www.czasopisma.pan.pl P N www.journals.pan.pl

N
S

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

P N METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, | SSN 0860-8229 &
www.metrology.pg.gda.pl L

POLSKA AKADEMIA NAUK

ADVANCED USER INTERFACE GENERATION IN THE SOFTWARE
FRAMEWORK FOR MAGNETIC MEASUREMENTSAT CERN

Pasquale Arpaia®?, Lucio Fiscardli*?, Giuseppe La Commara®

1) University of Sannidraculty of Engineering, Piazza Roma, 21— 82100eBento, Italy
(arpaia@unisannio.it, g.lacommara@gmail.com)

2) CERN, Department of Technology, Group of MagSefserconductors Cryostats, CH 1211 Geneva 23z&tend
< lucio.fiscarelli@cern.ch, 41 22 767 1031l

Abstract

A model-based approach, the Model-View-Interactaradigm,for automatic generation of user interfaces in
software frameworks for measurement systems isqsegh The Model-Viewnteractor Paradigm is focused
the “interaction” typical in a software frameworlr fmeasurement applications: the final user intsradth the
automatic measurement system executing a suitagleldvel script previously written by a test engin
According to the main design goal of frameworkse firoposed approach allows the user interfacese
separated easily from the application logic foramting the flexibility and ngsability of the software. As
practical case study, this approach has been appbethe flexible software framework for magn
measurements at the European Organization for Hucksearch (CERN). In particular, experimentallte
about the scenario of permeability measurementsep@ted.

Keywords: software measurement systems, magnetisumements, automatic test equipment (ATE).

© 2010 Polish Academy of Sciences. All rights nese

1. Introduction

Main advantages of automatic measurement systemstha® improvement of the
performance/cost ratio and more accurate qualitgrob In the last years, their high growth
rate has pointed out the need for reusability aftexg measurement software. Organizing all
the software applications for measurement systama framework [1] is very useful to
decrease the software development cost by incrgalsenreuse of existing elements and the
flexibility of running applications. However, tradinal systems built as monolithic entities
often have difficulty to exhibit a flexible behawuio

In a measurement software framework, first of #ie roles of the test engineer and
application user have to be highlighted [2]. In finst phase, after designing a measurement
process, the test engineer prepares a script whereorresponding procedure is expressed
formally, but in a user-friendly language [3]. Thethe framework processes the script
suitably by generating an executable measuremétease application. In the second phase,
the final user executes the software applicatioteracts with the measurement system by
providing the required input as well as by configgrthe instruments, and finally starts the
measurement process on the devices. The applicasiemneeds to interact with the software
application through a convenient graphic interfdoecarry out easily and quickly the
measurement procedure. Therefore, the test engsheeaid deal with its implementation.

Such as most interactive applications, producingatiractive Graphical User Interface
(GUI) for a measurement software framework is noteasy task [4].The powerful GUI
libraries offered by the operating system can bedusf course, but the offered level of
abstraction is, in general, rather low. Theref@eyisual editor, such as many commercial

Article history: received on Jan. 31, 2009; recdiirerevised form on Jan. 25, 2010; accepted on &e2010, available online on Feb. 26,
2010; DOI: 10.2478/v10178-010-0003-y.

www.czasopisma.pan.pl P@N www.journals.pan.pl
P
C>
S~

P. Arpaia et al.: ADVANCED USER INTERFACE GENERATIS THE SOFTWARE FRAMEWORK FOR MAGNETIC ...

programming environments, should be used. Sucls taah out to be very user-friendly, even
though merging the provided code with the existomg is in general not easy. Moreover,
graphical representations depending on run-tima ciatnot be drawn in advance.

Summarizing, a visual editor is a useful tool fomgle applications, but for more
complicated GUIs, the test engineer has to strugtjlewith a low-level programming code.
In addition, the quality of manual GUI developmédapends strongly on the experience of the
designers as well as on their skills in the platf@nd development tools.

For these reasons, user interface generation has the subject of research for many
years, sometimes under the diction of “model-basset interfaces” [4], because interfaces
are generated by dividing the application domaimwdels. The original contribution of this
research field was to allow programmers, as tegineers, not typically trained to design
interfaces, to produce user interfaces customiaédeir own applications.

On the other hand, the main feature of automatibrtigues for generating interfaces is to
allow the designer to specify them at a very higlel, with the details of the implementation
provided by the system [4]. Nevertheless, this aggh is very unspecific and further effort
is required to tailor the model to a definite comtsuch as the frameworks for measurement
software products. Designing interaction rathentimierfaces attempts to enhance the quality
of the interaction between user and computer, dotgrto the main paradigm: “user
interfaces are the means, not the end” [5].

In the context of measurement software productbView [6] is very popular. It is a
graphical programming environment used to develepsaurement and test systems by using
graphical icons and wires well symbolizing the ddlaw. The approach of the G
programming language [7], on which LabView is basedo emphasize the objects involved
in the application and the data exchange among thiémless cardor the temporal sequence
of the actions to be executed. Conversely, in anific and academic community, scripting
languages are commonly used [8]. They point out dperation’s order and allow the
temporal constraint in the measurement applicabdre managed easily [9].

In this paper, an evolution of model-based usegriate generation in a measurement
software framework based on domain specific languiag scripting [3], the Model-View-
Interactor paradigm, shifting the test engineer from designinterfaces to designing
conceptual interactions, is proposed. In particular Section 2, a brief state of art is
introduced; in Sections 3 and 4, the proposed jpgraénd the corresponding architecture
will be treated and, in Section 5, some experimeptalts and a case study will be shown.

2. Model-based approach

In the model-based approach to GUI generationgdalysis, design, and implementation
are based on a common repository of models. A migdeeldeclarative specification of some
single coherent aspects of a user interface, ssdheaappearance, the interaction with the
user and /or the interface with the underlying agapion feature. By focusing the attention on
a single aspect of an interactive system, a modelbe expressed in a highly-specialized
notation [5]. This property makes systems developsidg the model-based approach to be
implemented and maintained more easily. Unlike emtional software engineering, where
designers construct artefacts whose meaning aedamte can diverge from the delivered
code, in the model-based approach designers bwldels of critical system attributes and
then analyze, refine, and synthesize these maadkelsunning systems.

Early examples of model-based tools include Colihand HP/Apollo’s Open-Dialogue
[11], providing the designer with a declarative daage for listing the input and output
requirements of the user interface. The system tiererated the dialogs to display and
request the data. These evolved into model-bass@rag, such as Mike [12], Jade [13],

www.czasopisma.pan.pl P@N www.journals.pan.pl
P
C>
S~

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

UIDE [14], ITS [15], and Humanoid [16]. These systeexploit specific techniques, such as
heuristic rules, to automatically select interaettomponents, layouts, and other details of the
interface.

Generating interfaces automatically is a very diffi task, because automatic and model-
based systems constrain significantly the kindsntérfaces they can produce. A related
problem is that the generated user interfaces anerglly not as good as those created by
conventional programming techniques. However, gcgm domains with very few particular
graphical requirements, such as the measuremerdidpautomatic techniques can be used.

Model-based GUI generation relies on the princigat development and support
environments may be built around declarative modebks system [17]. Developers using this
paradigm build the interface by specifying decli@eatodels, rather than writing a program.
Generally, for any interactive system, three kiofimmodels can be derived [18]:

— Presentation models, specifying the appearancsesfiaoterfaces in terms of their widgets
and the related behavior.

— Application models, specifying the parts (functicersd data) of applications accessible
from the user interface.

— Dialogue models, specifying end-user interactiaghsjr order, and how they affect the
presentation and application.

3. Mode-View-Interactor paradigm

In the following, (i) the basic concepts, (ii) thiew, (iii) the interactor and (iv) the model
of the proposed Model-View-Interactor paradigm idostrated.

3.1. Basic concepts

The proposed approach to generate interfaces isuresaent system frameworks starts
from a fundamental consideration: usually test eegis are not trained to design interfaces,
but at the same time they would like to maintaihigh level of usability in measurement
applications.

In this case, test engineers are responsible fepgoing test scripts [19], where the
interaction between measurement application aral fiser are described at high level [3],
without any indication of GUI aspects.

Therefore, the main concept underlying the propaggatoach is the interaction between
the user and the GUI. Interaction is a kind of@ttccurring when two or more objects have
an effect upon one another. Examples of simpleraot®ns in measurement software are
reading a user input or displaying a value.

Test engineers are prevented from dealing with gaaphical characteristic of software
measurement system, by separating functional fomk aspects of the interface. Accordingly
the architecture is organized by a three-way deasitipn: (1) the parts representing the
model of the underlying application domain, (2) thay the model is presented to the user,
and (3) the way the user interacts with it.

This proposal is called the Model-View-Interactd\(l) approach [20] (Fig. 1), derived as
an evolution of the MVC (Model View Controller) amdVP (Model View Presenter) [21].
The Model represents the model domain, and, in cseeasurement software framework, is
constituted by the core classes. The views coirstbie aspect of the generated GUI, defined
by a GUI expert, completely transparent to the ®@sgineer using the framework. In
particular, the GUI expert defines a set of prestgon models used to generate the final user
interface. The interactor represents the tie baetweaedel and view, by making available a
different component specifying the GUI desired vatnar.

www.czasopisma.pan.pl P N www journals.pan.pl
-
‘\.4

P. Arpaia et al.: ADVANCED USER INTERFACE GENERATIS THE SOFTWARE FRAMEWORK FOR MAGNETIC ...

DSL Script ! DSL d h
'| “INTERACTOR” [T~ Xpand
L | o
| it [XML
' XML Descnptlon 1 R GUl GUI
! “VIEW” > Parser —
: ; ENGINE APPLICATION
! B
| FFMM CORE Ly FFMM
| “MODEL” : Classes
.

Fig. 1. MVI Architecture.

In this way, the test engineer can define the auon between the measurement
application and the user by means of a set of Bpegbjects: the Graphic Interactor
Component (GIC) (Section 3.3).

3.2. View

The view description is a XML-file containing ald presentation features of the GUI.
XML stands as a solution for the standardizatiothefinteroperability between applications.
Therefore, XML-based languages can be employedefmal user interfaces. They are the
XML-compliant user interface definition languagedL-UIDL) [22] and their advantage is
to be transparent to different interface techn@sgand to provide a homogeneous resource
for heterogeneous ways of interaction.

Generally, at graphical level, the user interfaamtent can be organized in areas,
represented usually by a rectangular bounding shEpese rectangular areas are referred as
box. Graphical user interface layouts can be ssem eontainer subdivided in boxes, where
the graphic components (text editor componentpbsitmenu item, and so on) can be placed.
One box can contain others boxes, and so on.

a) b)
Input window li_E-J
Box_1
Input form
Box_2 value 123
Box_3 ok || cance |
Box_6 Box_7

b

Fig. 2. Example of a view model (a), and the reldieal form aspect (b).

Two types of boxes can be distinguished: (i) hariab boxes (HBox), with elements
aligned horizontally; and (ii) vertical boxes (VBoxvith elements aligned vertically.

As an example (Fig. 2a), the View model used ioranfasking for an input value to the
application final user, is considered. The layositaawhole is formed by 3 VBox (Box_1,
Box_2 and Box_3):

— Box_1 will contain a text component for the title.

www.czasopisma.pan.pl P@N www.journals.pan.pl
P
C>
S~

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

- Box_2 is formed by two HBox: Box 4 and Box_ 5. Tharnier will contain a text
component for a description, and the latter wilhteon a text editor component to read an
input value.

— Box_3is formed by two HBox: Box_6 and Box_7. Bethl contain a button component.
Button in Box_6 will command an action to confirmserted input value, while button in
Box_7 will command an action to discard the operati

End user will see a form with the aspect shownign Zo.

The View model in Fig. 2a is stored as a declaeatnodel, containing also the information
about the GUI component properties (character fiaxt, component colour and text editor
component positions, background and foregrounducsjoas well as further information
related to the GUI aspect).

Basically the proposed approach is based on a akgabf different View models,
associated to one or more interactive componemt$, &s shown in the next Section.

<?xml version="1.0"?>
<window id="box example" title="Input Form"
<vbox>
<staticText id="description”/>
</vbox>
<vbox>
<hbox>
<staticText id="label"/>
<ctrlText id="control"/>
</hbox>

</vbox>

<vbox>
<hbox>
<button id="ok" label="OK"/>
<button id="cancel" label="CANCEL"/>
</hbox>

</vbox>

</window>

Fig. 3. View XML description example.

A view description example for a simple window igpttted in Fig. 3. The view
description file is written by the application enger during the software development phase
in order to fix the GUI presentation look. Then,rah time, this file is read by the XML-
Parser and the information is used by the frameuwmdenerate the graphical elements.

3.3. Interactor

The main aim of the proposed Model-View-Interacparadigm is to permit the test
engineer to develop complicated GUI applicationghva minimal effort and moreover
without graphical knowledge. This aim is achievedimty through the Graphic Interactive
Component (GIC), from which any customizable graphicomponent is derived. This
component encapsulates all common aspects of gagumponents [23, 24]. It is generated
automatically for any type &.g int, float, double, or more complex data types.

Namely, the GIg, defined for the type T, can:

— be used by test engineer to display automaticaljyvalue of type T;
— be used by test engineer to plot on screen an afrigpe T,
— be used by application user to view and edit soateevof type T;

www.czasopisma.pan.pl P@N www.journals.pan.pl
P
C>
S~

P. Arpaia et al.: ADVANCED USER INTERFACE GENERATIS THE SOFTWARE FRAMEWORK FOR MAGNETIC ...

— communicate any value change made by the user dghdyrogram to any other de-
pending component.
For any concrete type T, the compiler is able tavdeautomatically an instance function
of this meta-description for the given type.

BEGIN SCRIPT “ DSL example”
Def FDI “FDI1” with(2);
Def GIC “InputParam”;
Capture InputParam with (2,”Parameter request”,“FDI bus:");
BEGIN MTASK "Task1(start_procedure)"

END MTASK
BEGIN MTASK "Task2(flux_measurement)"

END MTASK
END SCRIPT

Fig. 4. DSL script example.

The test engineer, in the Domain Specific Langud@¥el) script writing phase [3] (Fig.
4), defines the component contained in the GUI thiedt input/output data by using the GIC
components. Then, after building the script by nseahthe DSL-Xpand component, the
framework can generate the application with therddssUI.

3.4. Model

The model is composed by the data structures andldisses of the framework involved in
the GUI generation and subject to change by themypfal example is offered by the device
classes concerned to the configuration step ofrteasurement procedure. During this phase,
a broad interaction whit the user is required toge the devices, the data needed to the
configuration are structured in the class definitighere the data variables are preset for type
and number by the application developers.

4. The GUI engine

The classes architecture allowing the automaticr usterface generation is named
GUlengine and is shown in Fig. 5.

The GUI engine is composed by several classe&l() providing to TestManager the in-
put/output features without graphical details; Gi¢nericWindow, giving the interface for all
the frames; (iii) InputWindow, OutputWindow, andoRBNindow, the concrete windows; and
(4) LayoutManager, responsible for instantiatingharete windows defining the graphical
features parsing the view description file and coumg the dimension and position
parameters [25]. The View is kept clear-cut frone tmteractor by implementing the
GUlengine complying with the abstract factory patfeften employed to separate the details
of GUI implementation from its general use.

As an example, if the test engineer needs for gskéninput an integer value at runtime, he
will use the capture method of a GIC object inttteasurement script [19]:

— Def GIC “InputParam”.

www.czasopisma.pan.pl P N www journals.pan.pl
-
‘\.4

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

— Capture InputParam with (param,1, “Input form”, lvel’).
By inserting in the script only these instructioasorm is displayed, and the value entered
by the user is stored in the variable pointed.

GIC) GenericWindow
-.—y mmm—————— E
|

“USEED

I [

[l
HUSESEY

|
|
TestManager :

InputWindow

ey
LayoutManager|

OutputWindow

|
| PlotWindow

winslancas

Fig. 5. Abstract Factory Pattern for the GUI engine
5. Experimental results

At CERN, the European Organization for Nuclear Rede the design and the
implementation of the LHC (Large Hadron Collide®quired a big effort in all the
engineering fields. In particular, the test of #igout 8,000 LHC superconducting magnets
working at 8.3 T and 1.2 K, stimulated new strigeguirements for magnetic measurement
software. The Flexible Framework for Magnetic Measoents (FFMM) was designed at
CERN in cooperation with the University of Sannid9] to satisfy a wide range of
measurement requirements and to integrate morerperfg flexible hardware [26]. FFMM
iIs a software platform under development aimedeategating in a systematic way all the
measurement software applications for testing #régbe accelerator magnets.

FFMM software applications can command several asyi such as encoder boards,
digital integrators, motor controllers, transduceasid so on [2]; and synchronize and
coordinate different measurement tasks and acfipf28]. Now, such as the new generation
of measurement frameworks, FFMM in addition tos$gtall the functional requirements can
provide means to generate the graphical user auerf

In the following, (i) the case study of magnetiarpeability measurement, and (ii) the
measurement results are reported.

5.1. Case study of magnetic permeability measurement

The proposed case study is aimed at illustrating tiee proposed approach supports test
engineers in generating the GUI automatically fom@asurement procedure based on the
methods of the split-coil permeameter [29].

The split-coil permeameter is composed by two cedsind in a toroidal shape, that can be
opened allowing to wrap a toroidal specimen. Orieigdo excite the field and the other one
to capture the flux.

A PC, hosting the FFMM Automatically-generated Usderface (AUI), is linked to a
DAQ [30], in order to control the voltage contrallpower supply of the excitation coil by the
analog output (Fig. 6).

A PXI crate, containing:

www.czasopisma.pan.pl P N www journals.pan.pl
-
‘\.4

P. Arpaia et al.: ADVANCED USER INTERFACE GENERATIS THE SOFTWARE FRAMEWORK FOR MAGNETIC ...

- two CERN FDI (Fast Digital Integrator), a CERN prigpary PXI board general-purpose
digitalization board, configured for the coil sigrecquisition and numerical integration
[26];

— a CERN encoder board, a CERN proprietary PXI bofardmanaging the encoder pulses
and feeding the trigger input of a digital integrat

is also linked to the PC and used to acquire, timatlhe FDIs, the value of the excitation

current, the relative flux, and to generate thgger signal by the encoder board.

The measurement algorithm is composed by the fatigwteps:

setup of all the devices needed in the procedure
demagnetization of the specimen [29];

start the acquisition of flux and current;

start the generation of the signal controlling power supply;
wait for the reaching of the selected maximumesu value;
stop the acquisition.

This procedure is codified in the application scapd processed by the FFMM framework

in order to produce an executable file.

oA WNE

VC Power
Supply
It

DAQ

\\\l liy

s
Split-coil s
Permeameteer PX| RACK
L [[8

Fig. 6. The split-coil permeameter measuremenisetu

7
(1N

|

7]

5.2. Measurement results

To set up the devices involved in the measuremertegure, the AUI features of FFMM
are used.

As an example, at the beginning of the measurersenpt, the test engineer needs to
configure the FDIs: the number of FDI and their laus required to start the acquisition.
Thus, the test engineer puts in the script thefahg statements:

— Def GIC “InputParam”.

— Capture InputParam with (humFDI 1, “Parameter Refjyénumber of FDI").
— Capture InputParam with (bus, numFDI, “Parameteyuest:”, “FDI bus”).
Then, during the application execution, the formesgenerated (Fig. 7).

As a further example, during the measurement, #® €ngineer can program the
application to show to the user the current flowusyng the plot feature of the GIC object.
Thus the following statements have to be placdterscript:

— Def GIC “CurrentPlot”.
— Plot CurrentPlot with (currentData).

During the application execution, the window wilte {plot is generated as shown in Fig. 8.

A steel specimen was tested and, according to tbeegure explained in [29], the
permeability characteristic curve may be obtaingdrmlyzing the data.

For validating the AUI by Model-View-Interactor @aligm, in Fig. 9, the relative perme-
ability magnetic versus the magnetic field curvesisorted.

www.czasopisma.pan.pl P N www.journals.pan.pl

N

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

r b |
Input window ﬁ
r b |
Input window Iﬁ Parameter request
Parameter request FDI bus 1 11
number of FOI | 3 FOIbus2 14
ok || canca | | ok || canca
| e

Fig. 7. FDI configuring forms.

current (1}

1] 5000 10000 15000 20000 25000 30000

samples

Fig. 8. A window plotting some current cycles.

3500

o...
-

3000+ Y *

2500 - ‘ s‘

2000 - E]

1500+ L Y []

Relative permeahility

1000+ ' .

200

D 1 I I I I I I | I I I I I I |
10 10 10
H (Adm)

Fig. 9. Relative permeability vs. magnetic fieldai
6. Conclusions

The Model-View-Interactor paradigm for Automatigatienerated User Interface (AUI)
was proposed. The main purpose of this technique twaallow test engineers using the
Flexible Framework for Magnetic Measurements (FFMMproduce easily the GUI for their
measurement applications. The architecture of thepgsed method was extensively

www.czasopisma.pan.pl P N www.journals.pan.pl

-
S~

P. Arpaia et al.: ADVANCED USER INTERFACE GENERATIS THE SOFTWARE FRAMEWORK FOR MAGNETIC ...

explained by describing each component. A complexk r@alistic case study, the magnetic
permeability measurement, was treated and botlgréyehical and the measurement results
were shown. The advantages of the proposed teahmuget the requirements of software
framework for measurements systems and furthermgree with their basic idea, primarily

by decreasing the performance/cost ratio of théicgin development even with a graphical
interface.

References

[1] Bosch, J. (1999). Design of an Object-Orientedmework for Measurement Systems. In Fayad, M.,
Schmidt, D., Johnson, R. (edDomain-Specific Application Frameworks/ 7205, John Wiley.

[2] Arpaia, P., Bottura, L., Inglese, V., Spiezia, (2009). On-field validation of the new platfofor magnetic
measurements at CERMeasurement42(1), 97106.

[3] Arpaia, P., Buzio, M., Fiscarelli, L., Ingles¥,, La Commara, G. (2009) Measurement-Domain Sigeci
Language for Magnetic Test Specifications at CERNRroceedings of 12 MTC 0%ingapore.

[4] Mayers, B., Hudson, S.E., Pausch, R. (2000%t,FRresent and Future of User Interface SoftwarelsT
ACM T. Comput-Hum. Int7(1). 3-28.

[5] Beaudouin-Lafon, M. (2005). Interactions assFitlass Objects. Ifroceedings of the ACM CHI 2005
Workshop on the Future of User Interface Designld.08CM Press.

[6] http://www.ni.com/labview/whatis/
[7] http://www.ni.com/pdf/manuals/321296b.pdf
[8] ftp://ftp.ni.com/pub/devzone/pdfitut_7671.pdf

[9] Arpaia, P., Fiscarelli, L., La Commara, G., Rem, F. (2010). A Petri net-based software syndheorfor
automatic measurement systems. In pred&&f Trans. Instr. Measur

[10]Hayes, P.J., Szekely, P., Richard, A. (198®sign Alternatives for User Interface Managemeydt&ns
Based on Experience with COUSIN. Rroceedings of the ACM CHI 85 Human Factors in Cotimg
Systems Conferenc®an Francisco, California, 16975.

[11] Schulert, A.J., Rogers, G.T., Hamilton, JA985). ADM-A Dialogue Manager. IfProceedings of
SIGCHI' 85 CA, Human Factors in Computing Systef®an Francisco, 17183.

[12] Olsen Jr., D.R. (1986). The Menu Interactioonitol EnvironmentACM T. Graphic.5(4), 318344.

[13]Vander Zanden, B., Myers, B.A. (1990). AutoibatLook-and-Feel Independent Dialog Creation for
Graphical User Interfaces. IRroceedings SIGCHI'90, Human Factors in Computingt&ns Seattle,
27-34.

[14] Sukaviriya, P., Foley, J.D., Griffith, T. (199 A Second Generation User Interface Design Bmwrent:
The Model and The Runtime Architecture. Pnoceedings INTERCHI'93, Human Factors in Computing
SystemsAmsterdam, The Netherlands, 3382.

[15]Wiecha, C.et al(1990). ITS: A Tool for Rapidly Developing Intetae Applications.ACM T. Inform.
Syst, 8(3), 204236.

[16] Szekely, P., Luo, P., Neches, R. (1993). Belydnterface Builders: Model-Based Interface Todls.
Proceedings INTERCHI'93, Human Factors in CompusiygtemsAmsterdam, The Netherlands, 38%0.

[17]1Browne, T.P.gt al (1997). Using declarative descriptions to modsrunterfaces with MASTERMIND.
Paterno, F., Palanque, P. (edsgrmal Methods in Human Computer Interactio8pringer-Verlag.

[18] Stirewalt, K., Rugaber, S. (1998). Automatityj Generation by Model Composition. Submitted to
Automated Software Engineering, ASE '98, 13th IEHEE&rnational Conference

[19] Arpaia, P., Bottura, L., Buzio, M., Della RattD., Deniau, L., Inglese, V., Spiezia, G., TiSo, Walckiers,
L. (2007). A software framework for flexible magicemeasurements at CERN. Rroceedings of IEEE
IMTC 07. Warsaw, Poland.

www.czasopisma.pan.pl P N www.journals.pan.pl

N
S~

Metrol. Meas. Syst\ol. XVII (2010), No. 1, pp. 2738

[20] Arpaia, P., Buzio, M., Fiscarelli, L., Ingles¥., La Commara, G. (2009). Automatically-genedateser
interfaces for measurement software frameworksase cstudy on magnetic permeability at CERN. In
Proceedings oKIX IMEKO World Congress, Fundamental and Appliegtidlogy. Lisbon, Portugal.

[21]Krasner, G., Pope, S. (1988). A cookbook fsing the Model-View-Controller user interface pagaad in
Smalltalk-80.Journal of Object-Oriented Programming(3). 26-49.

[22] Abrams, M., Phanouriou, C., Batongbacal, AWilliams, S., Shuster, J.E. (1999). UIML: An Apgtice-
Independent XML User Interface LanguagePlmceedings of the Eighth International WWW Confeee
Toronto, Canada.

[23]Achten, P., van Eekelen, M., Plasmeijer, R00®). Compositional Model-Views with Generic Gragaii
User InterfacesPractical Aspects of Declarative Programming, PAI21.3057 of LNCS.

[24] Achten, P., van Eekelen, M., Plasmeijer, 003). Generic Graphical User InterfacBslected Papers of
the 15th Int. Workshop on the Implementation ofdional Languages, IFLQ3L45 of LNCS, Edinburgh,
UK: Springer.

[25] Lutteroth, C., Weber, G. (2008). Modular Sglieeition of GUI Layout Using Constraints. Rroceedings of
ASWEC 2008 - 19th Australian Conference on Soft&agineering, IEEE Press

[26] Arpaia, P., Masi, A., Spiezia, G. (2007). Agidal Integrator for Fast Accurate MeasuremenMagnetic
Flux by Rotating CoilslEEE Trans. Instr. Measur56(2).

[27] Arpaia, P., Bernardi, M., Di Lucca, G., Inge V., Spiezia, G. (2010). An Aspect Oriented Paogming-
based approach to software development for measuntesystem fault detection. In press Gomput.
Stand. Inter

[28] Arpaia, P., Bernardi, M., Di Lucca, G., Ingke V., Spiezia, G. (2008). Aspect Oriented-baseftiware
Synchronization in Automatic Measurement Systemmstrumentation and Measurement Technology
Conference Proceeding$718-1721.

[29]Henrichsen, K.N. (1967). Permeametnoc. 2nd Int. Conf. on Magnet Technolo@xford.
[30] http://sine.ni.com/nips/cds/view/p/lang/en/nid/1037

