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Abstract 

A new soft-fault diagnosis approach for analog circuits with parameter tolerance is proposed in this paper. The 
approach uses the fuzzy nonlinear programming (FNLP) concept to diagnose an analog circuit under test
quantitatively. Node-voltage incremental equations, as constraints of FNLP equation, are built based on the 
sensitivity analysis. Through evaluating the parameters deviations from the solution of the FNLP equation, it 
enables us to state whether the actual parameters are within tolerance ranges or some components are faulty.
Examples illustrate the proposed approach and show its effectiveness. 
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I. Introduction 
 

Since the 1970’s, with the rapid development of electric industry, testing and diagnosis 
play an important role for the development of the industry. It is estimated that testing can 
account for up to 30% of the total manufacturing cost [1] in 1993. In [2], it is reported that 
95% of the test cost in mixed-signal circuits is expended in testing the analog parts. 
Therefore, the research on the diagnosis of analogue circuit has become one of hot topics. 
Many methods have been proposed for fault diagnosis in analogue circuits [3−16]. Among all 
those methods, linear programming is one of them. Reference [5] uses a linear programming 
technique to isolate the elements most likely to be faulty under the limited definition of an 
error parameter for every network element. Reference [6] utilizes the l1 norm to isolate 
possible faulty elements and the linear programming as a solving tool. In [7], a new method 
based on linear programming is described for calculating the ranges of values in the diagnosis 
equations. Two related algorithms [8−9] employ mini-max linear programming techniques to 
generate DC and AC tests to detect structural faults. Reference [10] extends the method in [6] 
to nonlinear circuits. In reference [11], through checking the existence of a feasible solution 
of linear programming equation, a soft-fault is located in a linear and nonlinear circuit. During 
the diagnosis process in [11], each element’s parameter changing range should be changed in 
order to decide whether the element is faulty, which make the time spent in diagnosing a fault 
very long. The method is a qualitative method. Reference [12] combines a fuzzy identification 
methodology with some ideas from linear programming theory. In reference [13], a node-
voltage sensitivity sequence dictionary is established to detect any fault of any component 
using one fault characteristic code. Reference [14] gives an approach of combined sensitivity 
analysis and fuzzy analysis to diagnose a soft fault in linear analog circuits. However, the 
definition of fault set and membership function is open to suspicion. In [15], a new dictionary 
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approach using the slope of voltage increment in two nodes as fault character for the 
diagnosis of both soft-fault and hard-fault is introduced. Based on basic features calculated 
from a circuit under the test's time domain response to a voltage step, reference [16] gives a 
testing process for analog circuit using artificial neural network. 

Although many methods using single linear programming [5−15] for fault diagnosis have 
been developed, those methods are mostly focused on the qualitative diagnosis of the circuit. 
In other words, all those methods in [5−15] are to locate the position of the faulty element in 
the circuit and they are unable to estimate the parameter perturbation of the faulty element. 
How to diagnose a circuit quantitatively is still a subject in the field of analog circuit 
diagnosis.  

In this paper, an approach of soft-fault diagnosis is proposed using the fuzzy nonlinear 
programming (FNLP) concept [17−19]. The work of both identification of faulty elements 
and evaluation of their parameters deviations are performed together here. The objective of 
this FNLP equation is to find the minimum value of each parameter from zero which satisfies 
all those constraints and the constraints equations are actually the voltage increment equations 
in all test nodes and the changing range of each element.  

The paper is organized as follows. Section 2 presents the composition of constraint 
equations based on node-voltage sensitivity analysis in fault diagnosis. The diagnosis 
methodology based on FNLP is provided in Section 3. In Section 4, experimental results are 
given to show the effectiveness of the proposed method and a comparison with other methods. 
Conclusions are summarized in Section 5. 
 
2. Node-voltage sensitivity analysis 
 

In this section, the fundamental theory of node-voltage sensitivity analysis to compose the 
constraint equations in our diagnosis approach is discussed. 

A circuit under test (CUT) with n elements will be represented by the node equations with 
the node-voltage vector [ ]1 2, , ,

T

me e e e= ⋯ , where m is the number of nodes accessible for 
measurement. 

 
2.1. The definition of node-voltage sensitivity 
 

In [13], the partial derivative of a node voltage with respect to a component parameter is 
called the node-voltage sensitivity, which is denoted as: 
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where ej is the node voltage of node j and Yi is i-th  component’s parameter. Generally, Yi are 
G, R, C, L or the control parameters for dependent sources.  
 
2.2. Node-voltage increment equations for DC circuits 
 

Suppose that the admittance of the element connected to nodes k and q has been perturbed 
from Ykq to Ykq + ∆Ykq. This causes the node-voltage perturbations from e to e + ∆e. In [11], it 
is shown that the deviation of the j-th node voltage ∆ej  is given by: 
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where, zjk, zjq (j = 1, ⋅⋅⋅, m) are elements of the node impedance matrix and: 
 

kk kq qk qqz z z zδ = − − + . 
 

If 0kqY∆ → , from (2), it can be led to:   
 

                                                    ( )( ).j
jk jq k q

kq

e
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                                                (3) 

Likewise, it is achieved that: 

                                                      ( )( ) ,j
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where K is the gain of the controlled source (VCCS, etc.) connected to nodes k and q, with 
controlling variable vrs between nodes r and s. 

Hence, the variation ∆ej caused by perturbation from the nominal values of all the 
parameters is approximately given by: 
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where the summation includes all elements in the circuit. 
Therefore, the Eq. (6) can be obtained: 
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where uj represents the voltage increment in j-th measured node and pi is a variation of i-th 
element parameter whereas aij is a constant sensitivity coefficient from the i-th element to j-th 
measured node.  
 
2.3. Node-voltage increment equations for AC circuits 
 

In linear AC circuits, the quantities uj and the AC sensitivity coefficients aij are generally 
complex. Thus, Eq. (6) will be decomposed into two parts (real part and imaginary part) so 
that all coefficients and quantities are real. 
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Performing decomposition of (7) for each measurement node, the equation groups to any 
measurement node are obtained as follows: 

 

                                                         
1 1

2 2

1

1

n

j ij i
i

n

j ij i
i

u a p

u a p

=

=

=

=

∑

∑
    ( )1,2, , ,j m= ⋯                                     (8) 

 

where: ( )
1

Rej ju e= ∆  , ( )
2

Imj ju g e= ∆  , ( )
1

Reij ija a= , ( )
2

Imij ija g a=  .                                

 
 



 
W. Zhang et al.: SOFT-FAULT DIAGNOSIS OF ANALOG CIRCUIT WITH TOLERANCE USING FNLP 

3. Fault detection 
 

In this section, the building of a FNLP equation for diagnosis of the CUT is discussed. 
 

3.1. Diagnosis equation 
 

Because the perturbation of node-voltage in any test node from its nominal value is a linear 
function of those error parameters, the diagnostic problem can be considered as finding the 
result of an underdetermined system with linear equations on the condition that all the 
solution will have the minimum number of error parameters different from zero. 

So, diagnostic equations can be formulated according to (6), expressing node-voltage 
perturbations uj in terms of parameter variations pi. However, because the unrestricted 
variable pi is allowed to take on positive or negative values, it must be substituted by using the 
substitution i i ip p p+ −= − , where ip+ , ip− are both non-negative. Intuitively if the variable pi is 
positive then ip+ is positive and ip−  is zero, while if the variable pi is negative thenip+  is zero 
and ip−  is positive. If pi is zero, then ip+ , ip− obviously are both zero.  

So, 

                           
1 1

n n

j ij i ij i
i i

u a p a p+ −

= =
= −∑ ∑ ,( )1,2, , ,j m= ⋯                                             (9) 

where 0ip+ ≥ , 0ip− ≥ . 

Suppose there are k test nodes in CUT, an equation set can be built as in (10).  
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where: 

− 
T

ij n k
A a

×
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− [ ]1, ,
T
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− 1 , ,
T

nP p p+ + + =  ⋯ ; 

− 1 , ,
T

nP p p− − − =  ⋯ . 

Furthermore, a key question is to find a feasible solution to the above formulated problem. 
In reference [11], the linear-programming with phase 1 of the simplex method concept is used 
to answer the question. But in [11], the method requires the analysis of two circuits which 
differ in excitations one from another. For identification of a single faulty element in CUT, 
the tolerance limit of every element must be changed in turn and the diagnosis equation must 
be reformulated as well. When there are multi-faults in the CUT, the method in [11] becomes 
even more complicated because it needs to select a multi-element set from all candidate 
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elements, which is inconvenient for a large circuit. At the same time, the method just 
identifies the faulty elements qualitatively and cannot determine their parameter variations. In 
this paper, in order to overcome the questions mentioned above, the concept of FNLP is 
introduced to locate the faulty elements and identify their perturbed values. 

How to formulate the diagnosis problem as a standard mathematical programming is not 
always obvious. It is quite evident that unconstrained optimization formulation is not suitable 
since there is always a set of performance constraints and constraints on parameter size 
limitations. A single objective optimization formulation is very restrictive because only one 
objective is optimized at a time, and it has to be decided which objective to optimize. The 
nearest mathematical programming formulation to the diagnosis problem is the following:  
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P

P
P

+

−

 
=  
 

, A, b, P+ and P− are defined as in equation (11). In Eq. (12), fi(p) are 2n 

objective functions to be minimized;[ ]A A P b  − =⋮  are constraints to be satisfied; P is the 

vector of element parameters, and min maxP P P≤ ≤  are bounding conditions on the element 

parameters. 
The object function fi(p) represents the parameter variations of each element in CUT. In a 

non-faulty circuit with tolerance influence, all element parameter perturbations are small and 
they are below their tolerance range. From the definition of node-voltage sensitivity analysis 
in Section 2, the voltage value in tested nodes and element parameter perturbation are 
satisfying the constrained function. So the Eq. (12) can be built. 

For our purposes, the diagnosis of an analog circuit consists in assigning values to a set P 
of parameters so that the circuit meets objectives while satisfying a set of performance 
specifications.  

 
3.2. Fuzzy objectives 
 

In an industrial environment, during modeling the diagnosis problem as in (12), we force 
the tester to state his problem in precise mathematical terms rather than in terms of the real 
world which are often imprecise by nature. 

In fact, objectives are often better expressed in real-world terms than in precise numbers. 
Testers often use terms like minimize, small, very large, substantially higher than, etc., to 
state their diagnosed objectives. These terms have a fuzzy meaning and are difficult to express 
precisely by numbers. Fuzzy set theory makes it possible to quantify and manipulate such 
human statements [19]. 
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In the attempt to minimize a performance function fi(p), testers often stop the search 
procedure when fi(p) attains acceptable values, even before the strict minimum is reached. 
Additional searching may be very time-consuming with no significant improvement in the 
objective function. For this reason, we associate with each objective a function fi(p). In (12), a 
fuzzy set that formulates the fuzzy meaning of minimize (or maximize) and what precisely the 
tester wants to achieve.  

For each fuzzy objective fi(p), we define a membership function 
if

µ  which associates with 

each value fi(p) of the objective function a grade of membership 
if

µ  reflecting the degree of 

acceptability of that particular performance value. If 
if

D  is the interval of possible values of 

fi(p), 
if

µ  will be defined as follows: 
 

                                                            
[ ]
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        →
.                                            (13) 

 

if
µ is a real number in [0, 1] reflecting the degree of fulfillment of the fuzzy objective 

associated with the objective function if . ( ) 1
if

pµ =  means that the objective functionif  is 

fully satisfied, while ( ) 0
if

pµ = means that if  is not satisfied at all; this will occur when fi(p)  

takes an unacceptable value. An intermediate value will reflect the acceptability of that 
particular performance value. It is clear that the closer ( )

if
pµ  is to 1 the better  the solution. 

Let suppose that: 
− iU  − the maximum value of the i-th element’s parameter;  

− iL  − the minimum value of the i-th element’s parameter;  

− i i id U L= − the changing range of the i-th element’s parameter. 

For elements in CUT, the worst faults are open and short. If an element in CUT is open, 
parameter variationsip+  is +∞ . And if an element in CUT is shorted, parameter variations ip−  

is iY , where iY  is i-th  element’s nominal parameter. And, in the calculation process, 100 iY  is 

used to represent the “open” state of the element. So, to the i-th element in CUT, if the 
parameter of the element increases, the parameter variations 

i
p+  is defined in the range 

[ ]0,100 ,iY  which means that the maximum value Ui to 
i

p+  is defined as100 iY ; if the 

parameter of the element decreases, the parameter variations 
i

p−  will be in the range [ ]0, iY  

and the maximum value Ui to 
i

p−  is equal to the element’s nominal parameter. The minimum  

Li value of the i-th element, to both
i

p+ and
i

p− , are actually defined as 0.  

So, to every element in the CUT, a fuzzy membership function [20] could be defined as 

( ).i pµ  
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Obviously, when i ip U= ( ) 0i pµ = and when i ip L= ( ) 1i pµ = . An example of a 

membership function, for the fuzzy objective to minimize fi(p), is shown in Fig. 1. 
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Ui
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ip−

( )i ipµ
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Fig.1. Membership function for the fuzzy objective minimize. 
 
3.3. Building of FNLP equation 
 

After the objectives are fuzzyfied and after the corresponding membership functions are 
defined, the diagnosis problem in (12) becomes: 

 

Maximize  { }
1 2
, , ,

Mf f fµ µ µ⋯  

                                                          Subject to  
[ ]

min max

A A P b

P P P

  − =
≤ ≤
⋮

                                           (15) 

 

Therefore, to any solution of the formula (9), it is hoped that  ( )i pµ  achieves the 

maximum value or elements’ parameter perturbations are being minimum. So another 
variable λ  is introduced: 

 

                                                     Maximize  λ                              

                                                     Subject to  i i

i

U p

d
λ −≤                                                 (16) 

 

For this purpose, a FNLP equation, tending to satisfy the constraints, namely (9), with the 
minimum number differing from zero, is constructed. 

The FNLP equation can be formally stated as follows. 
 

                                                     Maximum  λ                                                              (17a) 
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− 1

T

nX p p+ + + =  ⋯ ; 

− 1

T

nX p p− − − =  ⋯ ; 

− 
X

X
X

+

−

 
=  
 

. 

Using the initial solution generated by the first-cut sizing procedure, the optimization 
problem (17) is solved with a feasible direction algorithm [21]. Note that the algorithm used 
is a local one. However, this is not a real limitation of the approach since the final fuzzy 
formulation obtained in (17) is independent from the resolution algorithm and therefore can 
be solved using a more powerful nonlinear programming algorithm, in addition designers 
often accept a local minimum. 

When there are faulty elements in CUT, the nonzero values of X are connected across their 
corresponding elements. From the output of the FNLP equation, we obtain the solving vector 
X, which represents the deviation in each element value. After checked against their assigned 
tolerance value, if the change exceeds the allowed tolerance, it can be declared that the 
element is faulty, otherwise it is un-faulty. So, in the method, not only the faulty elements are 
located but the parameter perturbed values are identified quantitatively. 

 
4. Examples of the new method for fault location and identification 
 

In this Section, two examples for both DC and AC circuit are given to illustrate the method 
for fault detection and identification of the faulty elements’ deviational values developed in 
Sections 2 and 3. Another example is given to show the method’s efficiency compared with 
other methods in reference [14]. All simulation work is finished in a PC with 1.73 GHz, 512 
MB and the PSPICE program is used as the circuit simulator and LINGO program is used to 
solve the FNLP equation. 

 
4.1. Diagnosis example for a DC circuit 
 

Let us consider the linear DC circuit depicted in Fig. 2 where we assume that nodes 1, 2 
and 3 are accessible for measurement. The nominal parameters are shown in Fig. 2. The 
tolerance of any element is 5% of its nominal value. Thus, to this circuit, a DC sensitivity 
coefficient matrix from each element in the CUT to test points is built as A. 

As mentioned in 3.1, based on the sensitivity coefficient matrix A and the measured 
voltage value in test nodes, a diagnosis equation as in Eq. (12) can be built. Then, from the 
nominal value of each element in circuit, the value of iU , iL  and id  can be decided. To this 

point, a FNLP equation as in Eq. (17) can be built. In the end, from the solution of the 
equation, whether the CUT is faulty and which element is faulty are both decided. 

 

                
 

 

                                       Fig. 2. A linear dc circuit. 
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The CUT is tested with bias point analysis by inducing faults to the circuit in the 

component value from the nominal value. Five cases are considered and the method for fault 
detection developed in Section 3 is applied every time.  

Case 1. The actual parameters are:  R1 = 1.03Ω,  R2 = 2Ω,  R3 = 1.96Ω,  R4 = 4Ω,  R5 = 1Ω, 
K = 0.48. All the parameters are within the tolerance ranges.  

Case 2. The actual parameters are:  R1= 1Ω,  R2 = 2Ω,  R3 = 2Ω,  R4 = 3.7Ω,  R5 = 1.05Ω,  
K = 0.5, the parameter R4 slightly exceeds the tolerance range and R5 is in the maximum value 
within its tolerance range whereas all the other elements are in their nominal values. 

Case 3. The actual parameters are:  R1 = 1.17Ω,  R2 = 2.08Ω,  R3 = 2Ω,  4R  = 3.85Ω,  R5 = 

0.98Ω, K = 0.51, the element R1 is faulty and all the other elements are within their tolerance 
ranges. 

Case 4. The actual parameters are:  R1 = 1.28Ω, R2 = 2.08Ω, R3 = 2.63Ω, R4 = 4Ω, R5 = 
0.98Ω, K = 0.51, the elements R1 and R3 are faulty and all the other elements are within their 
tolerance ranges. 

Case 5. The actual parameters are: R1 = 1.28Ω,  R2 = 2.08Ω,  R3 = 2.63Ω,  R4 = 5.26Ω,  R5 
= 0.98Ω, K = 0.51, the elements R1 , R3 and R4 are faulty and all the other elements are within 
their tolerance ranges. 

The global optimal solution of the FNLP equation is shown in Table 1. 
 

Table 1.The solution of the linear DC circuit. 

 Case1 Case2 Case3 Case4 Case5 
∆R1(Ω) -0.8905E-06 -0.3571E-06 0.1606 0.2732 0.2966 
∆R2(Ω) 0.7068E-01 0.0000 0.0000 0.0000 0.0000 
∆R3(Ω) 0.9251E-01 0.0000 0.4559E-01 0.7342 0.7237 
∆R4(Ω) 0.9074 E-01 -0.3156 0.0000 0.0000 0.7517 
∆R5(Ω) 0.6776E-01 0.5052E-01 0.0000 0.0000 0.0000 
∆K 0.0000 0.0000 0.3742E-01 0.2965E-01 0.0000 

 
Now we consider the calculated results and compare the value in the solution of the 

equation with their tolerance ranges. The results are as follows. 
Case1. All the values in the solution of the equation are within elements’ tolerance ranges. 

Hence, the circuit is non-faulty. 
Case 2. The value of ∆R4 is heavily beyond its tolerance range meanwhile the value of ∆R5 

slightly exceeds its tolerance range. Considering the influence of calculation error, it can be 
thought that R4 in the CUT is faulty. 

Case 3. The value of ∆R1 is beyond its tolerance range, which means R1 in the CUT is 
faulty. 

Case 4. The values of ∆R1 and ∆R3 are heavily beyond their tolerance ranges and the 
parameter ∆K slightly exceeds its tolerance range. As in Case 2, it can be thought that R1 and 
R3 in the CUT are faulty. 

Case 5. The values of ∆R1, ∆R3 and ∆R4 are heavily beyond their tolerance ranges, so R1 , 
R3 and R4in the CUT are faulty.  
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4.2. Diagnosis example for an AC circuit 
 

Let us consider a low-pass filter shown in Fig. 3. The nominal parameters are shown in 
Fig. 3 and the tolerance of any element is 5% of its nominal value. The circuit is driven by an 
AC voltage source Vs (t) = sin 6280t V. Below, we consider three cases and every time apply 
the method for fault detection developed in Section III. We assume that the output node of the 
CUT is accessible for measurement. 

 

 
 

Fig. 3. A low-pass filter. 
 

Case 1. The actual parameters are R1 = 1.005kΩ, R2 = 1.501kΩ, R3 = 14.998kΩ, C = 
0.0101 Fµ . All the parameters are within the tolerance ranges. 

Case 2. One element is faulty and the actual parameters are C =0.02 Fµ  whereas all the 
other elements are in their nominal values. 

Case 3. One element is faulty and the actual parameters are C =0.02 Fµ .The remaining 
parameters are as in Case 1. 

In Table 2, the global optimal solution of the FNLP equation is given. 
 

Table 2.The solution of the linear AC circuit. 
 

 Case1 Case2 Case3 
∆R1(Ω) 0.0000 0.0000 0.0000 
∆R2(Ω) 1.1826 0.0000 0.0000 
∆R3(Ω) 0.0000 0.6423E+03 0.6431E+03 
∆C(uF) 0.0000 0.9883E-02 0.9981E-02 

 
Having seen the calculated results from Table 2 and compared the values with their 

tolerance ranges, the diagnosis results are as follows. 
In Case 1, the calculated result states that all the values in the solution of the equation are 

within elements’ tolerance ranges. Hence, the circuit is non-faulty. 
In Case 2 and Case 3, only the value of ∆C is out of the tolerance range and other solutions 

are within their tolerance ranges. Hence, C in the CUT is faulty in the two cases. 
Seen from the diagnosed results shown in Table 2, the three per-set single faults in the 

circuit can be diagnosed correctly by using the methods proposed in the paper. The diagnosed 
results mean that the method proposed in the paper is still effective for an AC circuit. 
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4.3. Diagnosis example compared with other methods 
 

A method using fuzzy theory to diagnose soft fault of a CUT is introduced in reference 
[14], which defines a fault set and uses the membership function to locate a faulty element.  

However, in the reference [14], each fault state is defined as the faulty element is in a fixed 
value, which make its fault set infinite. And, according to reference [14], the twice or half of 
the nominal sensitivity ratio is chosen to calculate parameter k in the membership function, 
which cannot show clearly whether an element’s value is out of its tolerance range. Therefore, 
when a faulty element’s value changes heavily and in some condition, incorrect fault location 
is appearing unavoidably. 

In [14], the circuit shown in Fig. 4 is simulated to show the method’s effect. In order to 
show the effectiveness of the method introduced in this paper, some simulation is done using 
the two methods. 

 

 
 

            Fig.4. A linear resistive analog circuit  
 
In Fig. 4, R1 = R2 = R3 = R4 = 1Ω, R5 = 0.5Ω, Is = 1A. The tolerance limit is 10% and 

submits to the Gauss distribution. 
The diagnosed results using the method given in [14] and this paper for soft fault in R1 are 

given in Table 3. For each faulty state of R1, 20 Monte-Carlo analyses are done.  
 

Table 3. The diagnosis results of fault in R1 using method in reference [14] and this paper. 
 

 R1=0.5Ω R1=1Ω R1=2Ω R1=5Ω R1=100Ω 
Number Result1 Result2 Result1 Result2 Result1 Result2 Result1 Result2 Result1 Result2 
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Diagnosis 

Ratio 
100% 75% 0% 90% 75% 75% 65% 75% 25% 75% 

 

Result1 and Result2 represent the diagnosis results using the method in [14] and this paper. 
represents the increase of element parameter; represents the decrease of element parameter; / represents the 

relation of OR. 
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From the diagnosis results shown in Table 3, compared with the method in [14], it can be 
seen that when R1 is in each faulty state the method in this paper makes some progress in 
diagnosis. 
1. When R1=1Ω and the others element’s parameter is changing under their influence of 

tolerance randomly, the circuit is without fault. The method in [14] is unable to determine 
the real state of the circuit. To such state, the diagnosis ratio using the method in this 
paper can attain 90%. 

2. Seen from the property of the diagnosis results, the method in this paper is a quantitative 
diagnosis and it can roughly estimate the parameter perturbation. Meanwhile the method 
in [14] is a qualitative diagnosis and it only locates the faulty element.  

3. From the compared result in the example, when the parameter change is minor, the 
diagnosis ratio of method in [14] is better. When the parameter change is larger, the 
diagnosis ratio of method in [14] is descending heavily. But, to all those faults in the 
CUT, the diagnosis ratio of the method proposed in this paper is high and steady. 

4. In all misdiagnosis using the method in this paper, the non-faulty element is diagnosed 
wrongly as faulty one but the faulty element is not lost. But, in all misdiagnosis using the 
method given in [14], the non-faulty element is diagnosed wrongly as a faulty one and the 
faulty element is lost.  

 
5. Conclusions 
 

A new approach to locate single or multiple soft-faults in circuit is presented here. In this 
paper, a standard circuit sensitivity analysis at accessible nodes with nominal parameters is 
required to be performed to build the node-voltage incremental equation firstly. Then, a 
diagnostic strategy for analog circuits is formulated using FNLP with limited test nodes. The 
diagnosis result includes soft-fault identification of the circuits and the determination of the 
faulty elements.  

The method in this paper, with acceptance of FNLP for evaluating the parameters 
deviations, both identifies the faulty elements and determines their parameters. From the 
solution of the equation, it enables us to state whether the actual parameters are within 
tolerance ranges or some components are faulty quantitatively.  
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