

INVESTIGATION OF NEW POTENTIAL AMINE ACTIVATORS FOR CARBON DIOXIDE ABSORPTION IN CARBONATE SOLUTIONS

Grzegorz Bińczak^{1,2}, Ryszard Pohorecki³, Władysław Moniuk^{3*}, Cezary Możeński1

¹ New Chemical Syntheses Institute, Tysiąclecia PP 13a, 24-110 Puławy, Poland

² Grupa Azoty Nitrogen Works PUŁAWY S.A., Tysiąclecia PP 13, 24-110 Puławy, Poland

³ Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland

Dedicated to Professor Andrzej Burghardt on the occasion of his 90th birthday

Results of an extensive research program, aimed at finding new, more efficient activators of carbon dioxide absorption into aqueous carbonate/bicarbonate solutions are presented. Both single amines (2-ethyl-aminoethanol, 2-isopropyl aminoethanol, piperazine, tetraethylenepentamine, N-ethyl-piperazine and glicyne) and amine mixtures have been investigated. Absorption rate measurements were conducted in a laminar-jet absorber. Reaction rate constants for the particular activators were determined.Mixtures of aliphatic amines with cyclic amines, as well as mixtures of cyclic amines with cyclic amines were found to exhibit synergetic effect. Such amine mixtures might be used as new promoters for CO₂ absorption in carbonate solutions in the modified Benfield process.

Keywords: carbon dioxide, absorption, potassium carbonates, amine activators, laminar jet

1. INTRODUCTION

The absorption processes used to remove CO_2 from synthesis gases are very important for the industry. They employ both physical (e.g. methanol, propylene carbonate, 2-methyl-2-pyrrolidone) and chemical (alkanolamine aqueous solutions and sodium/potassium carbonate aqueous solutions containing amine activators) solvents. The main criteria of solvent selection are absorption capacity, reaction kinetics, volatility, stability, corrosion resistance as well as energy consumption in the solvent regeneration process.

The majority of ammonia plants have adopted the method developed by Benson and Field (so called Benfield process), which employs aqueous potassium carbonate solution with the addition of diethanolamine (DEA) as an activator. The absorption process is conducted at temperature of 80-100 °C and pressure of 25-30 bars, whereas the regeneration of the solution (CO₂ desorption) proceeds at 110-125 °C and pressure of 1.2-1.8 bars. The modernization changes introduced in the Benfield process since its first application in the 1950s, concerned both the technology and modifications of the amine promoter.

^{*} Corresponding author, e-mail: Wladyslaw.Moniuk@pw.edu.pl

G. Bińczak, R. Pohorecki, W. Moniuk, C. Mozeński, Chem. Process Eng., 2018, 39 (4), 353–365

Finding of a new, more efficient amine promoter has been the subject of numerous research papers (Behr et al., 2011; Bińczak et al., 2016; Cullinane and Rochelle, 2004; Kim et al., 2012; Pohorecki et al., 1988; Rakimpour and Kashkooli, 2004; Shen et al., 2013; Thee et al., 2012; Tseng et al., 1988; Yih and Sun, 1987).

This was also the aim of an extensive research program, carried out in our laboratory. The program consisted of three parts:

- a screening step aimed to determine the kinetics of the reaction of carbon dioxide with six amines at ambient conditions;
- similar investigation carried out using amine mixtures;
- comparative measurements of selected amine mixtures carried out at industrial conditions.

The present paper reports the results of the first two parts of the program.

2. MEASUREMENTS

The measurements of the CO_2 absorption rate were carried out using a laminar jet absorber. This technique was chosen because of its simplicity and exactness – it allows precise determination of the absorption rate, interfacial area and liquid mass transfer coefficient, which enables an exact calculation of the reaction rate constants and comparison with the literature data.

However, this technique involves temperatures and carbonate solution concentrations lower than those employed industrially, therefore results had to be further checked in industrial conditions.

The experimental apparatus is shown in Fig. 1. A detailed description of the apparatus and the measuring technique can be found elsewhere (Pohorecki and Moniuk, 1988; Pohorecki and Możeński, 1998). The ex-

Fig. 1. Scheme of the experimental apparatus; 1 – laminar jet absorber, 2 – liquid tank, 3 – thermostat, 4 – rotameter, 5 – overflow, 6 – receiving tank, 7 – clamp, 8 – balloon with CO₂, 9 – soap-film meter, 10 – manometer, 11 – perspex chamber, 12, 13 – thermometers

Investigation of new potential amine activators for carbon dioxide absorption ...

periments were carried out at normal pressure in the temperature range of 20–40 °C. Each measurement was repeated at least three times, with average error amounting to 3%. The concentration of aqueous carbonate solution was 8 wt.% and carbonization ratio was 0.4. The dimensions of the laminar jet of liquid were as follows: diameter $8.48 \cdot 10^{-4} - 1.53 \cdot 10^{-3}$ m and length 0.036–0.044 m. The range of the liquid flow rate was $1.03 \cdot 10^{-6} - 1.94 \cdot 10^{-6}$ m³/s. Pure CO₂ was used as the gas phase, so the gas-side mass transfer resistance could be neglected.

As activators the following amine compounds were used: 2-ethylaminoethanol (2-EAE), piperazine (Pz), N-ethyl-piperazine (EtPz), tetraethylenepentamine (TEPA), 2-isopropylaminoethanol (2-IAE) and glicyne (GLY). All chemicals used were analytical grade. The amine mixtures used in the measurements are presented in Table 1, where DEA means diethanolamine; 2-MAE – 2 methylaminoethanol; TETA – thriethylenetetramine (other activators – as above).

Amine mixtures	concentration of activators (% wt)
	1% TETA + 2% DEA
Mixtures of the aliphatic amines	1% TEPA + 2% DEA
	1% 2-EAE + 2% DEA
	1% 2-MAE + 2% DEA
	1% Pz + 2% DEA
	1% Pz + 2% DEA
	1% Pz + 2% 2-EAE
Mixtures of the aliphatic and cyclic amines	1% Pz + 2% TEPA
	1% Pz + 1% DEA + 1% 2-MAE
	1% EtPz + 2% 2-MAE
	1% EtPz + 2% TETA
Mixtures of the cyclic amines	1% Pz + 1% EtPz

Table 1. Amine mixtures used as activators in the potassium carbonate solutions

In the experiments the amount of the gas absorbed was measured using a soap-film meter 9 and the amount of the liquid supplied to the jet nozzle was measured by a rotameter 4.

3. METHOD OF CALCULATION

The chemistry of the process investigated has been described in detail in our earlier paper (Bińczak et al., 2016).

In the absorption process with a reversible chemical reaction, the absorption rate R can be expressed as:

$$R = N_A a = k_L^* \left(C_{Ai} - C_{Ar} \right) a \tag{1}$$

Making use of the experimental values of the absorption rate R, the values of the mass transfer coefficient with chemical reaction, k_L^* were calculated from Eq. (1). A detailed description of the method of calculations has been given in our earlier paper (Bińczak et al., 2016).

www.czasopisma.pan.pl PAN www.journals.pan.pl

G. Bińczak, R. Pohorecki, W. Moniuk, C. Mozeński, Chem. Process Eng., 2018, 39 (4), 353–365

For a fast, pseudo-first order chemical reaction, the coefficient of mass transfer with chemical reaction is equal

$$k_L^* = \sqrt{D_A k_1} \tag{2}$$

The reaction rate constant k_1 can be expressed as in Eq. (3):

$$k_{1} = k_{\rm H_{2}O} + k_{\rm OH^{-}} \left[OH^{-} \right] + k_{Am} [Am]$$
(3)

The methods of calculations of reaction rate constant k_{H_2O} and product $k_{OH^-}[OH^-]$ are presented in our earlier work (Bińczak et al., 2016).

As the first two terms on the right hand side of Eq. (3) are very small compared to the third term (the value of the first term $k_{\text{H}_2\text{O}}$ is in the range of 0.017–0.068 s⁻¹, the value of the second term k_{OH^-} [OH⁻] lies in the range of 0.5–3.20 s⁻¹), the values of k_1 are practically equal to k_{Am} [Am], which allows easy calculation of k_{Am} .

For a mixture of amines reacting in parallel Eq. (3) becomes

$$k_{1} = k_{\rm H_{2}O} + k_{\rm OH^{-}} \left[OH^{-} \right] + \sum k_{Am} [Am]$$
(4)

and for the same reasons as above, for two amines we have

$$k_1 \cong \sum k_{Am}[Am] = k_{Am_1}[Am_1] + k_{Am_2}[Am_2]$$
 (5)

4. RESULTS AND DISCUSSION

4.1. Single amines

On the basis of the conducted kinetic measurements, k_1 and k_{Am} constants for CO₂ reaction in aqueous potassium carbonate – bicarbonate solutions containing an addition of the investigated amine activators, have been determined. In Table 2 are presented average values of the pseudo-first order k_1 reaction rate constants in the temperature range of 20, 30 and 40 °C for the activators studied. As mentioned earlier, the first two terms on the right-hand side of Eq. (3) are very small, these values are practically equal to k_{Am} [Am].

Table 2. Average	values of k_1 cc	onstants for different	concentrations of	f the activators	investigated at 2	0, 30, 40 °C
U	1				0	/ /

	k ₁ [1/s]								
Studied system	Activator concentration [% w/w]								
	1			2		3			
		Temperature [°C]							
	20	30	40	20	30	40	20	30	40
$CO_2 - TEPA$	304	487	792	603	974	1581	964	1588	2427
$CO_2 - Pz$	1227	1989	2975	2686	4154	5997	4297	6435	9344
$CO_2 - EtPz$	888	1553	2788	1778	3060	5396	2873	5391	8601
$CO_2 - 2$ -IAE	243	356	529	491	706	1051	773	1124	1575
$CO_2 - GLY$	268	371	599	534	747	1189	841	1207	1766
CO ₂ – 2-EAE	434	683	1137	797	1371	2337	1281	2048	3481

Figure 2 illustrates the Arrhenius plots for the first order reaction rate constant k_1 (in form of $\log k_1 = f\left(\frac{1}{T}\right)$), obtained for the CO₂ – TEPA system (the R^2 symbol in Figure 2 is the determination coefficient). As shown in Table 2 and Fig. 2, the pseudo-first order k_1 rate constants depend on the studied amine activator concentrations, as expected.

Fig. 2. Arrhenius plot for CO₂ – TEPA system

In Table 3, Arrhenius type equations for k_{Am} reaction rate constants are presented. The values of k_{Am} at 298 K for each of the investigated systems are presented in the same table.

Table 3	Values	ofk	at 298	K for	investigated	systems
Table 5.	values	$OI \kappa_{Am}$	at 290	K 101	mvesugateu	systems

Investigated system	$k_{Am} \text{ [m}^3/\text{kmol}\cdot\text{s]}$ at 298 K	Arrhenius equation
$CO_2 - 2$ -EAE	4470	$\log k_{Am} = 10.362 - \frac{2000.8}{T}$
$CO_2 - Pz$	13180	$\log k_{Am} = 9.6818 - \frac{1658.1}{T}$
$CO_2 - EtPz$	12590	$\log k_{Am} = 11.686 - \frac{2260.3}{T}$
$CO_2 - TEPA$	6760	$\log k_{Am} = 10.265 - \frac{1916.4}{T}$
CO ₂ – 2-IAE	2880	$\log k_{Am} = 8.5366 - \frac{1514.1}{T}$
$CO_2 - GLY$	2240	$\log k_{Am} = 8.243 - \frac{1571.5}{T}$

Figure 3 shows the $\log k_{Am} = f\left(\frac{1}{T}\right)$ relation for the CO₂ – TEPA system. As expected, the values of the second order reaction rate constant k_{Am} for the system mentioned above, do not, in practice, depend on concentration of the amine compound. Similar correlations have been obtained for other investigated amine activators.

Fig. 3. Arrhenius plot for the CO_2 – TEPA system

As can be seen from the results presented, the optimal activators, which exhibit the greatest values of the k_1 and k_{Am} constants for the K₂CO₃/KHCO₃ solution are: piperazine, ethyl-piperazine, tetraethylenepentamine and 2-ethyl-aminoethanol.

It is difficult to compare k_{Am} constant values, determined for the activators studied, to the literature data due to substantial differences in the results presented by various authors (Table 4). The comparison of the values presented in Tables 3 and 4 shows that k_{Am} constant values determined in the present paper, lie in the range of the quoted literature data.

T [K]	Activator concentration [kmol/m ³]	<i>k_{Am}</i> [m ³ /kmol·s]	Source		
1	2	3	4		
	CO ₂ – 2-I				
303	0.02–0.08	3750	Rayer et al., 2011		
298	1	14450	Sharma, 1965		
298	0.9–2.5	4170	Mimura et al., 1998		
298	$0.05 – 0.2^{*)}$	3560	Pohorecki et al., 1988		
$CO_2 - Pz$ (aqueous amine solutions)					
298	0.2–0.6	53700	Bischnoi and Rochelle, 2010		
298	0.02–0.1	16700	Rayer et al., 2011		
298	0.01–0.05	27178	Ume et al., 2013		
298	0.45–1.5	24300	Conway et al., 2013		
303	0.025–0.1	25800	Bindwall et al., 2011		
298	0.6–1.5	70000	Derks et al., 2006		
303	0.1–0.4	66450	Bougie et al., 2009		
298	0.23–0.92	21270	Sun et al., 2005		
	CO ₂ – E	tPz (aqueous amine solutions)			
298	0.02–0.08	7070	Rayer et al., 2011		

Table 4. Literature values of CO2 reaction rate constants in aqueous solutions of amines

www.czasopisma.pan.pl PAN www.journals.pan.pl

Investigation of new potential amine activators for carbon dioxide absorption ...

Table 4 [cont.]

1	2	3	4			
$CO_2 - GLY$ (aqueous amine solutions)						
298	1*)	14690	Thee et al., 2012			
298	0.06	7990	Penny and Ritter, 1983			
291	0.05-02	5930	Jensen et al., 1952			
283	0.2	1650	Caplow, 1968			
	CO ₂ – D	EA (aqueous amine solutions)				
298	1	1240	Sharma, 1965			
298	0–1.922	1340	Sada et al., 1976			
298	0–0.88	1400	Donaldson and Nguyen, 1980			
298	0–4	655	Blanc and Demarais, 1981			
298	0.021	110	Barth et al., 1986			
298	0–2.88	1410	Laddha and Danckwerts, 198			
298	0–2.38	7300	Blauwhoff et. al., 1983			
298	0–4.358	3240	Versteg and Oyevaar, 1989			
291	0–0.3	5900	Jensen et al., 1954			
298	$0.1–0.4^{*)}$	4200	Bińczak et al., 2016			
	CO ₂ – 2-N	MAE (aqueous amine solutions)				
298	1	31620	Sharma, 1965			
298	0.9–2.5	7940	Mimura et al., 1998			
298	0.36	28100	Leder, 1971			
298	$0.1-0.4^{*)}$	6610	Bińczak et al., 2016			
	$CO_2 - TH$	ETA (aqueous amine solutions)				
298	0.22–0.44	1240	Marc and Bouallou, 2009			
298	298 0.07–0.2*) 8320 Bińczak et al., 2016					
*) amine concentration in aqueous K ₂ CO ₃ /KHCO ₃ solution						

No papers presenting k_{Am} values for TEPA, 2-IAE and CHA have been found in the literature, although the above-mentioned amine compounds have become the subject of research papers on carbon dioxide absorption (Cwalina and Kubicki, 1977; Singh et al., 2009; Yamada et al., 2013).

4.2. Amine mixtures

An exemplary Arrhenius plot for the mixture of 1% wt. TEPA and 2% wt. DEA is shown in Fig. 4 (the R^2 symbol is the determination coefficient).

Similar plots have been obtained for all the mixtures under investigation. In the next step a comparison was made of the k_1 constants determined for single amines and those obtained for the amine mixtures (of course considering the concentration of the amines in question).

The comparison revealed an interesting phenomenon: while the k_1 values determined for mixtures of the aliphatic amines were practically equal to the sum of values obtained for single amines (Fig. 5 shows an example of such comparison), similar comparison performed for mixtures of aliphatic and cyclic amines G. Bińczak, R. Pohorecki, W. Moniuk, C. Mozeński, Chem. Process Eng., 2018, 39 (4), 353–365

Fig. 4. Arrhenius plot for the mixture of two amines (1% wt. TEPA and 2% wt. DEA)

gave significant differences of the compared values. The values obtained experimentally for such mixtures were significantly higher than those calculated from the data for single amines. This is illustrated by Fig. 6. A similar synergetic effect is exhibited by two cyclic amine mixtures (Fig. 7). A comparison of the experimental values for all the mixtures investigated with those calculated from the values for single amines is shown in Table 5.

Fig. 5. Comparison of the experimental and calculated k_1 values (1% wt. MAE and 2% wt. DEA)

Fig. 6. Comparison of the experimental and calculated k_1 values (1% wt. Pz and 2% wt. TEPA)

PAN Investigation of new potential amine activators for carbon dioxide absorption...

www.czasopisma.pan.pl

www.journals.pan.pl

Fig. 7. Comparison of the experimental and calculated k_1 values (1% Pz + 1% EtPz)

			$k_1 [s^{-1}]$	
Amine mixtures	$k_1 [s^{-1}]$	Temperature [°C]		
		20	30	40
1% TETA $\pm 2\%$ DEA	$k_{1_{1\% \text{ TETA}}} + k_{1_{2\% \text{ DEA}}}$	1207	1720	2416
1% 121A $\pm 2\%$ DEA	k1 _(1% TETA+2% DEA)	1278	1764	2444
1% TEPA $\pm 2\%$ DEA	$k_{1_{1\% \text{ TEPA}}} + k_{1_{2\% \text{ DEA}}}$	1034	1481	2044
	$k_{1_{(1\% \text{ TEPA}+2\% \text{ DEA})}}$	1035	1492	2079
$1\% 2-E\Delta E \pm 2\% DE\Delta$	$k_{1_{1\% 2-\text{EAE}}} + k_{1_{2\% \text{DEA}}}$	1164	1677	2389
	k1 _(1% 2-EAE+2% DEA)	1206	1716	2376
$1\% 2-MAE \pm 2\% DEA$	$k_{1_{1\%\ 2-MAE}} + k_{1_{2\%\ DEA}}$	1398	2242	4010
1% 2-MAE + 2% DEA	k1 _(1% 2-MAE+2% DEA)	1430	2341	4004
$1\% P_7 + 2\% DF \Delta$	$k_{1_{1\% Pz}} + k_{1_{2\% DEA}}$	1957	2983	4227
	k1 _(1% Pz+2% DEA)	3329	5168	7834
$1\% P_7 + 2\% 2 F_{\Delta}F$	$k_{1_{1\% Pz}} + k_{1_{2\% 2-EAE}}$	2024	3360	5312
	$k_{1_{(1\%\ Pz+2\%\ 2-EAE})}$	4432	7809	13895
$1\% P_7 \pm 2\% TEP_4$	$k_{1_{1\% Pz}} + k_{1_{2\% TEPA}}$	1830	2963	4556
	k1 _(1% Pz+2% TEPA)	4451	7792	12438
$1\% P_7 + 1\% D\Delta E + 1\% 2-M\Delta E$	$k_{1_{1\% Pz}} + k_{1_{1\% DEA}} + k_{1_{1\% 2-MAE}}$	2274	3735	6364
	k _{1(1% Pz+1% DEA+1% 2-MAE)}	4104	7111	11155
1% FtPz + 2% 2-MAF	$k_{1_{1\% \text{ EtPz}}} + k_{1_{2\% 2-\text{MAE}}}$	2239	4057	8307
1/0 Eu 2 + 270 2-WAE	k1 _(1% EtPz+2% 2-MAE)	2745	5131	10182
1% EtPz + 2% TETA	$k_{1_{1\% \text{ EtPz}}} + k_{1_{2\% \text{ TETA}}}$	1875	3006	5129
	k1 _(1% EtPz+2% TETA)	3799	5990	10197
1% Pz + 1% FtPz	$k_{1_{1\% Pz}} + k_{1_{1\% EtPz}}$	2115	3542	5763
$1/0.1 \Sigma \mp 1/0$ Ltf Z	$k_{1_{(1\% Pz+1\% EtPz)}}$	3787	6008	9328

Table 5. Comparison of the experimental and calculated k_1 values for all investigated mixtures

The degree of the synergetic effect is summarized in Table 6. As it follows from this table the degree of this effect expressed by the ratio $\frac{k_1(i+j)}{k_{1i}+k_{1j}}$ may reach even up to 2.7 for the studied mixtures of aliphatic and cyclic amines and temperatures.

 Table 6. The degree of the synergetic effect

Amine mixtures	$\frac{k_1(i+j)}{k_{1i}+k_{1j}}$					
	Т	Temperature [°C]				
	20	30	40			
1%wt. Pz + 2%wt. DEA	1.70	1.73	1.85			
1%wt. Pz + 2%wt. 2-EAE	2.19	2.32	2.62			
1%wt. Pz + 2%wt. TEPA	2.43	2.63	2.73			
1%wt. Pz + 1%wt. DEA + 1%wt. 2-MAE	1.80	1.90	1.75			
1%wt. EtPz + 2%wt. 2-MAE	1.23	1.26	1.23			
1%wt. EtPz + 2%wt. TETA	2.03	1.99	1.99			
1%wt. Pz + $1%$ wt. EtPz	1.79	1.70	1.62			

5. CONCLUSIONS

Mixtures of aliphatic amines with cyclic amines, as well as mixtures of cyclic amines with cyclic amines, as opposed to mixtures of aliphatic amines with aliphatic amines, exhibit higher values of the kinetic constants for the reaction with CO_2 in carbonate solutions than the values calculated from the data obtained for single amines. The degree of this synergetic effect is shown in Table 6.

A similar phenomenon has been observed by Dubois and Thomas (2010). The reason of such synergetic effect is not clear, but obviously its existence suggests a reaction mechanism more complicated than simple parallel reactions.

This synergetic effect could be used to select new activators for CO₂ absorption into aqueous carbonate solutions.

However, the laminar jet measurements have been performed at ambient conditions and using carbonate solutions of much lower concentration than that used in industry. To exploit this synergetic effect in industrial practice, one has to confirm its existence in industrial conditions. The next stage of our research program was devoted to such confirmation. The results obtained shall be reported in a later paper.

The authors wish to express their gratitude to Ms. Karolina Kula for her help in the preparation of the manuscript.

SYMBOLS

Am amine

- *a* interfacial area, m^2
- C_A molar concentration of component A, kmol/m³
- D_A diffusivity of the absorbed gas in the liquid phase, m²/s
- k_1 pseudo-first order reaction rate constant, 1/s
- k_{Am} reaction rate constant, m³/(kmol·s)

www.journals.pan.pl

Investigation of new potential amine activators for carbon dioxide absorption...

PAN

- k_L^* liquid-film mass transfer coefficient with chemical reaction, m/s
- N_A molar flux of the absorbed components, kmol/m²·s
- *R* rate of absorption, kmol/s
- [] molar concentration, kmol/m³

Subscripts

- *A* absorbed gas
- *i* interface
- *r* chemical equilibrium

REFERENCES

- Amann J.-M.G., Bouallou C., 2009. A New aqueous solvent based on a blend of N-methyldiethanolamine and triethanolamine for CO₂ recovery in post-combustion: Kinetics study. *Energy Procedia*, 1, 901–908. DOI: 10.1016/ j.egypro.2009.01.120.
- Barth D., Tondre C., Delpuch J.J., 1986. Stopped-flow determination of carbon dioxide diethanolamine reaction mechanism. Kinetics of carbamate formation. *Int. J. Chem. Kin.*, 15, 1147–1160. DOI: 10.1002/kin.550151104.
- Behr P., Maun A., Deutgen K., Tunnat A., Oeljeklaus G., Görner K., 2011. Kinetic study on promoted potassium carbonate solutions for CO₂ capture from flue gas. *Energy Procedia*, 4, 85–92. DOI: 10.1016/j.egypro.2011. 01.027.
- Bińczak G., Moniuk W., Mordecka Z., Możeński C., 2016. Investigations of carbon dioxide absorption into aqueous potassium carbonate solutions containing primary and secondary alkanolamines. *Chem. Process. Eng.*, 37, 83–95. DOI: 10.1515/cpe-2016-0009.
- Bindwal A.B., Vaidya P.D., Kenig E.Y., 2011. Kinetics of carbon dioxide removal by aqueous diamines. *Chem. Eng. J.*, 169, 144–150. DOI: 10.1016/j.cej.2011.02.074.
- Bischnoi S., Rochelle G.T., 2000. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. *Chem. Eng. Sci.*, 55, 5531–5543. DOI: 10.1016/S0009-2509(00)00182-2.
- Blanc C., Demarais G., 1981. Vitesses de la réaction du CO₂ avec la diethanolamine. *Entropie*, 102, 53–61.
- Blauwhoff P.M.M., Versteeg G.F., van Swaaij W.P.M., 1983. A study on the reaction between CO₂ and alkanolamines in aqueous solutions. *Chem. Eng. Sci.*, 38, 1411–1429. DOI: 10.1016/0009-2509(83)80077-3.
- Bougie F., Lauzo-Gauthier J., Iliuta M.C., 2009. Acceleration of the reaction of carbon dioxide into aqueous 2amino-2-hydroxymethyl-1,3-propanediol solutions by piperazine addition. *Chem. Eng. Sci.*, 64, 2011–2019. DOI: 10.1016/j.ces.2009.01.030.
- Caplow M.J., 1968. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc., 90, 6795–6803. DOI: 10.1021/ja01026a041.
- Conway W., Fernandes D., Beyad Y., Burns R., Lawrance G., Puxty G., Maeder M., 2013. Reactions of CO₂ with aqueous piperazine solutions: Formation and decomposition of mono- and dicarbamic AIDS/carbamates of piperazine at 25°C. *J. Phys. Chem. A.*, 117, 806–813. DOI: 10.1021/jp310560b.
- Cullinane J.T., Rochelle G.T., 2004. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. *Chem. Eng. Sci.*, 59, 3619–3630. DOI: 10.1016/j.ces.2004.03.029.
- Cwalina J., Kubicki J., 1977. Effect of selected activators on carbon dioxide absorption in potassium carbonate solution. *Applied Chemistry*, 11, 47–57 (in Polish).
- Derks P.W.J., Kleingeld T., van Aken C., Hogendoorn J.A., Versteeg G.F., 2006. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. *Chem. Eng. Sci.*, 61, 6837–6854. DOI: 10.1016/j.ces.2006.07.009.
- Donaldson T.L., Nguyen Y.N., 1980. Carbon dioxide reaction and transport in aqueous amine membranes. *Ind. Eng. Chem. Fundam.*, 19, 260–266. DOI: 10.1021/i160075a005.

G. Bińczak, R. Pohorecki, W. Moniuk, C. Mozeński, Chem. Process Eng., 2018, 39 (4), 353–365

PAN www.journals.pan.pl

- Dubois L., Thomas D., 2010. Modelling and experimental study of carbon dioxide absorption into aqueous aminebased solvents, In: de Haan A.B., Kooijman H. and Górak A. (Eds.), *Conference Proceedings. Distillation, Absorption*, 377–382. 12-15.09.2010, Eindhoven, The Netherlands.
- Jensen A., Jensen J.B., Faurholt C., 1952. Studies on carbamates: VI. The carbamate of glycine. *Acta Chem. Scand.*, 6, 395–397. DOI: 10.3891/acta.chem.scand.06-0395.
- Jensen M.B., Jørgensen B., Faurholt C., 1954. Reactions between carbon dioxide and aminoalcohols. I. Monoethanoloamine and diethanolamine. *Acta Chem. Scand.*, 8, 1137–1140. DOI: 10.3891/acta.chem.scand.08-1137.
- Kim Y.E., Choi J.H., Nam S.C., Yoon Y.I., 2012. CO₂ absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. *J. Ind. Eng. Chem.*, 18, 105–110. DOI: 10.1016/j.jiec.2011.11.078.
- Laddha S.S., Danckwerts P.V., 1981. Reaction of CO₂ with ethanolamines: Kinetics from gas absorption. *Chem. Eng. Sci.*, 36, 479–482. DOI: 10.1016/0009-2509(81)80135-2.
- Leder E., 1971. The absorption of CO₂ into chemically reactive solutions at high temperatures. *Chem. Eng. Sci.*, 26, 1381–1390. DOI: 10.1016/0009-2509(71)80058-1.
- Mimura T., Suda T., Iwaki I., Honda A., Kumazawa H., 1998. Kinetics of reaction between carbon dioxide and sterically hindered amines for carbon dioxide recovery from power plant flue gases. *Chem. Eng. Comm.*, 170, 1:245–260. DOI: 10.1080/00986449808912745.
- Penny D.E., Ritter T.J., 1983. Kinetic study of the reaction between carbon dioxide and primary amines. J. Chem. Soc. Faraday Trans., 79, 2103–2109. DOI: 10.1039/F19837902103.
- Pohorecki R., Moniuk W., 1988. Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solution. *Chem. Eng. Sci.*, 43, 1677–1684. DOI: 10.1016/0009-2509(88)85159-5.
- Pohorecki R., Możeński C., 1998. A new absorbent for carbon dioxide and hydrogen sulphide absorption process. *Chem. Eng. Proc.*, 37, 69–78. DOI: 10.1016/S0255-2701(97)00038-X.
- Pohorecki R., Trong X.D., Moniuk W., 1988. Investigation of carbon dioxide absorption in aqueous solutions of potassium carbonates containing ethylaminoethanoles. II. Kinetic relation for 2-ethylaminoethanol. *Chem. Process Eng.*, 9, 667–680 (in Polish).
- Rahimpour M.R., Kashkooli A.Z., 2004. Enhanced carbon dioxide removal by promoted hot potassium carbonate in a split-flow absorber. *Chem. Eng. Proc.*, 43, 857–865. DOI: 10.1016/S0255-2701(03)00106-5.
- Rayer A.V., Sumon K.Z., Henni A., Tontiwachwuthikul P., 2011. Kinetics of the reaction of carbon dioxide with cyclic amines using the stopped-flow technique. *Energy Procedia*, 4, 140–147. DOI: 10.1016/j.egypro.2011. 01.034.
- Sada E., Kumazawa H., Butt M.A., 1976. Gas absorption with consecutive chemical reaction: Absorption of carbon dioxide into aqueous amine solutions. *Can. J. Chem. Eng.*, 31, 421–424. DOI: 10.1002/cjce.5450540507.
- Sharma M.M., 1965. Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines. *Trans. Faraday Soc.*, 61, 681–688. DOI: 10.1039/TF9656100681.
- Shen S., Feng X., Zhao R., Ghosh U.K., Chen A., 2013. Kinetic study of carbon dioxide absorption with aqueous potassium carbonate promoted by arginine. *Chem. Eng. J.*, 222, 478–487. DOI: 10.1016/j.cej.2013.02.093.
- Singh P., Niederer J.P.M., Versteg G.F., 2009. Structure and activity relationships for amine-based CO₂ absorbents II. *Chem. Eng. Res. Des.*, 87, 135–144. DOI: 10.1016/j.cherd.2008.07.014.
- Sun W.C., Yong C.B., Li M.H., 2005. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. *Chem. Eng. Sci.*, 60, 503–516. DOI: 10.1016/j.ces.2004.08.012.
- Thee H., Suryaputradinata Y.A., Mumford K.A., Smith K.H., da Silva G., Kentish S.E., Stevens G.W., 2012. A kinetic and process modelling study of CO₂ capture with MEA-promoted potassium carbonate solutions. *Chem. Eng. J.*, 210, 271–279. DOI: 10.1016/j.cej.2012.08.092.
- Tseng P.C., Ho W.S., Savage D.W., 1988. Carbon dioxide absorption into promoted carbonate solutions. *AIChE Journal*, 34, 922–931. DOI: 10.1002/aic.690340604.

Investigation of new potential amine activators for carbon dioxide absorption...

www.journals.pan.pl

PAN

- Ume C.S., Alper E., Gordesli F.P., 2013. Kinetics of carbon dioxide reaction with aqueous mixture of piperazine and 2-amino-2-ethyl-1,3-propanediol. *Int. J. Chem. Kin.*, 45, 161–167. DOI: 10.1002/kin.20752.
- Versteeg G.F., Oyevaar M.H., 1989. The reaction between CO₂ and diethanolamine at 298K. *Chem. Eng. Sci.*, 44, 1264-1268. DOI: 10.1016/0009-2509(89)87026-5.
- Yamada H., Chowdhury F.A., Goto K., Higashii T., 2013. CO₂ solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. *Int. J. Greenhouse Gas Control*, 17, 99–105. DOI: 10.1016/j.ijggc.2013.03.027.
- Yih S.-M., Sun C.-C., 1987. Simultaneous absorption of hydrogen sulphide and carbon dioxide into potassium carbonate solution with or without amine promotors. *Chem. Eng. J.*, 34, 65–72. DOI: 10.1016/0300-9467(87) 87002-8.

Received 20 September 2018 Received in revised form 08 October 2018 Accepted 08 October 2018