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Abstract 

Many studies have been developed aiming to improve digital filters realizations, recurring to intricate structures 
and analyzing probabilistically the error’s behavior. The work presented in this paper analyzes the feasibility of 
fixed-point implementation of classical infinite impulse response notch filters: Butterworth, Chebyshev I and II, 
and elliptic. To scrutinize the deformations suffered for distinct design specifications, it is assessed: the effect of 
the quality factor and normalized cut-off frequency, in the number of significant bits necessary to represent the 
filter’s coefficients. The implications brought to FPGA implementation are also verified. 
The work focuses especially on the implementation of power line notch filters used to improve the signal-to-
noise ratio in biomedical signals. The results obtained, when quantizing the digital notch filters, show that by 
applying second-order sections decomposition, low-order digital filters may be designed using only part of 
double precision capabilities. High-order notch filters with harsh design constraints are implementable using 
double precision, but only in second-order sections. Thus, it is revealed that to optimize computation time in 
real-time applications, an optimal digital notch filter implementation platform should have variable arithmetic 
precision. 
Considering these implementation constraints, utmost operation performance is finally estimated when 
implementing digital notch filters in Xilinx Virtex-5 field-programmable gate arrays. The influence of several 
design specifications, e.g. type, and order, in the filter’s behavior was evaluated, namely in regard to order, type, 
input and coefficient number of bits, quality factor and cut-off frequency. Finally the implications and potential 
applications of such results are discussed. 
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1. Introduction 

 
Notch filters are very important in a wide variety of instrumentation applications, from 

telecommunications to biomedical signals processing, where often it is necessary to remove a 
narrow band or even a single frequency of the measurement signal. Digital implementation of 
these filters is preferable to an analog implementation due to drift absence and straightforward 
design of higher quality factors. Nevertheless, digital filter implementation has accuracy 
limitations due to the arithmetic’s finite precision [1−4], an issue that is much more 
significant in fixed-point arithmetic than in a floating-point one. 

Due to the ease of designing and calculating the coefficients of high-performance digital 
finite and infinite impulse response (FIR and IIR) filters, the filter outcome is taken for 
granted, but, particularly if dealing with limited capacity fixed-point platforms (such as 
microcontrollers, digital signal processors, and field-programmable gate arrays) or with very 
demanding design constraints, the filtering stage may have a pernicious effect on the signal, 
completely missing its purpose.  



 
E. Pinheiro et al.: FIXED-POINT IMPLEMENTATION OF INFINITE IMPULSE RESPONSE NOTCH FILTERS 

This problem has been studied [2−9] and, disregarding additional error sources originating 
from the A/D and D/A conversions, the three key error types are: 
I. Quantization of the input signal into a finite set of discrete levels; 
II. Representation of the filter coefficients by a short number of bits; 
III. Propagation of rounding errors occurring in arithmetic operations. 

To evaluate these errors influence in the final filter output, several approaches have been 
proposed [2−9, 12−14]. If input quantization errors, denoted above as type-I, are assumed to 
be random variables with a uniform probability distribution, a number of analysis tools is 
available to characterize their behaviour [10−14]. Errors of type-III are incessantly subject of 
reductions through the implementation of novel structure variations [1−2, 5, 15−17] based in 
state-space structures and direct form I with error feedback, also known as noise shaping or 
error spectrum shaping [5, 9, 18].  

A short number of bits to represent the filter’s coefficients, errors previously denoted as 
type-II, also have a comprehensive bibliography, reporting studies on important 
implementation issues. Some instability thresholds due to these errors were derived [6, 19], 
not including notch filters, coefficients sensitivity approach [15, 18−20], and structural 
changes to minimize the impact of these errors [2, 5, 8, 17], but none of these approaches 
considered notch filters.  

Considering specifically biomedical applications, some studies have analyzed the digital 
filters distortion effect on the signal [15], but the feasibility and the outcome of the 
implementation has only recently been discussed [21]. Moreover, several biomedical studies 
ignore, to some extent, the higher-frequency components of the signals, implementing low-
pass filters, or wide band-stop filters. Ballistocardiograms, electrocardiograms, 
electroretinograms which have sampling frequencies from 200 Hz to 2 kHz, and other 
biomedical signal high-resolution processing systems benefit from the use of power line notch 
filters. However, recent applications of biomedical systems tend to use wireless 
communications, limiting the maximum sampling frequency to about 200 Hz, so the 
fundamental power line frequency is the only concern. Hence notch filters are apposite to 
such applications, instead of comb filters, which may be of interest in higher sampling rates.  

Since acquisition systems work at distinct sampling rates, the analysis of IIR digital notch 
filters performance at different normalized cut-off frequencies allows ensuring that most 
biomedical signals fit in the tested range, and so the conclusions are applicable to a broad 
variety of digital biomedical signal processing systems. Although IIR filters are known for 
their phase distortion, the effect of notch filters with a very high quality factor is very limited 
in frequency and concentrated only in the stop band [22−26], so it is no major concern. 
Furthermore, techniques for compensation of distortion have been published [27]. Thus the 
approach taken is valid. 

Subsequently, MATLAB processing capabilities are used to evaluate the fixed-point 
arithmetic numerical accuracy requirements to realize several types of IIR notch filters, at 
different design specifications and structures. The performance of a Xilinx FPGA of the 
Virtex 5 family, when subject to these structural modifications, was assessed using Xilinx ISE 
10.1. The discussion and conclusions on the FPGA behaviour complete this work. 

 
2. Second order filters 
 

Using dedicated filter design software, floating-point double precision coefficients were 
computed for the following filter types: Butterworth, Chebyshev types I and II, and Elliptic.  
A normalized notch frequency vector Ωtest was considered with 9 points per decade spaced 
from 10-4 to 0.3 (totalling 30 points) and a quality factor vector Qtest also with 9 points per 
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decade spaced from 1 to 104 (totalling 37 points) and filters of even orders from second to 
tenth were designed. 

In view of the fact that the quantization induces pole movement, a stable filter after 
quantization may become unstable or even if the quantized filter is confirmed to be stable, its 
outcome may be unacceptable, thus stating that although the poles remain in the interior of the 
unit circle, the quantization is too coarse and the poles and zeros movement deforms the filter 
behavior. 

To diminish the wandering of poles and zeros, one valuable method is the implementation 
of the filter in second-order sections (decomposing an Nth order filter in the product of N/2 
second order filters, provided that N is even), considering that the coefficients’ quantization 
causes minor pole movement than in higher order sections. The impact of this option will also 
be evaluated. 
 
2.1. Filter definitions 
 

The normalized frequency Ω is defined as the ratio between the frequency and the Nyquist 
rate, thus resulting in units of half-cycles per sample.  

The quality factor Q is the ratio between Ω0 and the bandwidth (difference between upper 
and lower cut-off frequencies Ω1 and Ω2), while the notch frequency Ω0, the centre of the stop 
band, is the geometric mean of Ω1 and Ω2. Since results should be parameterized as functions 
of Ω0 and Q and filter design algorithms process Ω1 and Ω2, (1) was used to obtain Ω1 and Ω2 
from design specifications in Ω0 and Q. 
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The filters were implemented using both Direct-Form I and II, depicted in Fig. 1, for a 
second-order section. The respective transfer function, H(z), is presented in (2). 
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Fig. 1. Implementation of (2): left with Direct-Form I (4), and right with Direct-Form II (5). 
 
Stability assessment was made searching for poles of the filter’s transfer function, H(z), 

outside the unit circle. The n bit fixed-point filter deviations to the floating point double 
precision format design (16 decimal digits of precision in calculations, IEEE decimal64 
format) [28] was measured making use of its frequency response magnitude, |Hn bit(jΩ)|, root 
mean square error εn bit (in dB), using (3),  
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where Hn_bit(jΩ) and Hfloat(jΩ) the transfer functions of both filters, and Ωfreq_resp is a vector 
with 221 points, varying from the 31.8µ half-cycles per sample of Ωmin up to 1 half-cycle per 
sample of Ωmax, in which the transfer function discrepancies will be evaluated. 

It should be noticed that εn bit could have been defined in linear units or using the phase or 
group delay difference, but since the magnitude in dB is the most widely employed method to 
assess filter response, the parameter εn bit was chosen to measure directly this dissimilarity in 
dB. Filter deviations are problematic both in pass and in stop band, since deviations start to 
manifest in the stop band and afterwards spread to the pass band also. The root mean square 
(rms) error, defined in (3), copes with this by equally weighting all frequencies. 

 
2.2. Filter structures details 

 
Direct-Form 2 implementation of a digital filter is also known as the canonical form 

[22−26], this filter realization method uses the minimal number of delay elements, which is 
equal to the order of the transfer function denominator. The second-order case was presented 
in Fig. 1 and the transfer function in (2). The difference equation implementation instead of 
the usual form, which is the base of Direct-Form I, (4), is changed to (5). 
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Implementing (5) requires 2 delays (w[n − 1] and w[n − 2]) instead the 4 delays (x[n − 1], 
and x[n − 2], y[n − 1], and y[n − 2]) required by (4). The number of multiplications is 5, and 
the number of sums is 4, for both implementations. The difference resides in the amount of 
computations that may be done in parallel. Using (5) y[n] is computed after w[n], whereas 
using (4) y[n] is directly computed.  

All the delayed signals may be multiplied by their respective coefficient (a1, a2, b1, b2) in 
parallel. So, the time sequence of the implementation consists of 2 multiplications (the one 
stated previously and the product b0w[n]) and 2 additions (add up w[n] and final computation 
of y[n]).  

For Direct-Form I (DF I), as the delays duplicate, the time sequence of the implementation 
is reduced to half. Therefore, on a parallel computation platform, such as an FPGA, the result 
is computed in half the time of Direct-Form II (DF II). Another very appealing property of DF 
I over DF II is that it cannot overflow internally, when fixed-point arithmetic with two’s 
complement is used, and the output signal is in range [23].  

However, for higher order direct-form filters, quantization errors in the filter coefficients 
grow, especially in notch filters, where the poles and zeros are very close [24], and DF I 
hardly can be expanded, which is confirmed by the results of Section 4. One further remark is 
that when quantizing a floating-point filter implemented in second-order Sections, DF I and 
DF II will have exactly the same behaviour, as both will have the same coefficients. 
Therefore, the choice of one over the other will depend only on the characteristics of the 
implementation platform, namely parallel processing capabilities and memory.  
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3. Second order filter results and discussion 
 
3.1. Filter stability 
 

Second order band-stop filters of the Butterworth, Chebyshev I and II, and elliptic types 
were implemented using fixed-point arithmetic and the defined Qtest and Ωtest vectors. It was 
found that, for every filter type, only the 16 bit implementation was stable for all (Qtest, Ωtest) 
pairs. The minimum quality factor to design an unstable filter, Qu_min is 40, in the normalized 
notch frequency, Ω0

u_min
 was found as 8×10-3. 

If the number of bits of the implementation changes the filter stability may vary, in some 
specific zones of the (Qtest,Ωtest) grid. Generally, designing a different filter type, for the same 
specification of quality factor, normalized cut-off frequency, and number of bits, will not 
modify the stability.  

 

 
 

Fig. 2. Number of 2nd order fixed-point unstable filters for each point in the grid (Qtest,Ωtest), in a total of 28 
designed per point. 

 
Fig. 2 shows the number of unstable filters obtained for each point in the (Qtest,Ωtest) grid 

(total of 1110 filters), considering 10 to 16-bit fixed-point implementations of the four filter 
types (28 designed per point). 

Regarding power line notch filter implementation in biomedical systems, the range of the 
normalized notch frequencies where the filter is unstable represents an important drawback 
because implementations with sampling rates from 2 kHz down to 200 Hz will cross the two 
main instability peaks found in Fig. 2. Despite this, if quality factors below 40 are tolerable, 
the implementation of 10 to 16-bit fixed-point IIR notch filters is straightforward. 
 
3.2. Filter deviations 
 

Second order band-stop filters of the stated types were implemented using the defined Ωtest 
and Qtest vectors. The results obtained for εn bit in a second order fixed-point Butterworth filter, 
at a fixed Ω0 of 0.05, thus situated in the more disturbing zone, are presented in Fig. 3. A grid 
is displayed with n from 10 to 16 bits, and the vector Qtest.  

Smaller values of the quality factor, namely 1, have the higher differences, which is due to 
the fact that the floating-point filter fixed-point implementation creates a deeper notch than 
the small deviation due to the fixed-point conversion is able to mimic truthfully. If the quality 
factor is above 400, the filters have very small notch frequency attenuation and a small 
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amplitude resonance peak both in fixed and floating-point implementations. For quality factor 
values above 1000 this peak vanishes and the filter acts as an all-pass filter, having no 
discrepancy from fixed to floating point. To exemplify this behavior in Fig. 4  the magnitude 
of the 15 bit fixed-point Butterworth filter frequency response, |H15 bit(jΩ)|dB, is plotted for the 
(Qtest,Ωfreq_resp) grid. 

 

 
 

Fig. 3. Second order fixed-point Butterworth filter εn bit. Normalized cut-off frequency of 0.05, n from 10 to 16 
bits, and Qtest vector. 

 
Butterworth filters are presented as examples in the last two figures, but the other fixed-

point filters have exactly the same characteristics regarding the error and the magnitude 
response progress with the quality factor and all others also generate resonance peaks at very 
high quality factors. 

 

 
 

Fig. 4. Magnitude, in dB, of the 15 bit 2nd order fixed-point Butterworth filter, |H15 bit(jΩ)| dB, with normalized 
cut-off frequency of 0.05, and using the grid (Qtest,Ωfreq_resp). 
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3.3. Filter optimization 
 

In these implementations we searched for the minimum coefficient word length that 
guaranteed stability and the optimal word length, considering the rms error defined in (3). The 
filter demanding wider coefficient word lengths to guarantee stability was the elliptic filter. 
The Chebyshev type I was the most demanding to minimize the mean square error to the 
floating point implementation. The coefficient word length dependency on quality factor and 
normalized cut-off frequency for these two cases is shown in Fig. 5. 

 

 
 

Fig. 5. Minimum coefficient word length to implement a stable 2nd order elliptic filter, for the (Qtest,Ωtest) grid 
(left). Optimal coefficient word length to implement a stable 2nd order Chebyshev type I filter, minimizing (3), 

the rms error, for the (Qtest,Ωtest) grid (right). 
 
4. Higher order filter results and dicussion 

 
Repeating the design procedure, 4th, 6th, 8th and 10th order filters were implemented in 

single section and second-order sections. The results regarding filter stability and quantization 
effects are subsequently presented. 
 
4.1. Filter stability  
 

Regarding the filter stability, Table 1 presents the number of stable filters designed for 
each order and each filter type, when using single section (SS) and second-order sections 
(SOS) implementations of both Direct Forms. The total number of pairs in the (Qtest,Ωtest) grid 
is 1110, thus 1110 is the maximum number of stable filters possible. The maximum 
coefficient word length allowed was 16 bits. 

 
Table 1.  Number of stable filters of 4th, 6th, 8th and 10th order. 

Type 
SOS (DF I and DF II) SOS (DF I and DF II) Order  
B C1 C2 E B C1 C2 E 

4 1110 1110 1110 1110 134 138 162 133 
6 1110 1110 1110 1110 16 19 21 16 
8 1110 1110 1110 1110 6 7 6 4 
10 1110 1110 1110 1105 2 3 2 1 
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When decomposing the filter structure into second-order sections implementation, the 
rearrangement of the coefficients allows the minimization of deviations from the poles actual 
value in such a way that only five elliptic filters of 10th order are unstable, while the 
remaining 1105 elliptic filters of 10th order are stable. All the other filters of every type and 
order form 4th to 10th are stable. 

In Table 1it is visible that for the 4th order, the single section implementation is no longer 
valid, since only 12 to 14.6 % of the filters implemented using this structure are stable. For 
even higher orders even fewer designed filter implementations are characterized by stability. 

Other important result is the maximum and the average number of bits required to ensure 
that the SOS filters are stable for all the pairs in the (Qtest,Ωtest) grid. The results are presented 
in Table 2. 

 
Table 2. Number of bits (average, maximum, most frequent) to design stable SOS filters for the (Qtest,Ωtest) grid. 

SOS filters number of bits to stability 
Most frequent for all 

(Qtest,Ωtest) Average for all (Qtest,Ωtest) Median for all (Qtest,Ωtest) 
Order  

B C1 C2 E B C1 C2 E B C1 C2 E 

4 10 10 10 10 10.11 10.13 10.10 10.12 14 14 14 14 

6 10 10 10 10 10.13 10.16 10.12 10.17 14 14 14 14 

8 10 10 10 10 10.14 10.17 10.15 10.20 14 15 14 16 

10 10 10 10 10 10.15 10.18 10.16 10.22 14 15 14 >16 

 
The second-order section filters preserve the behavior presented in Fig. 2. Only a few tens 

of them require more than 10 bits. When increasing the order the requirements of this residual 
minority also increase, but only 10 bits are needed for almost every filter implementation. 
 
4.2. SOS Filter deviations 

 
The results of previous Section 2.1 indicate the importance of analyzing not only the global 

(Q,Ω0) mesh but also the zones with more demanding coefficient word length to ensure 
stability. Table 3 and Table 4 summarize some of the measurements made. The first shows 
the great increase in the number of bits to ensure stability, for a normalized cut-off frequency 
value of 0.05, thus in the most critical zone. The second represents the average, for n from 10 
to 16 bits, of the root mean square error to the floating point implementation, εn bit, defined in 
(3), for a normalized cut-off frequency of 0.05. 

 
Table 3. Number of bits (average, median, most frequent) to design stable SOS filters for the points in the grid 

(Qtest,Ωtest) with normalized cut-off frequency of 0.05. 

Most frequent for all 
(Qtest,Ωtest=0.05) 

Average for all (Qtest,Ωtest = 
0.05) 

Median for all (Qtest,Ωtest = 
0.05) Orde

r 
B C1 C2 E B C1 C2 E B C1 C2 E 

4 16 16 10 16 13.89 14.54 13.08 13.97 15 15 14 15 

6 15 14 10 10 13.57 12.84 12.76 13.16 14 13 13 14 

8 10 10 10 14 12.38 12.86 12.41 13.16 12 13 13 14 

10 16 16 10 10 13.35 13.59 12.76 12.57 13 14 13 13 

 
The average, median and most frequent coefficients’ word length were taken as estimates 

of central tendency. These three quantities highlight the changes verified on this region, by 
comparison with Table 2. The averages are significantly larger than generally necessary. The 
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most frequent number of bits increased in several cases, and fluctuations in the median are 
also noticeable, underlining the volatility of the designs in this region.  

 
Table 4. Average root mean square error, in dB, from the fixed to the floating-point implementation, for a 

normalized cut-off frequency of 0.05. 

ε
av(Qtest,Ωtest = 0.05) [dB] 

Order  
εB

av εC1
av εC2

av εE
av 

4 90 303 39 254 
6 111 193 101 189 
8 2502 2500 1105 1124 
10 1829 1782 905 1062 

 
The results obtained for the average root mean square error at a fixed normalized cut-off 

frequency of 0.05, thus situated in the most troubling zone, have their minimum in the 
Chebyshev type II filter, which has minimum deviations in every order. Chebyshev type II 
deviations to the floating-point implementation are presented in Fig. 6. 
 

 
 

Fig. 6. Higher order Butterworth SOS filters εn bit. Normalized cut-off frequency of 0.05, n from 10 to 16 bits, 
and Qtest vector. 

 
4.3. SOS Filter optimization 
 

Table 5 summarizes the coefficient word length, when optimizing this quantity, for the 
(Qtest,Ωtest) grid, to ensure the minimum root mean square error from the floating-point 
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implementation. It is displayed the coefficients’ average, median, and most frequent word 
length. 

 
Table 5. Number of bits (average, maximum, most frequent) to minimize deviations for the (Qtest,Ωtest) grid. 

Most frequent for all (Q,Ω0) Average for all (Q,Ω0) Median for all (Q,Ω0) Order  
B C1 C2 E B C1 C2 E B C1 C2 E 

4 10 10 10 10 12.53 12.73 12.86 12.79 10 12 10 10 

6 10 10 10 10 11.84 12.05 11.86 12.15 11 12 10 11 

8 10 10 10 10 12.03 12.08 11.91 12.02 10 13 10 11 

10 10 10 10 10 12.18 12.24 12.15 12.35 11 12 10 11 

 
The average, median and most frequent coefficients’ word length, the three estimates of 

central tendency taken, illustrate the global behaviour. Although the most frequent is always 
10, the fluctuations in the median and in the average, show that this is not the optimum value, 
and that changes occur among filter types. 

Contrary to what one might a priori expect, it is seen that the 4th order has the higher 
average. Behavior verified also for ensuring stability in the critical zone, as previous Table 3 
presents. The most demanding filter to minimize the error for all the points in the grid 
(Qtest,Ωtest) is the 4th order Chebyshev type II filter. The coefficient word length dependence 
on quality factor and normalized cut-off frequency in these cases is shown in Fig. 7. 

 

 
 

Fig. 7. Optimal coefficients’ word length to implement a stable 2nd order Chebyshev type I filter minimizing the 
norm (3), for the (Qtest,Ωtest) grid. 

 
According to these results, it is not possible to obtain an exact expression to determine the 

optimal number of bits, from the normalized cut-off frequency and quality factor 
specifications. This was already suggested by the results of second order, as previous Fig. 5 
exemplifies. 

 
5. FPGA Performance 
 

The time sequence of Direct-Form II implementation delay consists of 2 multiplications 
and 2 additions, whereas in Direct-Form I, the delay necessary to implement a second-order 
section consists of merely 1 multiplication and 1 addition. Regarding higher order filters 
implementation, given the previous results, only the performance of SOS realization will be 



 
Metrol. Meas. Syst., Vol. XVII (2010), No. 2, pp. 217−232 

estimated, which will generate an increment in the number of operations proportional to the 
filter’s order increase, e.g. 4th order SOS will require 4 multiplications and 4 additions in DF 
II, and half in DF I.  

The additional path delay necessary to link the second-order sections will be disregarded, 
since it is not relevant, thus  top performance will be estimated, hence also the latency will be 
proportional to the order increase from the 2nd order filter.  
 
5.1. Operation latency 
 

The input data will be considered to have 12 and 16 bits, which is a familiar value in 
FPGA applications for digital filtering [29], and common in data acquisition boards and 
analogue to digital converters (ADCs). The results presented were obtained using Xilinx 
Virtex 5 SX95T speed -3, with timing performance as optimization goal. Pipeline stages were 
not employed. The fixed point architectures were signed with maximum output precision. 

The multiplications have an increase in the latency that would be perfectly linear if the 
operands always had an even number of bits. However, as seen in Fig. 8, some combinations 
using one or two odd operands, sometimes have a nonlinear behaviour, differing from the 
expected.  

The additions have even simpler logic, presenting a linear variation in the number of look- 
up tables with the dimension of the operands, from 1.552 to 1.842 ns. The latency of an 
addition is less than one third of the respective multiplication.  

 

 
 

Fig. 8. Multiplication latency for several combinations of operands number of bits with maximum output 
precision. 

 
All these latencies are very small (below 6 ns), due to the simplicity of the logic, and have 

a behavior that may be approximated by linear functions with reasonable errors, especially if 
both the operands have an even number of bits. An even number of bits is standard in 
commercial ADCs, and from the previous results most filters are optimized with an even 
number of bits, hence the errors are in fact small. 

 
5.2. Filter frequency of operation 

 
Since the previous results and the considerations taken so far allow the linear interpolation 

of the delays with minor errors, it is possible to compute the ceiling performances regarding 
all the combinations of coefficient word length and ADC number of bits.  
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The filter maximum frequency of operation, fMAX, estimates are presented in the following 
Table 6 and Table 7, for a 12 bit ADC, based on the FPGA latencies determined in the 
previous section, and the implementation architecture of each Direct-Form after the place-
and-route process. Table 6 presents the frequency of operation of the filters, regarding average 
and maximum coefficient number of bits to ensure stability in all points in the (Qtest,Ωtest) grid.  

Table 7 displays the frequency of operation associated with the optimum behavior of the 
filters. The results in terms of coefficient number of bits were presented in Table 2 and Table 
5 respectively. 

 
Table 6. Estimated maximum frequency of operation of the filters with coefficient number of bits to ensure 

stable design for all points in the (Qtest,Ωtest) grid, with 12 bit ADC, in DF I and DF II. 

fMAX  associated to coefficient number of bits  
so that all points of the (Qtest,Ωtest) grid are stable [MHz] 

For mean number of bits in DF I For mean number of bits in DF II 
Order 

B C1 C2 E B C1 C2 E 
2 136.76 136.75 136.77 136.75 71.15 71.14 71.17 71.14 
4 68.38 68.38 68.39 68.38 35.58 35.57 35.58 35.57 
6 45.58 45.58 45.58 45.58 23.71 23.71 23.71 23.70 
8 34.19 34.18 34.19 34.18 17.78 17.78 17.78 17.77 
10 27.35 27.35 27.35 27.34 14.22 14.22 14.22 14.21 

 For maximum number of bits in DF I For maximum number of bits in DF II  

2 132.89 132.89 132.89 132.89 67.31 67.31 67.31 67.31 
4 132.89 132.89 132.89 132.89 33.65 33.65 33.65 33.65 
6 132.89 132.89 132.89 132.89 22.44 22.44 22.44 22.44 
8 132.89 132.42 132.89 131.03 16.83 16.66 16.83 16.38 
10 132.89 132.42 132.89 --- 13.46 13.33 13.46 --- 

 
Table 7. Estimated maximum frequency of operation of the filters with coefficient number of bits to minimize 

deviations for all points in the (Qtest,Ωtest) grid, with 12 bit ADC, in DF I and DF II. 

fMAX  mean for the (Qtest,Ωtest) grid [MHz] 

Direct-Form I Direct-Form II Order 

B C1 C2 E B C1 C2 E 
2 134.60 134.59 134.41 134.55 68.88 68.87 68.63 68.82 
4 67.28 67.23 67.19 67.21 34.42 34.34 34.30 34.32 
6 45.03 44.95 45.02 44.93 23.15 23.07 23.14 23.04 
8 33.71 33.70 33.75 33.71 17.30 17.29 17.34 17.31 
10 26.95 26.95 26.96 26.93 13.82 13.81 13.82 13.79 

 
The previous tables report the improved performance of DF I over DF II. Moreover it is 

attested that the relative performance variation for different types of filter is very small. The 
impact of order change in the maximum frequency of operation is coherent with the 
abovementioned latency change.  

The succeeding tables, Table 8 and Table 9, present the estimates, for a 16 bit ADC, of the 
maximum frequency of operation, obtained with the same methodology as the previous 
results for a 12 bit ADC. The maximum frequency of operation for any other number of bits 
of the ADC may be computed by extrapolation, since it was observed that the operations’ 
latency increases linearly. It should be recalled that very few products differ from the linear 
behaviour, these points may be disregarded in the linear regressions without significant error 
to extrapolate the latency of other products. 
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The results of Table 8 and Table 9 show that the increase from 12 to 16 on the number of 
bits of the ADC is irrelevant for DF I, and of small impact on DF II. Hence, the high speed of 
computation of the Xilinx device is underlined, especially in lower orders.   

 
Table 8. Estimated maximum frequency of operation of the filters with coefficient number of bits to ensure 

stable design for all points in the (Qtest,Ωtest) grid, with 16 bit ADC, in DF I and DF II. 
 

fMAX  associated to coefficient number of bits  
so that all points of the (Qtest,Ωtest) grid are stable [MHz] 

For mean number of bits in DF I For mean number of bits in DF II 
Order 

B C1 C2 E B C1 C2 E 
2 136.76 136.75 136.77 136.75 66.85 66.85 66.86 66.85 
4 68.38 68.38 68.39 68.38 33.43 33.43 33.43 33.42 
6 45.58 45.58 45.58 45.58 22.28 22.28 22.28 22.28 
8 34.19 34.18 34.19 34.18 16.71 16.71 16.71 16.71 
10 27.35 27.35 27.35 27.34 13.37 13.37 13.37 13.37 

 For maximum number of bits in DF I For maximum number of bits in DF II  

2 132.89 132.89 132.89 132.89 65.91 65.91 65.91 65.91 
4 132.89 132.89 132.89 132.89 32.96 32.96 32.96 32.96 
6 132.89 132.89 132.89 132.89 21.97 21.97 21.97 21.97 
8 132.89 132.42 132.89 131.03 16.48 16.43 16.48 16.38 
10 132.89 132.42 132.89 --- 13.18 13.14 13.18 --- 

 
Table 9. Estimated maximum frequency of operation of the filters with coefficient number of bits to minimize 

deviations for all points in the (Qtest,Ωtest) grid, with 16 bit ADC, in DF I and DF II. 

fMAX  mean for the (Qtest,Ωtest) grid [MHz] 

Direct-Form I Direct-Form II Order 

B C1 C2 E B C1 C2 E 
2 134.60 134.59 134.41 134.55 66.29 66.29 66.21 66.27 
4 67.28 67.23 67.19 67.21 33.14 33.11 33.10 33.11 
6 45.03 44.95 45.02 44.93 22.15 22.13 22.15 22.12 
8 33.71 33.70 33.75 33.71 16.60 16.60 16.61 16.60 
10 26.95 26.95 26.96 26.93 13.27 13.27 13.27 13.26 

 
5.3. Filter performance analysis 

 
The previous results show that SOS notch filters of 2nd to 10th order can be implemented 

with a frequency of operation of tens of MHz, even with extreme conditions of quality factor 
and normalized cut-off frequency. Furthermore, it was verified that the number of bits of the 
ADC is of small influence in the performance of the FPGA, which also happens with the 
choice of the type of filter. The reason to this insensibility is the fact that the Virtex-5 device 
employs DSP48E modules, which are composed of a 25 by 18 bits multiplier, and an adder, 
and an accumulator of 48 bits, elements with exceeding capacity to deal with operands with 
the dimension considered for this application. 

Changing from DF II to DF I allows the duplication of the working frequency. Therefore, 
after confirming that the coefficient number of bits is enough to ensure the required filter 
response, one should choose the implementation of Direct-Form I. The filter type and ADC 
number of bits, are not constraints in the performance, and it is sure that its implementation in 
SOS will have a steady frequency of operation and that the filter will be stable. Stability 
concerns are minor in view of the fact that only 4 elliptic filters of 10th order are unstable. The 
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filter order ends up being the only variable to influence the FPGA implementation 
performance. 
6. Conclusions 
 

In this work the effect of the design specifications was investigated, namely the quality 
factor and the normalized cut-off frequency, in the number of significant bits necessary to 
represent the coefficients of an infinite impulse response notch filter. Since implementing 
these filters using fixed-point arithmetic has much higher accuracy constraints than the 
common floating-point implementation, the deformations introduced with these specifications 
were also assessed. The type of structure to implement the filter was also evaluated, and a 
comprehensive assessment of performance in an FPGA for different ADCs was presented. 
Since such assessment has never been done, the paper presents an important contribution for 
the signal processing field, both in notch filter analysis and FPGA implementation. 

The first important result found is that it is forbidden to increase the filter’s order above the 
2nd if the filter is implemented in a single section. However, the order increase is practically 
harmless if the filter is decomposed into second-order sections. The simulation results 
obtained provide comprehensive understanding of the stability requirements. Two critical 
areas, of quality factor and normalized cut-off frequency values, in which filter stability is 
compromised for some coefficient word lengths, even for 2nd order, were found. These critical 
areas are especially problematic for biomedical signal processing, since the problematic 
values of normalized cut-off frequency are typical of these applications, but it will only be 
important if the quality factor considered is very high, hence not affecting standard 
applications where a lower quality factor may be tolerated, or even necessary because of 
slight frequency swings. 

The filter deviations were measured and were found to be much increased when going 
from 6th to 8th and 10th order. From the classical families of IIR filters it was seen that 
Chebyshev type II is the filter family which suffers less with fixed point implementation, and 
it is also the less demanding in terms of the average number of significant bits necessary to 
represent the coefficients. The filter deviations in the critical zone were measured, and were 
found to increase significantly when rising above the 6th order.  

Regarding the minimization of deviations to the floating-point implementation, the average 
word length is near 12 bits for every filter order, but the optimal number of bits is very 
dependent on the actual values of quality factor and normalized cut-off frequency. The 
optimal number of bits, regarding root mean square error minimization, has been seen to 
define extremely irregular surfaces.  

The FPGA implementation of these filters was estimated to be very fast, below 80 ns in a 
Virtex 5 SX95T-3. The device’s performance is insensitive to the number of bits of the ADC, 
the number of bits of the coefficients used in the filter fixed-point representation, and IIR 
filter type (Butterworth, Chebyshev, or elliptic). Therefore the filter order and the structure 
chosen for the implementation (Direct Form I in second-order sections preferably) is almost 
the unique influent parameter to define filter performance. Maximum frequency of operation 
is obtained for the DF I structure, as the parallel computation capability of the FPGA extracts 
the maximum profit from the canonical number of operations performed to compute the 
output. 

It is possible to implement dynamical reconfigurable filters changing the filter 
specifications of type, coefficients’ number of bits, quality factor and normalized cut-off 
frequency, without disturbing the maximum operating frequency of the FPGA. Even changes 
on the evolving hardware, for instance input ADC and output DAC, are possible without 
significant performance variations. This is a very powerful study outcome, since it reveals the 
possibility of creating a single-chip dynamically reconfigurable digital filter with variable 
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precision, and auto-adaptation properties to minimize numerical errors due to the fixed-point 
implementation, without significant changes in performance if the order is unchanged.  

 
 

Fig. 9. Example of filtered ECG signal acquired with 50 Hz noise (top), and its amplitude spectrum (bottom). A 
4th order Butterworth notch filter with Q =100 was implemented (red), as well as a recursive 2nd order 

Butterworth notch filter with Q =1000 and 100 repetitions. Real quality factors are very similar, but the recursive 
presents an attenuation of 37.18 dB while the other only attenuates 17.38 dB. 

 
Moreover, given that, for instance any 2nd order filter in a Xilinx Virtex 5 SX95T-3 

requires less than 20 ns to filter the input signal, if the implementation requires a sampling 
frequency below 1 MHz, the filter could recursively filter its own output at least 50 times, 
thus completely eradicating the notch frequency from the signal. Such values are perfectly 
acceptable in several signal acquisition tasks, namely those in biomedical engineering, where 
notch filters are often necessary, and will not introduce a noteworthy delay. Results for an 
example ECG signal acquired with a 12 bit ADC are presented in Fig. 9.  

Despite having to introduce a number of practical considerations and adjusts in this 
conceptualized scenario, this study sustains a number of potential new developments using 
FPGA in the digital signal processing area, and confirms FPGA as a very powerful solution in 
the analogue signal processing field as well. 
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