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Abstract 

This paper presents a study of the Fourier transform method for parameter identification of a linear dynamic 
system in the frequency domain using fractional differential equations. Fundamental definitions of fractional 
differential equations are briefly outlined. The Fourier transform method of identification and their algorithms 
are generalized so that they include fractional derivatives and integrals. 
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1. Introduction 
 

Nowadays, the rapid development of computer science, signal processing, material science, 
etc., enables us to use more precise and more sophisticated methods for data processing that 
were too complicated to be conducted in the past. One of them is the “new” mathematical 
theory of the fractional calculus, which can be applied in identification of parameters in the 
system. 

The theorem of fractional calculus has been known since the 19th century. Until the 1970s 
and 1980s, fractional calculus was used exclusively in pure mathematics. Since that time, 
fractional calculus has been used in other applied technologies [1, 2]. 

In classical methods of identification, models based on elements of integer degree were 
used. This proves that there are systems and materials for which the traditional computational 
methods may not be adequate. In this case, methods of identification using extended 
fractional elements will be more precise and will reflect the real physical phenomena. A very 
good example of this is the piezoelectric PVDF [4] and modified bismuth oxides material [11, 
12] which shows the importance of applying fractional elements in the process of 
identification. Electrical properties of these materials such as impedance (real and imaginary 
part vs. ω [7] including the influence of temperature) are difficult to describe by traditional 
mathematical equations. It is clear from the research of the authors of these materials that 
applying fractional elements to describe their electrical structure and fractional calculus to 
identify their parameters gives much simpler mathematical dependencies. They describe 
occurring physical phenomena more accurately than classical methods. 

This is why the article below shows the generalized Fourier transform method, on the basis 
of which we carried out the process of parameter identification. 
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2. Background 
 

Below, fundamental definitions of fractional calculus are shown: fractional integral and 
fractional derivative of Riemann-Liouville [8] will be used (in the next section) in connection 
with the problem of identification. All the problems presented in this paper concern the 
interval of integration (0, t).  

 

Definition 1 of fractional integral 
Let Re z > 0 and let f(t) for t > 0 be the piecewise continuous on ( )' 0,J = ∞  and integrable 

on any finite subinterval [ )0, ,J = ∞  which can be defined as the fractional integral of f(t) of 

the order z: 

 1

0

1
( ) ( ) ( ) ,

( )

t
z zD f t t f d

z
ε ε ε− −= −

Γ ∫  (2.1) 

 

where Γ(z) is the gamma function [8]. It is easy to see that for z = n where n is the integer, we 
obtain an ordinary integral of f(t). 
 

Definition 2 of fractional derivative 
Let µ > 0 and m be the smallest integer that exceeds µ and 0.z m µ= − >  Then 

the fractional derivative of f(t) of the order µ for t > 0 is defined as: 
 

 ( ) [ ( )].m zD f t D D f tµ −=  (2.2) 
 

The formula (2.2) results from m-times differentiation of the formula (2.1), so as to obtain 
µ fractional order of derivative. If m = µ, then z = 0 and formula (2.2) becomes the simple 
identity. Instead, if µ is the positive integer which equals p, then the derivative ( )pD f t  can 

exist for t > 0, even if f(t) is not of class of functions described in Definition 1 [8]. 
For example: let 1( ) .f t t−=  In case of f(t) having p continuous derivative on J, this function 
satisfies definition 1. We can see this clearly from the expression given below: 

 

 

                                              1( ) ( ) ( ).
t

p p p

o

D f t D f d D f tε ε+= =∫                                          (2.3) 

 

 

Formula (2.2) agrees with the classical definition of the ordinary derivative [8]. 
 
3. Fourier transform method for identification 
 

In this paper an identification method of system parameters based on Fourier transform for 
any defined intervals and for all conditions in definitions 1 and 2 is considered. Let u(t) and 
y(t) be input and output signals of the system shown in Fig. 3.1. 

 

U(ω) Y(ω)G(ω)

 
 

Fig. 3.1. Ideal system with a frequency input ( )U ω  and frequency output( ).Y ω  

 
Their Fourier transforms are further denoted by U(ω) and Y(ω), respectively. Then 

( )
( )

( )

Y
G

U

ωω
ω

=  be the transfer function of this system and ˆ ( )G ω  be the model to be identified.  
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Therefore when approximation for empirical results of input and output is used, the 

transfer function of the linear system ˆ ( )G ω  with the known degrees of polynomials of the 
input and output functions can be obtained. In this way, the transfer function can contain an 
error. For a better presentation of the problem we disregard the noise in the system.  

The transfer function of the dynamic linear system could be expressed as [3, 10]:  
 

                                                0 1

0 1

( ) ( )ˆ ( ) ,
( ) ( )

m
m

n
n

b b j b j
G

a a j a j

ω ωω
ω ω

+ + +=
+ + +

…

…
                                      (3.1) 

where 0 1.a =  

The transfer function described by (3.1) consists of the polynomials of the integer degrees. 
Based on the above information, we can determine the equation (3.1) coefficients using 
minimization of mean square error between the approximating transfer function and the true 
transfer function of the system. 

 
4. Foundation of identification algorithm 
 

In this section the generalized classical Fourier method for fractional elements is presented. 
It applies to the systems which meet the requirements of definition 1 and 2 of fractional 
integral and fractional derivative, as well as the conditions of Fourier transform. 

Basic fractional systems, which can be easily applied to complicated systems, are under 
consideration. In order to analyze such systems, the fractional elements ( )j µω  were added 
into the transfer function (3.1) – in the numerator element ( )b j µ

µ ω  and (or) in 
the denominator ( ) ,v

va jω  where µ and v are known fractional values. Then the extended 
form of the transfer function is as follows: 

 

 0 1

0 1

( ) ( ) ( )ˆ ( ) .
( ) ( ) ( )

m
m

v n
v n

b b j b j b j
G

a a j a j a j

µ
µ ω ω ω

ω
ω ω ω

+ + + +
=

+ + + +
…

…
 (4.1) 

 

where 0 1a =  and fractional element is noted as: 
 

 ( ) cos sin cos sin .
2 2 2 2

j j jµ µ µ µπ π π πω ω µ µ ω µ ω µ = + = + 
 

 (4.2) 

 

It must be noted that the fractional degree of order µ of element ( )j µω  can be larger than v 
in the assumed interval. However, by using several transformations which were shown in [9, 
5], we can reduce the order of µ to the interval [ ]1,0 . In the model describing the system it is 
possible to use more fractional elements, although we solve the problem in the same way as 
with one fractional element.  

The expression (4.1) can otherwise be written as: 
 

 
( ) ( ) ( )ˆ ( ) ,
( ) ( ) ( )

j P
G

p jq Q

α ω β ω ωω
ω ω ω

+= =
+

 (4.3) 

 

while the function ( )G ω  of the process is described as: 
 

 ( ) ( ) ( ).G R jIω ω ω= +  (4.4) 
 

Comparing ( )G ω  and ˆ ( )G ω  for values of frequency ωi, the error in fitting ( )iε ω  is then: 
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 ˆ( ) ( ) ( ).i i iG Gε ω ω ω= −  (4.5) 
 

Substituting expression (4.3) for ̂( )G ω  in the above equation, the error ( )iε ω  can be 

expressed as:  

 
( )

( ) ( ) .
( )

i
i i

i

P
G

Q

ωε ω ω
ω

= −  (4.6) 

 

The next step is the minimization of the error which results from the difference between 
the real transfer function and the transfer function based on approximation (interpolation) in 
measuring the results. We could use the least square fit to obtain unknown coefficients of 

transfer function ˆ ( ),G ω  but the problem is difficult when solved in this manner [6, 10]. 
However it is also possible to use the least square method modified by Levy [6].  

Therefore, multiplying (4.6) by a polynomial Q(ω) we obtain: 
 

 ( ) ( ) ( ) ( ) ( ).i i i i iQ Q G Pω ε ω ω ω ω= −  (4.7) 
 

For simplicity, the left side of (4.7) could be written as the sum of elements A and B: 
 

 ( ) ( ) ( ) ( ).i i i iQ A jBω ε ω ω ω= +  (4.8) 
 

The magnitude of this equation is: 
 

 
2 2 2( ) ( ) ( ) ( ).i i i iQ A Bω ε ω ω ω= +  (4.9) 

 

The left side of (4.9) could be written as a mean square error [6]. Thus the error function E 
may be defined as the sum of the two elements A and B: 

 

 2 2

1

( ) ( ) .
k

i i
i

E A Bω ω
=

 = + ∑  (4.10) 

 

To simplify notations we skip iω  like this ˆ ˆ ( ),i iG G ω=  etc. 

Comparing the two equations (4.7) and (4.8) with regard to their real and imaginary parts, 
element A could be written as a real part, but element B as an imaginary part of the right-hand 
side of equation (4.7). 

For element A: 
 [ ]Re .i i i iA Q G P= −  (4.11) 
 

Replacing accordingly Q, G, P in (4.11), yields: 
 

 ( )( ) ( )Re .i i i i i i iA p jq R jI jα β= + + − +    (4.12) 

Thus: 
 .i i i i i iA p R q I α= − −  (4.13) 
 

Realizing the same for element Bi, we obtain: 
 

 .i i i i i iB q R p I β= + −  (4.14) 

 
Below, (4.13) and (4.14) are applied to (4.10) to yield: 
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 ( ) ( )2 2

1

,
k

i i i i i i i i i i
i

E p R q I q R p Iα β
=

 = − − + + −
 ∑  (4.15) 

where the coefficients in (4.15) are: 
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…

…

…

 (4.16) 

To find the coefficients of the transfer function, we differentiate the error function in 
dependence on coefficients ai and bi and next the results are equated to zero. Then we obtain 
the system of equations (4.17): 
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∑

 (4.17) 

Substituting (4.16) into (4.17) we can evaluate the coefficients of the transfer function. 
When Laplace transformation is used in identification, the same procedure can be applied as 
in the Fourier transform method, taking into account the conditions of definitions 1 and 2 
regarding existing fractional integrals and derivatives and also the conditions for Laplace 
transformation. 

5. The example 

Below, an example presents the identification of parameters with the Fourier transform 
method with error minimization. We use the modified least square method for the system 

including fractional elements ( ) .j
µω  

In this example it is assumed that the stimulated input signal and output signals of 
the system are known. 



 
T. Janiczek, J. Janiczek: LINEAR DYNAMIC SYSTEM IDENTIFICATION IN THE FREQUENCY DOMAIN USING FRACTIONAL … 

 

To simplify the transformations and calculations presented in this example, transfer 

function Ĝ  is known (without known coefficients) and is close to the real transfer function G. 
In this example we show a transfer function where fractional elements are presented in the 

numerator and denominator. 
The example is chosen to be as simple as possible while retaining just sufficient 

complexity to illustrate the identification of parameters of the linear dynamic system transfer 
function containing fractional elements. 

To demonstrate the identification procedure, Figs (5.1−2) are examined for frequencies in 
the following range: 

                                                   210 ,10 ,iω − ∈                                                    (5.1) 

where: i = 1, …, k = 1000 
 

 
 

Fig. 5.1. Dependence of magnitude ( ).G ω  

 

 
 

Fig. 5.2. Dependence of phase ( ).φ ω  

 
The true transfer function of the system G(ω) is the sum of obtained measurement results 

of the imaginary I(ω) and real R(ω) forms.  
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Thus: 
                              ( ) ( ) ( ).G R jIω ω ω= +                                                (5.2) 
 

The approximated transfer function form ˆ ( )G ω  is assumed to be as follows: 
 

                     0

2
2

( )ˆ ( ) .
( ) ( ) 1v

v

b j b
G

a j a j

µ
µ ω

ω
ω ω

+
=

+ +
                                           (5.3) 

 

The values of fractional degree are assumed to be: 1
,

3
v =  1

.
2

µ =  To simplify the notation 

we used substitutions as below: 

                                    

cos
2

,

sin
2

C

S

ϑ

ϑ

πϑ

πϑ

  =  
  


  =    

                                                (5.4) 

where: ϑ = v or ϑ =µ. 

The mean square error between the approximated transfer function ˆ ( )G ω  and the true 

transfer function G(ω), is expressed on the basis of equation (4.15), which is presented as 
(4.10). Using transformation of equations (4.16), the coefficients αi, βi, pi, qi, have the 
following expansions: 
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v

i i v i v
v

i v i v
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ω ω
ω
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 =

                                       (5.5) 

 

Therefore, the partial derivative of error E with respect to each of the coefficients of the 
transfer function could be written according to a system of equations (4.17) as: 

 

          

( ) ( )

[ ]

10

1

1

2

12

2 0

2 0

.

2 0

2 0

k

i
i

k

i i i
i

k
v
i i i v i v i i v i v

iv

k

i i i i i
i

E
A

b

E
AC B S

b

E
A R C I S B R S I C

a

E
A R B I

a

µ
µ µ

µ

ω

ω

ω

=

=

=

=

∂ = − =∂

 ∂

 = − + =  ∂


∂ = − + + =  ∂


∂ = − + =∂

∑

∑

∑

∑

               (5.6) 

 

Introducing the notation as below: 

                              

( )
( )
( )
( )
( )2 2 2

.

v
v i v i v i

i i i

i i i

v
v i v i v i

i i i

F R C I S

F R C I S

L R C I S

L R S I C

K R I

µ
µ µ µ

µ
µ µ µ

ω
ω

ω
ω

ω

= −

= −

= +

= +

= +

                                              (5.7) 
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and substituting expressions (5.5) for αi, βi, pi, qi in the system of equations (5.6), a new 
system of equations is obtained: 
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2
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2 2
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2 2 2
1 2 0

2 2 2
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
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
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∑           (5.8) 

 

In this way a system of four equations with four unknown coefficients is obtained. 
Substituting the values for the above system of equations and calculating the sums of 
the k elements, we are given the matrix which can be written as: 

 

                                          ,K M N⋅ =                                                     (5.9) 
where: 

              

0.7684 0.0526 1.4918 1

2.5281 0.1800 5.0050 1.4918
.

0.1755 0.5514 0.1800 0.0526

1.2923 0.1755 2.5281 0.7684

K

− − − 
 − − − =
 −
 − 

                      (5.10) 

 

                                2 0 ,T
vM a a b bµ =                                        (5.11) 

 

              [ ]0.0214 0.1806 0.6759 0.2086 .TN = − − −                      (5.12) 
 

Since the system of equations has only one solution, we had to assume a value of the 
coefficients which we were looking for in order to carry out the correct computation. The 
computed results were compared to the actual results of experiments I(ω) and R(ω), 
correcting for the assumed value of the parameters. It was verified by applying the above 
procedure to other parameters. In this manner we computed our coefficients: 

 

                                           

2

0

29.40

3.65
.

14.20

1.62
v

a

a

b

b

µ

=
 =
 =
 =

                                               (5.13) 

 

Calculating the maximal difference between magnitudes dif|G| or phase dif|ϕ| of the true 

transfer function G and the approximating transfer function ˆ ,G  we obtain: 
 

                         11ˆmax 4.6 10i idif G G G −= − = ⋅                                  (5.14) 

and 

                                                         10ˆmax 2.3 10 .i idif φ φ φ −= − = ⋅                                    (5.15) 
 

The obtained values of dif G  and dif φ  are very small and they show that the assumed 

model is close to the examined system. 
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6. Conclusion 
 

A study of the Fourier transform method for parameter identification of a linear dynamic 
system in the frequency domain using fractional differential equations has been presented in 
this article. It must be pointed out that fractional elements introduce complex 
interdependencies in solving system equations. It has been shown how to calculate the 
coefficients of the approximating function of finite order using as a criterion the minimum of 
the mean square error between the true and approximating frequency responses. 

Considering more complicated models with fractional elements, numerical problems can 
be obtained, resulting from the transformation of matrixes including forms of fractional 
elements. Therefore, it is advisable to assume one or more desired (computed) parameters. 

It is of main interest to propose the fractional system for modelling where conventional 
integration/ derivation is replaced by a fractional one due to precise reflection of the real 
systems what was presented in practice in [5, 11, 12]. 
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