b) c)

Fig. 2. Schematic presentation of deformations described by: a) area expansion modulus,
b) shear modulus and c) bending modulus

The area expansion modulus, K, describes accumulation of energy during isotropic extension or squeezing
a two-dimensional membrane.

Tt = K
∆A
A0

(7)

The value of area expansion modulus was estimated for the lipid bilayer by Rawicz et al. (2000) as equal to
300 µN/m. For the whole membrane the values depend on the experimental technique. Evans (1983) has
used a micropipette aspiration technique (Evans and La Celle, 1975) and reported a value area expansion
modulus ranging from 300–500 µN/m, while Gov et al. (2003) and Betz et al. (2009) using dynamic
membrane fluctuations method estimated this modulus to be equal 10–100 µN/m. The value of the area
expansion modulus decreases with increasing temperature (Waugh and Evans, 1979).
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Shear modulus, µ , represents the accumulation of energy during the membrane deformation with constant
surface:

Ts =
µ
2
(
λ 2 −λ−2) (8)

where Ts and λ are the shear force and the ratio of length after deformation to initial one, respectively
(Evans, 1973).

The part of membrane responsible for non-zero value of shear modulus is the protein scaffold (µ = 0 for
liquid lipid layer). The value of shear modulus measured by the micropipette aspiration technique was
reported to be from the range of 6–10 µN/m. The value of modulus decreases with increasing temperature
(Waugh and Evans, 1979).

Bending modulus, B, describes the energy necessary for deformation of the membrane from its basic
curvature to the shape of other curvatures.

M = B(C1 +C2 −C3) (9)

Bending modulus value depends on the chemical composition of lipid bilayer. Evans (1983) has estimated
it, using the micropipette aspiration technique, to be equal 1.8× 10−9 Nm. Nash and Meiselman (1985)
have reported that there is no important effect of temperature on the bending modulus value.

The viscous properties of erythrocyte result from the presence of cytosol and cell membrane properties.
Cytosol is a suspension composed of water (around 50%), organic (proteins, lipids, carbohydrates) and
inorganic (mainly salts) compounds. Park et al. (2011) have estimated the value of cytosol viscosity to be
equal approximately to 5 mPa·s. The increase of osmolarity results in the increase of cytosol viscosity.
However, Evans and Hochmuth (1976) have proved that, during the return to the original shape after
the deformation, the viscosity of cell membrane plays a crucial role in energy dissipation. To estimate
the surface viscosity of membrane, the diffusivity of proteins anchored in the membrane may be used
(Saffmann and Delbruck, 1975). The results were in the range of 0.5−14×10−9 Ns/m.

3. ERYTHROCYTE MECHANICAL MODELS

The mechanical models of RBCs may be divided into two main groups, continuous and structural ones.
In continuous approach cell membrane is discretised using shell or membrane type elements for finite
element (Chee et al., 2008; Dao et al., 2003; Mills et al., 2004; Yoon and You, 2016) or boundary element
analysis (Pozrikidis, 2003). Strain energy density functions have been adopted for modelling elasticity of
erythrocyte membrane (Cordasco and Bagchi, 2014; Peng et al., 2011; Tan et al., 2010). The orders of
functions which characterise the elastic behaviour of cell membrane range from the first to third order.
High order models such as the Yeoh model and the reduced polynomial model have rarely been employed
(Chee et al., 2008; Mills et al., 2004).

A particle-based method in general refers to the class of mesh-free methods that employ a set of finite
number of discrete particles to represent the state of a flow system and to record the evolution of the
system (Liu and Liu, 2003). Compared with mesh-based methods, it is founded on a set of arbitrarily
distributed particles and thus is attractive in dealing with complex structures. The particle-based methods
may be divided into two main groups: Dissipative Particle Dynamics (mesoscopic), Smoothed Particle
Dynamics (macroscopic).

Dissipative Particle Dynamics (DPD) was originally designed as a mesoscopic stochastic simulation tech-
nique by Hoogerbrugge and Koelman (1992). In RBC modelling, different DPD particles are employed to
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distinguish different components in the computational domain. All these particles move in accordance with
the Newton’s second law of motion (Ye et al., 2014). Currently, there are two types of widely-used RBC
models, shell-based and spring-based membrane models (Fedosov et al., 2010; Li et al., 2005; Pozrikidis,
2001). The former shell-based model assumes the RBC membrane as a highly deformable shell without
thickness, while the latter spring-based model treats the RBC membrane as a triangular network connected
by elastic or viscoelastic springs.

Smoothed Particle Hydrodynamics (SPH) is a macroscopic particle-based method proposed by Gingold
and Monaghan (1977) and Lucy (1977). SPH starts with the Navier–Stokes equations, employs a con-
tinuous Lagrangian interpolation using a kernel function (delta sequence) to discretise the whole com-
putational domain into a set of particles (Violeau, 2012). Each particle has a spatial distance, called the
smoothing length, over which its physical properties are given by the kernel function. SPH particle dis-
cretisation for a RBC also leads to different types of particles to distinguish different components in com-
putational domain, in the same manner as in the DPD method. All particles move according to Newton’s
second law (Hosseini and Feng, 2009). SPH forces result directly from discretising the Navier–Stokes
equations (assuming a Newtonian fluid), and hence it has specific physical parameters like viscosity with
clear physical scales. DPD forces are arbitrarily chosen conservative, dissipative and random forces. In
SPH, the physical field quantities (like density, and velocity) are obtained directly after each solution time
step; in DPD, a further average needs to be processed to obtain filed quantities.

4. SPRING-BASED MODEL

In this study we propose a two-dimensional structural model of RBC. The erythrocyte contour is described
by 20 particles and cytosol by additional 3 (Fig. 3). The initial position of membrane particles is described
by Fung-Evans equation (Eq. (5)) with constants for isotonic solution.

Fig. 3. Scheme of RBC geometry model

The interactions between particles are described by viscoelastic Voigt-Kelvin model. The Voigt-Kelvin
model consists of a spring and a damper connected in parallel (Fig. 4). The deformation of the system, ε
is equal to the deformations of each element:

ε = εs = εd (10)

The total stress, σ , is a sum of stresses on both elements

σ = σs +σd (11)
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Thus, the relation between stress and deformation has the form:

σ = ksε(t)+η
dε(t)

dt
(12)

where η is dynamic viscosity.

Fig. 4. The Kelving-Voigt body model

By applying constant stress, σ0, one can obtain the creeping function:

ε(t) =
σ0

ks

[
1− exp

(
−ks

η
t
)]

(13)

The specific quantity resulting from material properties is relaxation time, τ , expressed as viscosity and
Young’s modulus ratio.

τ =
η
ks

(14)

It can be interpreted as a time after which the stress decreases e times.

Converting Eq. (5) for a two-dimensional case one can write:

FK−V,i(t) = Ksε(t)+Av
dε(t)

dt
(15)

The time derivative of linear deformation is approximated by finite difference

dε
dt

=
ε(t +∆t)− ε(t)

∆t
(16)

The RBC is affected by fluid through drag force. Its value may be computed from modified Stokes law, as
one can assume the laminar flow in blood capillaries. Membrane model consist of N particles connected.
We assume that fluid interacts only with surface particles.

FD,i = 3πηdp (Ui −u f ) (17)

The value of dp was estimated by dividing the RBC contour length by the number of particles forming the
membrane.

To model Plasma Flow the lattice-Boltzmann algorithm was used. It allows to apply easily non-steady state
boundary conditions and update the system geometry related to displacement and deformation
of RBCs.

Complete information on the statistical description of a gas at, or near, thermal equilibrium is assumed to
be contained in the one-particle phase-space distribution function f (x, t,Γ) for the atomic constituents of
the system. The variables x and t are the space and time coordinates of the atoms and Γ stands for all other
phase-space coordinates e.g. momentum, momentum flux.

For the isolated gas with collisions the Liouville theorem is modified to the form:

∂ f t +u∇ f = Ω( f ) (18)

where, Ω( f ) is a function that models the rate of changes of distribution function.
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The form of Ω( f ) was proposed by Boltzmann (1995). Since collisions preserve conservation laws, the
equations describing the macro dynamics of the system can be derived by integration of Boltzmann equa-
tion. To build the cellular-space picture with dynamics of the collective motion predicted by Navier-Stokes
equation, a lattice on which particles move, collision rules and other restrictions characteristic for a cho-
sen model should be defined. In this work a 2-dimensional lattice with 9 allowed directions of movement,
usually referred as D2Q9 was used (Fig. 5).

Fig. 5. D2Q9 lattice geometry

The evolution of the system is described by the expression:

f (x+ ei, t +1)− f (x, t) = Ωi( f ) (19)

The outcome of collision can be approximated by assuming that the momentum of interacting particles
will be redistributed at some constant rate toward an equilibrium distribution f eq

i (Qian et al., 1992). This
simplification is called single-time-relaxation approximation and can be expressed by the equation:

Ωi =
1
τ
[ fieq (x, t)− fi (x, t)] (20)

In the single-time-relaxation approximation, the momentum distribution at each lattice site is forced to-
ward the equilibrium distribution at each time step. In the absence of external forces, the equilibrium
distribution of a state with zero net momentum is just equal to momentum in each direction. The rate of
change toward equilibrium is the inverse of relaxation time, and is chosen to produce the desired value of
fluid viscosity.

η =
cs2

2
(2τ −1) (21)

The equilibrium distribution f eq
i is given as follows:

f eq
i = ραi

(
1+

eiu
cs2

+
1
2

(
eiu
cs2

)2

− u2

cs2

)
(22)

where ai are the model dependent constants. The values of parameters in Eq. (22) depend on the lattice
geometry.
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5. RESULTS AND DISCUSSION

To verify the model, the effect of constants As and Kv (Eq. (15)) on the RBC behaviour during the wall
impact with velocity of 1000 µm/s, which is a typical value of flow velocity in blood capillaries, was stud-
ied. As a parameter to measure the deformation the ratio of maximal, Pmax, and minimal, Pmin, erythorcyte
surface to the stationary one, P0, may be applied:

Emax =
Pmax

P0
(23)

Emin =
Pmin

P0
(24)

The results are presented in Figs. 6–8.

Fig. 6. Picture of RBC during wall impaction, Ks = 2.5×105 N, Av =10 Ns

The obtained results confirm the model assumptions. The increase of damper viscosity or elasticity pa-
rameter leads to increase of RBC stiffness. The deformation tends to unity. Emin was assumed to be the
key parameter as it describes cell compression ability.

The next step was to choose the parameters Ks and Av that reproduce the behaviour of the real RBC.
Tsukada et. al (2001) have experimentally studied erythrocyte deformation in a microchannel of 9.3 µm
diameter flow.

For the fluid flow the plug flow with assumed mean velocity and equilibrium distribution was applied
at the channel inlet. At the outlet and channel walls no-stress and bounce-back conditions, respectively,
were applied The boundary conditions on the surface of a moving object (RBC) were applied according
to the method proposed by Lallemand and Luo (2003), which was a simple extension of the treatment for
a curved boundary proposed by Bouzidi et al. (2002), which is a combination of standard bounce-back
condition on the solid level and interpolations.

When a grid point moves out of the non-fluid region into the fluid region to become a fluid node, one must
specify some number of unknown distribution functions on this node. We use a second order extrapolation
to compute the unknown distribution functions along the direction of a chosen discrete velocity ei which
maximises the quantity of nei, where n is the out-normal vector of the wall at the point, through which the
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Fig. 7. Emax and Emin as a function of parameter Av for the constant value of parameter
Ks = 5×105 N

Fig. 8. Emax and Emin as a function of parameter Ks for the constant value of parameter
Av = 100 Ns

node moves to the fluid region. The deformation was described by deformation index (Fig. 9):

DI =
L
D

(25)

At this point, we have assumed that model constants for membrane and cytosol particles are different,
since they better reproduce the real biomechanics of RBC. By trial and error method the values of model
constants were estimated for the membrane: Ks,mem = 1.58× 106 N, Av,mem = 52.6 Ns and for cytosol:
Ks,cyt = 2.38×105 N, Av,cyt = 11.3 Ns.
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Fig. 9. Definition of Deformation Index (DI)

The picture of erythrocyte flowing with the velocity of 0.1 mm/s and comparison of experimental and
theoretical data are presented in Figs. 10 and 11, respectively.

Fig. 10. Picture of RBC during the flow through microchannel

The last investigated problem was detachment of RBC from the solid wall. The erythrocyte was initially
attached to the capillary with the distance between surfaces equal to L0 = 10 nm (Fig. 12).

The detachment was assumed to occur when the length of the connection exceeded Lgr = 20 nm (Yoon and
You, 2016). The calculations of fluid velocity at which the detachment occurred, up,max, were performed
for 7 cases of RBC parameters, obtained to reproduce behaviour during flow through a capillary, 3 stiffened
and 3 elastised (Table 1).
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Fig. 11. Deformation Index as a function fluid flow velocity

Fig. 12. Scheme of RBC detachment investigation

Table 1. Mechanical properties and velocity at which detachment occured

RBC Ks,mem [N] Ks,cyt [N] Av,mem [Ns] Av,cyt [Ns] up,max [µm/s]

+10% 1.74×106 1.58×105 57.9 12.4 44.5

+5% 1.66×106 2.50×105 55.2 11.9 43.4

0 1.58×106 2.38×105 52.6 11.3 42.3

−5% 1.50×106 2.26×105 50.0 10.7 41.3

−10% 1.42×106 2.14×105 47.3 10.2 40.2

elastic 106 105 25 5 38.5

stiff 2×106 5×105 100 50 47.8
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6. CONCLUSIONS

The results show that a simple structural, two-parameter model can satisfactorily describe the behaviour
of RBCs. The results confirm that stiff erythrocytes have lower for susceptibility disaggregation from
capillary surface. This behaviour is not caused by increase of contact area, but by the momentum transfer
in the RBC structure. The next step of the research will be focused on predicting the rheological properties
of blood directly from plasma – RBC interactions.

This work was supported by National Science Centre, Poland under Grant number UMO-2015/19/B/ST8/
00599.
This work is a part of biomechanical research initiated at Faculty of Chemical and Process Engineering,
Warsaw University of Technology by Professor Leon Gradoń.

SYMBOLS

a oval parameter, m
A membrane surface, m2

A0 initial membrane surface, m2

Av viscous parameter, Ns
B bending modulus, Nm
c oval parameter, m
c0 spontaneous curvature of membrane, m−1

ci principle curvatures of membrane, m−1

Ci constants, –
cs dimensionless sound speed, –
dp particle diameter, m
DI deformation index, –
e lattice spacing, –
Emax ratio of maximal erythrocyte surface to stationary one, –
Emin ratio of minimal erythrocyte surface to stationary one, –
f distribution function, –
f eq equilibrium distribution function, –
FD drag force, N
FK−V Kelvin-Voigt force, N
gc bending energy per unit surface of membrane, Pa/m2

h erythrocyte thickness, m
K area expansion modulus, N/m
Ks stiffness parameter, N
kc Young’s modulus, Pa
kc Young’s modulus for Gauss curvature, Pa
L characteristic length, m
L0 initial length of erythrocyte-wall connection, m
Lgr breakup length of erythrocyte-wall connection, m
M bending moment, Nm
p characteristic length, m
P0 stationary erythrocyte surface, m2

Pmax maximal erythrocyte surface, m2

Pmin minimal erythrocyte surface, m2
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q characteristic length, m
r radius, m
R0 erythrocyte radius, m
t time, s
t dimensionless time, –
Ts shear force, N/m
Tt extending force, N/m
U particle velocity, m/s
u dimensionless velocity, –
up,max breakup velocity of erythrocyte-wall connection, m/s
u f fluid velocity, m/s
x dimensionless position, –

Subscripts

cyt cytosol
mem membrane

Greek

αi constants, –
ε deformation, –
εd damper deformation, –
εs spring deformation, –
λ ratio of length after deformation to initial one, –
µ shear modulus, N/m
η viscosity, Pas
η dimensionless viscosity, –
ρ dimensionless density, –
σ stress, Pa
σd damper stress, Pa
σs spring stress, Pa
τ relaxation time, s
τ dimensionless relaxation time, –
Ω collision operator, –
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