www.czasopisma.pan.pl P N www.journals.pan.pl

N
<

Metrol. Meas. SystVol. XVII (2010), No. 2, pp. 279288

P N METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, | SSN 0860-8229 &
www.metrology.pg.gda.pl L

POLSKA AKADEMIA NAUK

LINEARDYNAMIC SYSTEM IDENTIFICATION IN THE FREQUENCY DOMAIN
USING FRACTIONAL DERIVATIVES

Tomasz Janiczek?, Janusz Janiczek?

1) Wroclaw University of Technologyepartment of Electronic3he Institute of Computer Engineering, Control &abotics,
Z. Janiszewskiego 11/17,-8F2 Wroclaw, Poland (tomasz.janiczek@ pwr.wroc.pl)

2) Wroclaw University of Technolog9epartment of Electronic§hair of Electronic and Photonic Metrology, B. Paus3/55, 51317
Wroclaw, Poland. < janusz.janiczek@pwr.wroc.pt48 71 320 6290

Abstract

This paper presents a study of the Fourier transforethod for parameter identification of a linegmamic
system in the frequency domain using fractionafedéntial equations. Fundamental definitions otfi@a
differential equations are briefly outlinedhd& Fourier transform method of identification aheit algorithm
are generalized so that they include fractionaivdéres and integrals.
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1. Introduction

Nowadays, the rapid development of computer sciesigaal processing, material science,
etc, enables us to use more precise and more saattexti methods for data processing that
were too complicated to be conducted in the pase @f them is the “new” mathematical
theory of the fractional calculus, which can beleggpin identification of parameters in the
system.

The theorem of fractional calculus has been knoweesthe 18 century. Until the 1970s
and 1980s, fractional calculus was used exclusivelpure mathematics. Since that time,
fractional calculus has been used in other appéiednologies [1, 2].

In classical methods of identification, models lohsa elements of integer degree were
used. This proves that there are systems and mlatésr which the traditional computational
methods may not be adequate. In this case, metbbddentification using extended
fractional elements will be more precise and weflect the real physical phenomena. A very
good example of this is the piezoelectric PVDFd4fl modified bismuth oxides material [11,
12] which shows the importance of applying fracibrelements in the process of
identification. Electrical properties of these mietls such as impedance (real and imaginary
part vs.w [7] including the influence of temperature) aréfidilt to describe by traditional
mathematical equations. It is clear from the redeaf the authors of these materials that
applying fractional elements to describe their wleal structure and fractional calculus to
identify their parameters gives much simpler mathigral dependencies. They describe
occurring physical phenomena more accurately thassical methods.

This is why the article below shows the generaligedrier transform method, on the basis
of which we carried out the process of parametentification.
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2. Background

Below, fundamental definitions of fractional calesllare shown: fractional integral and
fractional derivative of Riemann-Liouville [8] wihe used (in the next section) in connection
with the problem of identification. All the problemmpresented in this paper concern the
interval of integration (Ox).

Definition 1 of fractional integral

Let Rez> 0 and lef(t) fort > 0 be the piecewise continuous on=(0,«) and integrable
on any finite subintervab =[0,«), which can be defined as the fractional integraf(9fof
the ordeiz

D*f (1) :%j(t — )71 (£)de, 2.1)

whererl (2) is the gamma function [8]. It is easy to see thaz = n where n is the integer, we
obtain an ordinary integral &t).

Definition 2 of fractional derivative
Let # > 0 and m be the smallest integer that excegdand z= m->0. Then

the fractional derivative d{t) of the ordegfort > 0 is defined as:
D“f(t)=D"[D*f(1)]. (2.2)

The formula (2.2) results from m-times differenat of the formula (2.1), so as to obtain
p fractional order of derivative. Iin = 1, thenz = 0 and formula (2.2) becomes the simple
identity. Instead, ifu is the positive integer which equals p, then thewvdtive D’ f (t) can
exist fort > 0, even iff(t) is not of class of functions described in Defontl [8].
For example: letf (t) =t™. In case of f(t) having p continuous derivative Brthis function
satisfies definition 1. We can see this clearlyrfrihe expression given below:

DPf(t) = Dpﬂj f (€)de = DPf(1). (2.3)

Formula (2.2) agrees with the classical definibdnhe ordinary derivative [8].
3. Fourier transform method for identification
In this paper an identification method of systemap@eters based on Fourier transform for

any defined intervals and for all conditions inidiégions 1 and 2 is considered. L) and
y(t) be input and output signals of the system shawFig. 3.1.

U(w) G() Y(w)

Fig. 3.1. Ideal system with a frequency infaifcw) and frequency outpift(w).

Their Fourier transforms are further denoted W) and Y(a), respectively. Then

G(C()) = M

0@ be the transfer function of this system aé(to) be the model to be identified.
1)
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Therefore when approximation for empirical resudfsinput and output is used, the
transfer function of the linear syste@®(w) with the known degrees of polynomials of the

input and output functions can be obtained. In ey, the transfer function can contain an
error. For a better presentation of the problendiseegard the noise in the system.
The transfer function of the dynamic linear systauld be expressed as [3, 10]:

é(w)zbo"'h_({w)"'---"'bm(].w) ' 3.1)
g ta(jo)+...+8(jw)
wherea, =1.

The transfer function described by (3.1) consisthe polynomials of the integer degrees.
Based on the above information, we can determireeifuation (3.1) coefficients using
minimization of mean square error between the apprating transfer function and the true
transfer function of the system.

4. Foundation of identification algorithm

In this section the generalized classical Fouriethod for fractional elements is presented.
It applies to the systems which meet the requirésnenh definition 1 and 2 of fractional
integral and fractional derivative, as well as tbaditions of Fourier transform.

Basic fractional systems, which can be easily &dpto complicated systems, are under
consideration. In order to analyze such systenss fridictional element$jw)” were added
into the transfer function (3.1) — in the numeratelement b, (jw)* and (or) in
the denominatora, ( jw)”’, where i and v are known fractional values. Then the exadnd
form of the transfer function is as follows:

Sl =2+ BUD +B(j) +...+ b, (j0)" (4.1)

a,+a,(jw) +a(jw)+...+a,(jw)"

wherea, =1 and fractional element is noted as:
(jw)”=w“(cosg,u+j sinl—ZT,uj=w” cosg/,ﬁja)“ sing,u (4.2)

It must be noted that the fractional degree of ordef element(jw)” can be larger than v
in the assumed interval. However, by using seueaalsformations which were shown in [9,
5], we can reduce the order gfto the interval[01]. In the model describing the system it is

possible to use more fractional elements, althouglsolve the problem in the same way as
with one fractional element.
The expression (4.1) can otherwise be written as:

E(w) = a(w) + j.ﬂ(w) _P(w) , 4.3)
p(w+ jo(w) Qw)

while the functionG(w) of the process is described as:

G(w) = Rl@) + jI(@). (4.4)

ComparingG(w) and é(a)) for values of frequencya, the error in fittings(w) is then:
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(@) = G(w) - G(@). (4.5)

Substituting expression (4.3) fcé-(a)) in the above equation, the erre{w) can be

expressed as:

£(@) = G(eg) - ) (4.6)

Qa)

The next step is the minimization of the error whresults from the difference between
the real transfer function and the transfer functi@sed on approximation (interpolation) in
measuring the results. We could use the least sdfitato obtain unknown coefficients of
transfer functioné(a)), but the problem is difficult when solved in thisammer [6, 10].
However it is also possible to use the least squeethhod modified by Levy [6].

Therefore, multiplying (4.6) by a polynomi@(«) we obtain:

Q@)é(w) = Aw) Gw) - Rw). (4.7)
For simplicity, the left side of (4.7) could be #en as the sum of eleme®sandB:
Qlw)e(w) = Aw) + 1B(w). (4.8)
The magnitude of this equation is:
Qa)e(@)|” = A(w) + B (@) (4.9)

The left side of (4.9) could be written as a meguase error [6]. Thus the error functi&n
may be defined as the sum of the two elemArdaadB:

Ezi[Az(cq)+ B(@) | (4.10)

To simplify notations we skipy like this éi = é(cq), etc.

Comparing the two equations (4.7) and (4.8) withard to their real and imaginary parts,
elementA could be written as a real part, but elent®ials an imaginary part of the right-hand
side of equation (4.7).

For elemeni:

A=ReQG-P|. (4.11)
Replacing accordingl®, G, P in (4.11), yields:
A=Re{(n+iq)(R+il)-(a+if)]. (4.12)
Thus:
A=pR-ql-qa. (4.13)

Realizing the same for elemed®)t we obtain:

B=qR+ p|-4. (4.14)

Below, (4.13) and (4.14) are applied to (4.10)i&dy
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k

E=Y[(AR-qal-a) +(aR+ p1-8)°], (4.15)

i=1

where the coefficients in (4.15) are:

0, =ty +haf cos” - baf + bt -...
. TT

B, =b,af sin~ pr+ = bed + bef ..

| (4.16)
P =a+au cos_ V- acf + ag ...

v . TT
G =34l sin v+ 4w- aal + aw ~..

To find the coefficients of the transfer functiomg differentiate the error function in
dependence on coefficierdsandb; and next the results are equated to zero. Theobiaen
the system of equations (4.17):

ZTEO=—ZZ(D.R—QII—C¥):O
%i:—zzk:wlu{(pllg—qj —q)(cosg,uj"'(QR"' ipll_nf”)( Singluﬂz (

i=1

-2t al(nR-a)-a)(-1)+(ar+ p1-p)(

Z—E=-2i2:1‘,w(qR+p!—ﬁ)=o
E (4.17)
4 /i
E & (p'R_ql_ai)(RCOSEV—iISlnE\a+
P =0
¥ T @R p1-) Reing w i @sTy]
2 2
R)]=

0

Substituting (4.16) into (4.17) we can evaluate ¢befficients of the transfer function.
When Laplace transformation is used in identifmatithe same procedure can be applied as
in the Fourier transform method, taking into acdotle conditions of definitions 1 and 2
regarding existing fractional integrals and demved and also the conditions for Laplace
transformation.

5. The example

Below, an example presents the identification afapeeters with the Fourier transform
method with error minimization. We use the modifiedst square method for the system

including fractional elementéjw)” .

In this example it is assumed that the stimulat®outi signal and output signals of
the system are known.
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To simplify the transformations and calculationsegented in this example, transfer

function G is known (without known coefficients) and is cldedhe real transfer functida.

In this example we show a transfer function wheaetfonal elements are presented in the
numerator and denominator.

The example is chosen to be as simple as possibite wetaining just sufficient
complexity to illustrate the identification of panaters of the linear dynamic system transfer
function containing fractional elements.

To demonstrate the identification procedure, Figd—2) are examined for frequencies in
the following range:

«0[1072,10] , 15
where:ii =1, ...,k=1000
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Fig. 5.2. Dependence of phaggw).

The true transfer function of the syst&() is the sum of obtained measurement results
of the imaginary(«) and reaR(«) forms.
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Thus:
G(w) = Rw) + jl(w). (p.2

The approximated transfer function fmé(a)) is assumed to be as follows:

Gay=— UV D
a,(jw) +a,(jw)’ +1

(5.3)

The values of fractional degree are assumed ty b%:, y:%, To simplify the notation

C, = cos(zﬁ‘]—Tj
2
S, = Siﬂ(z?l—Tj
2
where:Z =vor J =L4.

The mean square error between the approximatedfdrafusiction é(a)) and the true

transfer functionG(a), is expressed on the basis of equation (4.15)¢chwis presented as

(4.10). Using transformation of equations (4.1@) tcoefficientsa, &, pi, g, have the
following expansions:

we used substitutions as below:

ai :h) +Cﬂ&fq

A=Sah, 5.5
p=-afa+Ca'g+l &9
G =S4'3

Therefore, the partial derivative of erfarwith respect to each of the coefficients of the
transfer function could be written according toyatem of equations (4.17) as:

0E k
a0
oE k
EZ—ZZ_;‘Q{”[AC!I+B§:|ZO
aE” - (5.6)
a=2i2:l‘,w.”[/%(RQ- |$)+ B( RS+, 19]=0
oE k
£=-2;#[AR+B!]=0
Introducing the notation as below:
F,=(RG-1S)da
F,=(RC,-1S,)&*
L, =(RC,+18,)«" (5.7)
L=(RS+1G)d
K:(F\’12+Ii2)ag2
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and substituting expressions (5.5) far 45, pi, g in the system of equations (5.6), a new
system of equations is obtained:

—Rafa+Fa-Ca'h-ph=-R
g | e (R, * LS ot a-af - Gt b=
7 |-CalKa, + Kef?a ~(G, R+ S L)af h- Fp=- K™
-Kafa, + KGu'g - Law'h - Ry’ h=- K
In this way a system of four equations with fourkmown coefficients is obtained.

Substituting the values for the above system ofatgos and calculating the sums of
the k elements, we are given the matrix which cawbtten as:

KM =N, (5.9)

(5.8)

where:

0.7684 -0.0526 - 1.4918 - 1
. - 0. - 5. - 1.491¢
K = 2.5281 -0.1800 - 5.0050- 1.49 : (5.10)
-0.1755 0.5514 0.1800 0.0526

-1.2923 0.1755 25281 0.7684

M'=[a, a b Bk (5.11)
N" =[-0.0214 0.1806 - 0.6759- 0.20B (5.12)

Since the system of equations has only one soluti@had to assume a value of the
coefficients which we were looking for in order ¢arry out the correct computation. The
computed results were compared to the actual sesafltexperimentsi(a) and R(w),
correcting for the assumed value of the parametemsas verified by applying the above
procedure to other parameters. In this manner wgpated our coefficients:

a, =29.40
a,=3.65
b, =14.20
b, =1.62

(9)1

Calculating the maximal difference between magmsdif|G| or phase difj| of the true
transfer functiorG and the approximating transfer functi@, we obtain:

dif |G| = max|G - G| = 4.610" (5.14)
and

dif = max‘qq —g|=2.310" (5.15)

The obtained values aif |G| and dif ¢ are very small and they show that the assumed
model is close to the examined system.
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6. Conclusion

A study of the Fourier transform method for paranétentification of a linear dynamic
system in the frequency domain using fractiondeddntial equations has been presented in
this article. It must be pointed out that fractibnalements introduce complex
interdependencies in solving system equations.a heen shown how to calculate the
coefficients of the approximating function of fiaibrder using as a criterion the minimum of
the mean square error between the true and appaiirgrfrequency responses.

Considering more complicated models with fractioal@ments, numerical problems can
be obtained, resulting from the transformation datmmes including forms of fractional
elements. Therefore, it is advisable to assumebongore desired (computed) parameters.

It is of main interest to propose the fractionastsyn for modelling where conventional
integration/ derivation is replaced by a fractiooale due to precise reflection of the real
systems what was presented in practice in [5, 2], 1
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