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Abstract

In this paper, a comparison analysis of three @iffealgorithms for the estimation of sine signatgmeters i
two-channel common frgiency situations is presented. The relevanceigfsituation is clearly understood
multiple applications where the algorithms haverbapplied. They include impedance measurementsy
currents testing, laser anemometry and radio receisting ér example. The three algorithms belon:
different categories because they are based oereiiff approaches. The ellipse fit algorithm is epeetric fi
based on the XY plot of the samples of both signBlfe seven parameter sine fit algorithm is a legstare
algorithm based on the time domain fitting of agéntone sinewave model to the acquired samples
spectral sinc fit performs a fitting in the freqegrdomain of the exact model of an acquired sinenwav th
acquired spectrum. Multipleimulation situations and real measurements areidad in the comparison
demonstrate the weaknesses and strong points lofadgarithm.

Keywords: sinewave parameter estimation, ampliamephase measurements, seven parameter sirkpie e
fit, spectral sinc fit.
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1. Introduction

Scientific and technological evolution dependstmndbility to measure physical quantities
with ever increasing accuracy. Researchers inngteumentation and measurement field have
produced both hardware and software innovations éhable very accurate measurements.
Special attention has been given to signal proegsaigorithms such as the ones used to
estimate the parameters of acquired sinewaves. nBeel for algorithms that allow the
characterization of analog to digital converters tlee IEEE to include in the 1057 standard
[1] two algorithms that estimate sinewave paransetdre three-parameter sine fit and the
four-parameter sine fit algorithms. The former ged to estimate the sinewave parameters
when its frequency is known, while the last one@sed when either the signal frequency or
the sampling frequency are not accurately known.

For many applications, such as impedance measutsrign eddy currents testing [3],
laser anemometry [4], radio receiver testing [5¢l aneasurements of active and reactive
power under sinusoidal conditions [6, 7], theraiseed to estimate the parameters of two
common frequency sinewaves usually acquired simedtasly. To this end, an extension of
the algorithms standardized in [1] was developeatiiafkknown as the seven-parameter sine fit
algorithm [8], which uses the data from both chdsmaed takes advantage of the fact that the
frequency is the same for both sinewaves. Thisrdgo has since been adapted for efficient
implementation in DSP systems [9]. A different aygoh, based on the XY plot of the two
common frequency sinewaves has produced the efiipasigorithm [10], which has also been
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modified to be implemented in DSP applications [1Rgcently, a new algorithm called
spectral sinc fit [12] has been developed to eg@rntize two sinewave parameters. It relies on
the fitting of the exact theoretical spectrum afiadowed sinewave to the spectral content of
the acquired sinewaves.

In this paper, the performance of the ellipsesilyen-parameter sine fit and spectral sinc
fit algorithms is analyzed and compared. Using ®esitee numerical simulations the accuracy
and precision of the amplitude ratio and phasesifice of the two sinewaves is studied as a
function of signal to noise ratio, sine amplitudesl sine phase difference. For the sinc fit and
sine fit algorithms, an analysis of the estimatezhjdiency accuracy and precision is also
performed. This analysis is not possible in thgsd fit algorithm since the frequency is not
estimated. The results are also compared to then&rRao lower bound of two common
frequency sinewave parameter estimators, developgd®]. The analysis and comparison of
the three algorithms is complemented with measunémesults of two acquired sinewaves
with added noise. The multiple acquisitions arentpeocessed by each algorithm to assess
their accuracy in a practical situation.

The paper is divided into five sections includihg tntroduction and the Conclusions. In
Section 2, a detailed overview of the three alpong under analysis is given. Section 3
presents the results of the numerical simulatieréopmed for each algorithm. A comparison
between the three algorithms and the Cramer-Raerlbaund is also presented here. Finally,
the measurement results are presented and anahy3edtion 4.

2. The algorithms

This section describes the three algorithms condparethis paper: ellipse fit; seven-
parameter sine fit; and spectral sinc fit. The goflthese algorithms is to estimate the
amplitudedD; and phaseg of two acquired sinewaves modeled by:

u (t) = D cog( 2tft+@ )+ G = A cog2mft)+ B sif2mf)+ C (1)

wherei is the channel number£1, 2),A is the in-phase and the quadrature component of
each sinewave. Some algorithms also estimate thec@@ponentsC; and the common
frequencyf.

In most two-channel applications the value of thgktude and phase of each signal is not
required. The only values needed are the amplitted® D,/D; and phase difference
Ad =@, —@,. However, some algorithms require that the frequérmust also be estimated

since it is not accurately known. This is due te tincertainty of the generated sinewaves
frequencyf and uncertainty of the sampling frequemhgcy

The Cramér-Rao lower bounds (CRLB) for parametgémesion of dual-channel common
frequency sinewaves was determined in [13] for abiased estimator under a Gaussian
assumption using the signal to noise ratio defased

D?

SNR =—-,
R 207

(2)

where o’ is the variance of the zero-mean Gaussian whiteraf signal.
For the relative amplitude ratio, the standard alén that corresponds to the CRLB is:

Op,/p, _ SNR;+ SNR, 3)
D,/D, \NSNR,SNR,
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while the standard deviation that correspondséditbund of the phase difference is:

5 [0]2180 SNR + SNR,
o m | NSNR, SNR,

(4)

and the normalized standard deviation that cormdpao the bound of the estimated
frequency is:

. - 12
+© \(2n)*N3(SNR+ SNR)

In this section, the sinewave parameter extracitonlustrated for each of the three
algorithms using two simulated sinewaves sampled.at 96 kS < with N = 200 samples.
The waves parameters &dg=1V,D, =0.25V, f =1kHz andA¢ =25 . A signal to noise
ratio SNR = 30 dB was considered in both sinewaves.

()

2.1. Ellipsefit

The ellipse fit algorithm was first developed id]land improved for numerical stability in
[10]. It was then proposed as a non-iterative plaoe to estimate the amplitudes and phase
difference of two common frequency sinewaves [15].

The time dependence of the sinewaves can be destéyparametrically plotting the two
sinewaves in a XY plot, creating a Lissajous cuSice the two sinewaves have the same
frequency, the figure will be an ellipse, exceptewhthe two waveforms are in phase or
opposition which makes the ellipse degenerateargtraight line.

Algebraically, the time dependence in (1) can lmiahted by rewriting them as:

1= 2

which is the ellipse equation. This correspondb&general conic [9]:
Fu,u)=af+byy+ cg+ dy ey go @)

with the constraintA =b®—-4ac<0 so that the conic is an ellipse which correspotals
A £ nmt with neZ . This constraint can be, by scaling of the corig ransformed into
b’ -4ac=-1.

The conic model (7) is fitted to the sinewave daka a non-iterative constrained
minimization process based on Lagrange multipli#g§, which yields the model parameters

[a,b,c, d, e d. The sine amplitudes are given by:

Dl D2

_1 N @)
Jka' Jke'

wherek is the scaling factor to ensuie —4ac=-1. The phase differencé¢$ can be

determined by:

cos(Ad) = _sign—\/(ajc)b : (9)
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while its sign is obtained by observing the rotatatirection of the ellipse. To avoid errors
due to the presence of noise, a voting system wgpéemented to determine the rotation
direction as described in [11].

The amplitude rati®,/D; is:

P_ |2 (10)
c

and is independent of the scaling fadtor

Fig. 1 illustrates the ellipse fit procedure wikie ttwo sampled sinewaves plotted in an XY
plot. The dots represent the noisy sinewave datagpand the line shows the ellipse fitted by
the procedure described above.

0.3

0.2

u, [V]

0.1

02

-0.3

-1.5 -1 -0.5 0 0.5 1 1.5
u [V]
Fig. 1. Ellipse fit of two sinewaves with; =1 V,D, = 0.25 V,f = 1 kHz, A¢ =25 andN = 200. The dots
represent the sampled data and the line reprethentisted ellipse.

The original ellipse fit implementation [10] was difted in [11] to require only the
construction of3x 3 matrices with a total of only 18 different eleme(ftsats) independently
of the number of samples. This is a major advantagerms of memory requirements of the
algorithm.

2.2. Seven-parameter sinefit

Sine fitting algorithms were standardized in [1} #®DC characterization. In the three-
parameter version, the amplitude, phase and DC coemt of an acquired sinewave, of
known frequency, are estimated in a non-iteratea&st-squares procedure. Since in most
cases the frequency is not accurately known, theff@arameter sine fit version estimates the
sinewave amplitude, DC component and phase alotlg w& frequency. In this case the
algorithm becomes non-linear and an iterative noeal least-squares procedure is needed.
The three- and four-parameter sine fit algorithmes saitable for single-channel data and can
be independently applied to multi-channel data.

The seven-parameter sine fit algorithm was develope an extension of the four-
parameter algorithm for dual channel applicatiorsen® the two signals have the same
frequency [8]. In each iteratioon the algorithm estimates the sinewave parameters

X =[ A" BT af? AT BT dz’“T, where Af(™ is the frequency correction for the
current iteration. These estimates are obtainad:fro
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o = [(D““) /o m)T[(D( )’ y] (11)

T . .
wherey =[ U, Uy,... Uy Uy, U,,.. Uy | containsN samples of both signals and

D™D = ng_l) p(lnﬂ) Oy 5 (12)
0y P QM

where 0, , is aNx3 zero matrix and

_cos(Biyl) sir(Bi ,1) 1 a,

oy o| coslBiz) siBe) 1 ey % (13)

_COS(:Bi,N ) S"(ZBLN )

with B, =™, and a, = —2Tr,6\(”"1)l;’n sin(Bivn) + ZJTB(WI)I}D CO:{Bi n) wheret —are the

timestamps of signal

The initial estimates are obtained from the intéafsal Discrete Fourier Transform
(IpDFT) which yields a good frequency estimatior6][1The three-parameter algorithm is
then used in each signal to estimate the remathingial parameters. The iterative procedure
terminates when a predefined maximum number cdtitans is reached (nonconvergence) or
the relative frequency correctialf / f is below a certain threshold (convergence).

In Fig. 2, the sampled sinewaves are shown witk (fotu;) and crosses (far,) while the
sinewaves reconstructed with the parameters estthiat the sine fit algorithm are shown by
continuous lines.
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Fig. 2. Seven-parameter sine fit of two sinewavigs v, = 1 V,D, = 0.25 V,f = 1 kHz, A¢ =25 andN = 200.

The dots represent tlug sampled data, the crosses representtlsampled data and the lines represent the
reconstructed sinewaves.

This algorithm involves the creation of a matrix2Nx7 floating-point numbers. As the
number of samples increases, the memory requirenvahtlimit the algorithm applicability
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in a DSP implementation. In [9], a more efficierdrsion is presented that requires only
3N+63 floating-point memory positions.

2.3. Spectral sincfit

The spectral sinc fit algorithm has been recentbppsed as a new method to estimate the
parameters of an acquired sinewave [12]. The methddased on fitting the theoretical
frequency spectrum on the spectrum of the measigedls. The spectral sinc fit method has
been extended to be applied to two-channel commemuéncy acquisitions.

The acquisition of a limited number of samples gsiiealent to applying a rectangular
window to the sinewaves. The theoretical spectrisuoh a sinewave is [12]:

X[ = DP[@:%[“[Z"E‘Z"%] & “[2”%* ZTTf] é] (4

wherek O [-N/2+1; N/2] andW(w) is the spectrum of a rectangular window;, an aliased
sinc function:

sin[zN] S
W(w)=—=Ze2 ", (15)
sin[;)]

The resulting two-sided spectrubﬁ [k] consists of two overlapping aliased sinc functions
centered attw, =+2mf/f .. The maximums ofX, [k] are not centered at the frequencies
+w, due to the leakage of one sinc into the othereNwat in model (14), the DC component
Ci is not included since in most applications it @ iMmportant (it does not carry information
about the measured quantity).

The algorithm searches for the sinewaves paramgsigrsninimize the cost functions:

t= S [(ORalK= X o B +( D P A= XL ] (16)

K=Knax—1

where X, [k] is the spectrum of each acquired signal.

From (16) it can be seen that the cost functioeseamluated in only three points of the
spectrum, the point where the measured amplitudetnspn[xi[k” has its maximumkg,a,)
and the two neighboring points.

The algorithm exploits the fact that the relationwsen the theoretical spectrubﬁi [k]
and the amplitudeD, is linear (see (14)) to reduce the number of egBoh parameters to
three: two phases and the common frequency. TheitadgID. is then calculated using the
estimated parameters:

k

max +1

Y (RrelKI X e K+ Pl B Xl B)

D_ = k:kmax_l . (17)

i Kinax t1

> (P + Pl K)

k=kpay—1
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The search for the minimums is an iterative procedoat uses the Gauss-Newton method.
The initial frequency estimate is obtained by tip®FT [16] and the remaining initial
parameters are obtained by applying the three-patearaine fit to each measured signal.

In order to compensate for the possible differégrad to noise ratios in each of the two
measured signals (due &g, noise, spurious components, harmonic distor}joims each
iteration weights are assigned to each signal aed in the Gauss-Newton method:

s
(pim) (p(lm—l) 'm_
m | —| (m) (m" 1 wle Ogp rg,lml)
2 1 _[J } max(w, W, )| Ogs Wl r(md ||’ (18)
£ (m) f (M) ) 6,6 2'6 ]| I Re
r(m_l)
Lf2im” |

wherew; are the weightsls is a 6x6 identity matrixQs ¢ is a 6x6 zero matrix[J]T is the
pseudo-inverse of the Jacobian mafithe superscripinf) denotes the iteration number and
ri are the fitting residuals:

DR [ =1 = X [ K=
=l DRk X [k | (19)
DR [k +1] = X [ Ko+ ]

The weightswn; are the LS errors, calculated in the time domaitha difference between
the measured signal and the signal reconstruciad tie current estimates of the parameters.

The search ends when the relative change of thgudrey estimate drops below a
threshold or when the preset maximum number ohtitens is exceeded. The weighisare
used to estimate the Cramér-Rao lower bound (CRIifBjequency estimation [13] which is
then used to adjust the threshold level. This adapetting of the threshold level has an
advantage over using a fixed setting because wepts the threshold level to be set
unrealistically low (below the CRLB) or too high.

The main advantage of this algorithm is that tkeeative part can be accurately computed
using as little as three sample points per sigtied (hree values of in (16)) making it
memory wise very efficient since only the initiaF /s are done with the full number of
acquired samples.

Fig. 3 shows an example of amplitude spectrumswaf $ampled sinewaves and the
spectrums that were fitted on them.

0.6 ! — 0.6 . —

— — X, (21k/N — — X, (21Kk/N
S 05 IX,(2m/N) | | S 05 IX,(2r/N) ||
— — IX,[K]I - — IX,[KII
X 0.4 % 0.4
()] 4 |
g o3 g o3
= =2
£ 0.2 £ 0.2
Q' [-
£ 0.11 £ 0.11
< <

0 ‘ ‘ ' 0 ‘ ‘ ‘ :

0 2 4 6 8 10 0 2 4 6 8 10

k k

Fig. 3. Spectral sinc fit: positive frequenciedtud two-sided amplitude spectrums of two sinewaves
(D;=1V,D,=0.25V,f=1kHz,Ap =25 andN = 200) and the fitted spectrum.
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3. Numerical simulations

To assess the performance of the three algorittimey, were implemented in Matlab and
several tests were executed. Since the ultimateigoa estimate the amplitude ratiDAD)
and the phase differenc&d(), the tests estimated the amplitude ratio errer,(ihe difference
between the estimated amplitude ratio and the iegboatio) as well as the phase difference
error. For each set of tested parameters, 100 Gf@emt runs were executed to obtain the
average values and the corresponding standardtesgaln each run, the initial phase of the
first signal (p) is a random variable with a uniform pdf betwed®0° and 180°. Signal
frequency is 1 kHz and 1920 samples per channdb&en at 96 kS/s. White Gaussian noise
Is added according to each signal’s signal-to-nmasie (SNR).

3.1. Signal to noiseratio analysis

In this analysis, the signal amplitudes are fix¢dDg1V andD,=0.25 V. Since it is
known that the ellipse fit algorithm cannot workanA¢=180° andA$=0° because of ellipse
degeneration, the phase difference is a uniformirptiie £[10°;170°] range. This issue will
be analyzed and discussed in Section 3.3.

The results for the ellipse fit are shown in Figadd Fig. 5. It can be seen that the
algorithm is biased for signal to noise ratios ¢tgtly below 40 dB. As expected, the standard
deviations are reduced with the increase in SNR.

0.3- -- — 10
5 T Ao
E oo T - fw
“ T £
o T T c
5 o01{l AU 2§
a (SRR ) £ 810
S oW s
g Vi w4
© "'/III”” 77 7 - -
= 0 it
< R i 8
gy | L
O —— ———— 10
0 —_—
20 49 60 go ‘20 60 80 100 60 go >0 o 60 80 100
SNR; [dB] 100 0 SNR, [dB] SNR; [dB] 100 0 SNR, [dB]
Fig. 4. Average amplitude ratio error (A) and cepending standard deviation (B) for the ellipse fit
algorithm as a function of the two signal to naiatos forD,=1 V andD,=0.25 V.
0.2- | T >
A o 10 - i —
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SNRZ[dB]BO 80100 0 20 SNR; [dB]

Fig. 5. Average phase difference error (A) andesponding standard deviation (B) for the ellipse fi
algorithm as a function of the two signal to naiatos forD;=1 V andD,=0.25 V.
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Note that the fluctuations in the results of therage phase errors (Fig. 5A) for the lowest
signal to noise ratios are caused by the finite memof repetitions and that the corresponding
standard deviations are considerably higher than répresented fluctuatiore.@, for
SNR=30 dB the average error-8.005° and the standard deviation is 0.4°).

The results for the seven parameter sine fit acsvehin Fig. 6 while the results for the
spectral sinc fit are presented in Fig. 7. Theg®rithms are not biased and so the shown
results correspond only to the standard deviatiblzge that the evolutions of the standard
deviations are quite similar for these algorith@emparing with the ellipse fit algorithm, the
evolution pattern is the same, but the standarcatiens are higher for the ellipse fit.

In Fig. 8, the relative standard deviation of tlséireated frequency error is shown for the
seven-parameter sine fit and for the spectral sir{c.e., for the algorithms that also estimate
the signal frequency). It can be seen that thelteestiboth algorithms are in the same order
of magnitude but with considerable shape differeng@is is caused by the fact that the sinc
fit uses the information from the signal to noisgias it estimates in order to weigh the
information from the two signals giving more relaga to the signal with the highest SNR.
This means that if one signal has a high SNR it agbure a very good frequency estimate
without being influenced by the samples of the aignth the lower SNR. On the other hand,
in the seven-parameter sine fit the residuals ¢ Isggnals are not weighted and contribute
equally to the estimates. In this case, if onedidras a high SNR and the other has a low
SNR (and both have similar order of magnitude atugdis as is the case in Fig. 8), the seven-
parameter sine fit will assign equal weights to slgnals and the signal with the lowest SNR
will infect the frequency estimation causing a l@gktandard deviation.

D,/D; Error Standard
Deviation

Ad Error Standard Deviation [°]

0
20 40 100
60 60 80
80 40
SNR, [dB] 100 o 20 SNR, [dB]

60
SNR,[dB] - 80100 o 20 40 SNR, [dB]

Fig. 6. Standard deviation of the amplitude rafip ¢nd phase difference error (B) for the severapeter
sine fit algorithm as a function of the two sigt@hoise ratios fob,=1 V andD,=0.25 V.
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0 20 —_— ~
40 0 20
SNR; [dB]°* 80100 0 20 40 SNR; [dB] 60 89

60 70 100
SNR,[dB] - 80100 o 20 SNR, [dB]

Ad Error Standard Deviation [°]

Fig. 7. Standard deviation of the amplitude rafip §nd phase difference error (B) for the speditat fit
algorithm as a function of the two signal to naiggos forD;=1 V andD,=0.25 V.
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Fig. 8. Relative standard deviation of the estimddtequency error for the seven parameter sirgdirithm
(A) and for the spectral sinc fit algorithm (B) a$unction of the two signal to noise ratios iy=1 V and
D,=0.25 V.

3.2. Amplitude analysis

In this section, the amplitude analysis of the ¢hadgorithms is presented. The signal to
noise ratios are set to SNR 40 dB, SNR = 80 dB and the amplitudes are swept from 0.1V
up to 2 V with 0.1 V resolution. In Fig. 9 the réisicorresponding to the amplitude ratio error
standard deviation are presented for the threeitigus. Clearly, the results do not depend on
the amplitudes but rather on the SNR of the sigr@benparing the three algorithms it can be
seen that the spectral sinc fit results are idahtic the seven-parameter algorithm results
while the results obtained with the ellipse fit arkttle higher.

()] ()]
285 25
29 Z 9
5% 53
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Standard Deviation

0
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1 1.5
1.5 0.5
D, [V] 2 0 D, [V]

Fig. 9.Relative standard deviation of the amplitude ré&dicthe ellipse fit (A), seven parameter sindfj
and spectral sinc it (C) as a function of the tigmal amplitudes for SNR40 dB and SNR=80 dB.
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In Fig. 10, the corresponding results for the pherser standard deviation are presented.
Once again, the results of the spectral sinc fit tre seven-parameter sine fit are identical
and the results of the ellipse fit algorithm arnglgly worse. In the three cases, the results do
not depend on the signal amplitude but rather ersipnal SNRs.

S R

A¢ Error Standard Deviation [°]

|

-
© '
]

-
o U
N

005 3
D,[vi 1> 27 05

A¢ Error Standard Deviation [°]
A¢ Error Standard Deviation [°]

Fig. 10. Standard deviation of the estimated please for the ellipse fit (A), seven parameter sihéB)
and spectral sinc fit (C) as a function of the signal amplitudes for SNR40 dB and SNR=80 dB.

3.3. Phase analysis

Regarding the phase analysis, the tests that wafermed used;=1 V, D,=0.5V and
three different values of the common SNR. The inedoghase difference was swept from
-180° up to 180° with 0.005° resolution. As expegcthe seven-parameter sine fit and the
spectral sinc fit algorithms are independent on phase difference (results presented in
Table 1).

The ellipse fit algorithm is quite different. Due ¢llipse degeneration, the algorithm has
problems for phase differences near 0° and 1808h@sn in Fig. 11 and with more detail in
Fig. 12 - note that the peak value differences betwFig. 11A and 12A are caused by the
lower phase resolution in Fig. 11A). The rangeftdaded phase difference values depends on
the SNR values. Remarkably, in spite of the elligageneration, the algorithm is capable of
estimating the amplitude ratio without bias anchwite same standard deviation for all phase
difference values.

The results presented in Table 1 correspond todhess obtained with the three different
algorithms for different values of signal to nors¢ios and for the phase difference of 90° (to
avoid problems with the ellipse fit algorithm);=1 V andD,=0.5 V. For comparison, the
Cramér-Rao lower bounds, determined using the amsa(2)-(4) derived in [13], are also
included in Table 1.
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Fig. 12. Detailed view of Fig. 11 neaA$=0°.

Table 1. Comparison of the algorithms fay=90°.

0dB 45 dB 60 dB

D,/D; relative standard 1.5x10° 2.6x10™ 4.6x10°

deviation
Ellipse fit

Phase difference 2 2 3

standard deviation [q 8.3x10 1.5x10 2.6x10
D,/D; relative standard 3 -4 -5

Seven deviation 1.0x10 1.8x10 3.2x10

parameter sine

fit Phase difference 2 2 -3

standard deviation [q 5.8x10 1.0x10 1.8x10
D./D; relative standard 1.0x10° 1.8x10% 3.9x10°

deviation

Spectral sinc fit
Phase difference

-2 -2 -3
standard deviation [ 5.9x10 1.0x10 1.8x10

Pe/Ds rzlea\}::teiosriandard 1.0x10° | 1.8x10* 3.2x10°
Cramér-Rao
bound ;
Phase difference 5.8x102 1.0x1072 1.8x10°

standard deviation [
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Note that the results from the seven-parameter fdirsge identical to the ones obtained
with the spectral sinc fit and also identical te tbtramér-Rao lower bound. The results of the
ellipse fit are slightly worse.

4. Measurement results

In this section, the measurement results are piegeA Tektronix AFG 3022 function
generator was used to generate signals with adreyd = 1 kHz, amplitude®; =8 V and
D, =2 V and phase shith¢ = 25°. Two Agilent 33210A generators were used to addoan
Gaussian noise to these signals. The resultingisgrere acquired using the NI USB-9215A
data acquisition board (simultaneous sampling, iL6ifput range £10V), whose sampling
rate was set to 96 kS/s. The acquired signals e processed using the three estimation
algorithms.

In the following test, signals with different setjs of SNR were used. The acquired
signals were divided into 1 000 frames whose lengdb set to 288 samples (3 periods) and
1920 samples (20 periods). The ellipse fit, theeagvarameter sine fit and the spectral sinc fit
were then used to estimate the signals’ paramateesach frame. From these results, the
standard deviations of estimation of the signabsameters were calculated. The relative
standard deviation of the amplitude ratigy/D;) estimation error and the standard deviation
of the phase differencA¢ estimation error are shown in Table 2 while ttfandard deviation

of the frequency estimation error is shown in Tehle

Table 2. Measurement results — comparison of therighms.

Ellipse fit Seven parameter sine fit Spectral sinc fit
. Ph . Ph . Ph
D,/D; relative di fferaesnece D,/D; relative di ffeléesl?ce D,/D; relative di ffeléesl?ce

standard standard standard standard standard standard

deviation deviation [1 deviation deviation [1 deviation deviation [1
SNR; = 68 dB -4 -3 -5 -5 5 5
SNR, = 49 dB 5.6x10 1.8x10 3.4x10 2.8x10 3.4x10 2.8x10
SNR; =53 dB -3 -2 -4 -4 -4 -4
SNR, = 41 dB 3.6x10 4.3x10 5.3x10 5.2x10 5.3x10 5.2x10

N = 288

SNR; =42 dB -2 -1 -3 -3 -3 -3

1.3x10 1.6x10 2.0x10 2.0x10 2.0x10 2.0x10
SNR; = 30 dB * * * * * *
SNR; = 64 dB -2 -1 -3 -3 3 3
SNR, = 30 dB 1.2x10 1.5x10 1.8x10 1.9x10 1.8x10 1.9x10
SNR; = 68 dB -4 -4 -5 -6 5 6
SNR, = 49 dB 4.0x10 5.4x10 1.4x10 6.3x10 1.4x10 6.3x10
SNR; =53 dB -3 -2 -4 -4 -4 -4
SNR, = 41 dB 1.5x10 1.6x10 2.0x10 2.0x10 2.0x10 2.0x10

N =1920

SNR; =42 dB -3 -2 -4 -4 -4 -4

5.2x10 6.2x10 8.0x10 7.7x10 8.0x10 7.7x10
SNR; = 30 dB * * * * * *
SNR; = 64 dB -3 -2 -4 -4 4 4
SNR, = 30 dB 4.8x10 6.0x10 7.1x10 7.8x10 7.1x10 7.8x10

In the following measurement, signals with SNR58 dB and SNR =45 dB were
acquired. The acquired data were divided into 1f@@fes whose length was set from 192
samples (2 periods of the signal) up to 1920 sasn{@é periods) in order to investigate the
influence of the frame lengtN on the estimation results. The relative standawation of
the amplitude ratiol¥,/D,) estimation error and the standard deviation efgthase difference
A¢ estimation error are shown in Fig. 13 and the daesh deviation of the frequency
estimation error is shown in Fig. 14.
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Table 3. Measurement results — frequency estimation

Seven parameter sine fit Spectral sinc fit
Std. deviation of frequency Std. deviation of frequency
estimation error [Hz] estimation error [Hz]
SNR; = 68 dB 3 -3
SNR, = 49 dB 1.5x10 1.2x10
SNR; =53 dB 2 -2
SNR, = 41 dB 2.4x10 2.9x10
N =288
SNR; =42 dB 2 1
SNR, = 30 dB 8.4x10 1.1x10
SNR; = 64 dB 2 3
SNR, = 30 dB 2.1x10 2.8x10
SNR; = 68 dB 4 4
SNR, = 49 dB 1.0x10 1.5x10
SNR; =53 dB 3 -3
SNR, = 41 dB 1.4x10 1.7x10
N = 1920
SNR; =42 dB 3 3
SNR, = 30 dB 4.9x10 6.2x10
SNR; = 64 dB 3 4
SNR, = 30 dB 1.2x10 2.1x10
107 ‘ ‘ : —10" : : :

A —*—ellipse fit e, B —>—ellipse fit
9c -5~ 7-par. sine fit c —©-7-par. sine fit
52 —Hsinc fit 2. M
s e €107 ]
53 3
5T 10 ] o
ol o
95 7107}
ac ™ 5
N® o
N ol <l =
aw 0

10 ‘ 5 10° ‘ L
0 500 1000 1500 2000 < 0 500 1000 1500 2000
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Fig. 13. Measurement results — relative standavihtlen of the amplitude ratio (A) and standard idéen
of the phase difference error (B) as a functiosighal length\.

—©-7-par. sine fit
—+—sinc fit

Standard deviation of
the frequency error [Hz]

0 500 1000 1500 2000
N

Fig. 14. Measurement results — standard deviafidheofrequency estimate error as a function ofidig
lengthN.

The measurement results confirm the simulationlt®sin the considered situations, the
results provided by the seven-parameter sine fit e sinc fit are almost identical (the
respective plots are on top of each other in F3j. h cases where the difference between the
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two signals' SNRs is significantly differerd.§, the case of SNR= 64 dB and SNR= 30 dB
shown in Table 2 and Table 3) the sinc fit alganhithanks to its use of weights, provides
significantly better estimates of the frequencyntltize seven-parameter sine fit (see Table 3).
The estimates of the rest of the parameters ren@mparable, which is in accordance with
the behavior shown in Fig. 6, Fig. 7 and Fig. 8.

The results of the ellipse fit were worse thanrémults of the other two algorithms, mainly
in the case of the phase difference estimate.

5. Conclusions

In this paper the performance of three algorithms tivo-channel sinewave parameter
estimation was analyzed in a broad range of sdnatiThe two sinewaves have a common
frequency since this is the case in many applinatidhe three compared algorithms were
ellipse fit, seven-parameter sine fit and spedirat fit.

After the general description of the three algonsh presented with some detail regarding
their implementation, numerical simulations weredito assess and compare the algorithms
performance. The parameters used to evaluate énrfsrmance were the relative standard
deviation of the amplitude ratio error and the d&d deviation of the phase difference error.
Since the ellipse fit algorithm does not estiméaie frequency, the standard deviation of the
frequency error was only analyzed for the sinard sinc fit algorithms.

The first analysis considered the effect of thenaigto noise ratio on the parameters
estimated by each algorithm. In this case, for ¢hipse fit algorithm, the average of the
amplitude ratio error was also presented, configrire fact that this algorithm is biased for
low values of the SNR, while no bias effect wasniin the phase difference estimation. The
standard deviation of both amplitude ratio errod ghase difference error decrease with
increasing SNR as expected. The standard deviaéeults for the sine fit and sinc fit
algorithms resemble the ellipse fit results buthwlower values, indicating that both
algorithms perform better than the ellipse fit.hi&tugh the sine fit and sinc fit yielded almost
identical results for the amplitude ratio and phdgérence analysis, the frequency error
analysis shows that the sinc fit performs betteemvthere is a difference in the SNR values of
the two signals. This is due to the use of weightthe sinc fit algorithm which gives more
relevance to the data in the channel with higheRSN

The effect of the amplitude of each signal was ya®al next with a fixed, but different,
SNR for each signal. It was found that the ampétudtio error and phase difference error
standard deviations are independent of the sigmplifudes. Also, as in the SNR analysis,
the sinc fit and sine fit algorithms perform almadntically while the ellipse fit results are
slightly worse.

In the phase analysis, emphasis was given on tipsesfit algorithm due to the known
limitations of this algorithm for in-phase and oppmn sinewaves which make the ellipse
degenerate into line segments. Although the algorihas difficulties in these situations, it
still manages to correctly estimate the amplitiater

The evaluation of the three algorithms was compieste with measurement results. The
acquisitions were performed with different recaddths to show the influence of the number
of acquired samples on the performance of eachitigo The algorithms perform better as
the SNR increases and also as the number of sanmue=ases. The sine fit and sinc fit
algorithms performed identically while the ellipfseresults confirm that it performs slightly
worse especially in the phase difference estimation

To conclude, the sine fit and sinc fit algorithmerfprm equally well and are near the
Cramér-Rao lower bound. The sinc fit is slightlyttbe in the frequency estimation, for
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different SNRs of the signals. The ellipse fit, piés being fast and non-iterative, performs
worse that the other two algorithms, especially tibe phase difference is concerned.
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