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Abstract 

We investigated the possibility of using GPS precipitable water vapour (GPS-PWV) for forecasting reservoir 
inflow. The correlations between monthly GPS-PWV and the inflow of two reservoirs were examined and the 
relationship tested, using a group method of data handling (GMDH) type neural network algorithm. The daily 
and monthly reservoir inflows were directly proportional to daily and monthly GPS-PWV trends. Peak reservoir 
inflow, however, shifted from the peak averages for GPS-PWV. A strong relationship between GPS-PWV and 
inflow was confirmed by high R2 values, high coefficients of correlation, and acceptable mean absolute errors 
(MAE) of both the daily and monthly models. The Ubon Ratana reservoir model had a monthly MAE of 
54.19ꞏ106 m3 and a daily MAE of 5.40ꞏ106 m3. By comparison, the Lumpow reservoir model had a monthly MAE 
of 25.65ꞏ106 m3 and a daily MAE of 2.62ꞏ106 m3. The models using GPS-PWV as input data responded to ex-
treme inflow better than traditional variables such that reservoir inflow could be predicted using GPS-PWV 
without using actual inflow and rainfall data. GPS-PWV, thus, represents a helpful tool for regional and national 
water management. Further research including more reservoirs is needed to confirm this preliminary finding. 
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INTRODUCTION 

Water is an essential component of life, generally 
delivered through the hydrologic cycle. Dramatic 
worldwide population growth has amplified the im-
portance of water usage for human consumption, 
power generation, and agriculture. Notwithstanding 
human ingenuity, we cannot control the amount or 
distribution of rainfall – evidently disrupted by the 
cumulative effects of human activity – so there can be 
too little or too much at the wrong time resulting in 
either drought or flooding.  

Water resource management (WRM) is a major 
tool used for regulating water levels and usage, and 
planning seasonal water consumption. To achieve 

adequate WRM involves two essential factors: work-
able forecasting models, and authentic data. Reservoir 
inflow forecasting is a major tool for reservoir man-
agement, since it can help with flood prevention and 
hydropower optimization. Several hydrological and 
hydraulic models have been developed or used in the 
last decade such as MIKE11 [DHI 2004; PATRO et al. 
2009], MGB-IPH [COLLISCHONN et al. 2007], SWAT 
[NOOR et al. 2014], SWAT-MODFLOW [BAILEY et 
al. 2016], HEC-HMS model [SKHAKHFA, OUERDACHI 
2016]; however, the accuracy of these models de-
pends upon the precision of data measurement. The 
models need adequate and varied input data on precip-
itation, potential evapotranspiration, temperature, and 
flow volume [NAYAK et al. 2013]; consequently, any 
model will be complex and multifactorial.  
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Other methods of inflow forecasting have been 
developed to deal with this complexity. For example, 
the hydrologic time series model uses an auto-re-
gressive moving average (ARMA) or auto-regressive 
integrated moving average (ARIMA) for forecasting 
[VALIPOUR et al. 2013; WANG et al. 2015]. Various 
approaches to advanced modeling have helped to 
predict inflow; e.g., artificial neural network [AB-
DELLATIF et al. 2015; COULIBALY et al. 2000; TAGHI 
SATTARI et al. 2012; ZEALAND et al. 1999], multi-
linear regression [MAGAR, JOTHIPRAKASH 2011], 
auto-regressive artificial neural networking [VALI-
POUR et al. 2012], dynamic linear modelling [LIMA et 
al. 2014], Thomas–Fiering modelling, wavelet neural 
networking [CUI et al. 2016], and hybrid modelling 
[BAI et al. 2016]. Notwithstanding the rigour of these 
methods, these methods frequently disregard extreme 
inflow events, and for best results the input variables 
for numerical models require actual, measured hydro-
logic parameters (i.e., precipitation and inflow 
volume).  

Precipitable water vapour (PWV) represents the 
amount of water vapour across a column of the tropo-
sphere: a valuable parameter for numerical weather 
prediction (NWP) [CHEN, LIU 2014] as well as an es-
sential component of weather monitoring [KULESHOV 
et al. 2016; LIANG et al. 2015; TSUDA et al. 2013]. 
PWV is measured using radiosonde data or PWV can 
be estimated using satellite data [DEETER 2007]. It 
can be computed using NWP [CHEN, LIU 2014] 
and/or atmospheric microwave radiometer (AMR) [JI 

et al. 2017]. It is also possible that specific humidity, 
relative humidity, and water vapour pressure from 
surface meteorology stations can be used to estimate 
PWV, albeit large errors can be expected [MAGHRABI, 
AL DAJANI 2013; UANG-AREE et al. 2014].  

An alternative method is to estimate PWV using 
GPS data. The method relies on the propagation delay 
of a dual-frequency microwave signal (band L1 at 
1574.42 MHz and L2 at 1227.60 
MHz) sent between GPS satel-
lites and ground stations [BEVIS 
et al. 1994]. The GPS-PWV de-
livers an accuracy comparable to 
an atmospheric microwave radio-
meter [CHEN, LIU 2014; SOHN et 
al. 2012], ERA-Interim data 
[BORDI et al. 2016; NAMAOUI et 
al. 2017] and Very Long Baseline 
Interferometry (VLBI) [CHOY et 
al. 2015].  

The PWV estimated using 
data from a ground-based GPS is 
capable of revealing the amount 
of atmospheric moisture for 
several kilometers; furthermore, 
it has been used in various meteo-
hydrological studies such as of 
drought [BORDI et al. 2014; 
2016], the southwest monsoon 

[UANG-AREE et al. 2015], El Niño [LLAMEDO et al. 
2017; SUPARTA, ISKANDAR 2012], rainfall [YEH et al. 
2016], and flooding [SUPARTA et al. 2012; SUPARTA, 
RAHMAN 2016]. The GPS derived zenith total delay 
(ZTD), which is a percentage of the GPS-PWV has 
also been used to study storms [AKILAN et al. 2015].  

A case study was designed to test the possibility 
of a new variable for reservoir inflow forecasting, and 
predicting extreme, sudden inflows. The GPS-PWV 
has been widely used in meteo-hydrological studies 
and the model responded well with respect to extreme 
events. The method has not, however, been used for 
reservoir inflow forecasting; so, we sought to test it 
for reservoir inflow forecasting. We planned to de-
termine the correlation between GPS-PWV and 
inflows, and to test the possibility of GPS-PWV as an 
input for reservoir inflow forecasting using the group 
method of data handling (GMDH). 

MATERIAL AND METHODS 

STUDY AREA AND DATA USE 

The study area is a plateau in northeastern 
Thailand; also known as the Khorat Plateau. The 
average altitude is 200 m above sea level, and it 
inclines towards the east. This plateau comprises two 
basins (i.e., the Mun and the Chi); both of are sub-
basins of the Mekong basin. Seasonal depressions and 
the southwest monsoon (between mid-May and early 
October) are the major contributors to streamflow. 
We sought to determine the correlation between GPS-
PWV and inflows of the two largest reservoirs in this 
area (i.e., the Ubon Ratana and Lumpow reservoirs). 
Both reservoirs are located in the geographic middle 
of the Chi basin (Fig. 1).  

The Ubon Ratana reservoir is located at latitude 
16.77° N and longitude 102.62° E. It has a capacity of 
2,431ꞏ106 m3. Inflows to Ubon Ratana come from 

Fig. 1. Study area; source: own elaboration 
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5 minor basins from the geographic middle of the Chi 
basin (namely, the Phrom, Choen, Phong, Phuai and 
Phaniang basins), with an annual average inflow of 
2,492ꞏ106 m3.  

The Lumpow reservoir is located at latitude 
16.60° N and longitude 103.44° E. It has a capacity of 
1,980ꞏ106 m3. Inflows to the Lumpow reservoir come 
from 2 minor basins in the geographic middle of the 
Chi basin (viz., the Pow and Phan Chat basins), with 
an annual average inflow of 2,258ꞏ106 m3. Both reser-
voirs only receive inflows from monsoons and sea-
sonal depressions.  

Data on the daily and monthly reservoir inflows 
between 2010 and 2014 were documented by the 
Royal Irrigation Department of Thailand. The daily 
and monthly average precipitable water vapour 
(PWV) were estimated using two ground-based GPS 
recording units in Khon Kaen and Udon Thani. The 
GPS data from the Khon Kaen station (KKUT) (lo-
cated at latitude 16.47°N and longitude 102.83°E) and 
the Udon Thani station (UDON) (located at latitude 
17.41°N and longitude 102.78°E) were recorded using 
a GPS receiver (Trimble 4000SSi and Leica 
GRX1200 Pro, respectively). The GPS data were 
converted into RINEX, which was then used to create 
data files for GPS-PWV estimation. 

GPS-PWV ESTIMATION  

The GPS-PWVs were estimated using a rationali-
sation of the zenith wet delay (ZWD) against a dimen-
sionless constant of proportionality:  

 ܹܸܲ ൌ ߎ ൉  (1)  ܦܹܼ

Where: ZWD = the zenith wet delay (i.e., the length of 
the GPS signal transmission delay through water in 
the atmosphere measured in mm) [BEVIS et al. 1994]; 
Π = a dimensionless constant of proportionality de-
fined as per ASKNE and NORDIUS [1987]: 

ߎ  ൌ
ଵ଴ల

ோೡሺ௞మ
′ ା

ೖయ
೅೘

ሻ
 (2) 

Where: Rv = the specific gas constant of water vapour; 
k’2 and k3 = the refractivity constants; Tm = the 
weighted mean temperature of the atmosphere in 
which Tm = 70.2 + 0.72Ts; Ts = the surface tempera-
ture (°C) [DAVIS et al. 1985].  

The ZWDs were estimated using the difference in 
zenith total delays (ZTDs) and zenith hydrostatic de-
lays (ZHDs); thus: 

ܦܹܼ  ൌ ܦܼܶ െ  (3) ܦܪܼ

Where: ZTD = the zenith total delay (i.e., the length of 
GPS signal transmission delay through the atmos-
phere measured in mm); ZHD the zenith hydrostatic 
delay (i.e., the length of GPS signal transmission de-
lay through gases in the atmosphere measured in mm) 
[DAVIS et al. 1985].  

ZHD can be estimated using the relationship be-
tween atmospheric pressure and a function of loca-
tion, which can be defined as per ELGERED et al. 
[1991]: 

ܦܪܼ  ൌ ሺ2.2779 േ 0.0024ሻ
௉

௙ሺఒ,ுሻ
 (4) 

Where: P = the surface atmospheric pressure (hPa); 
f(, H) = the function of location given by: 

 ݂ሺߣ, ሻܪ ൌ ሺ1 െ 0.00266 cos ߣ2 െ  ሻ (5)ܪ0.00028

Where: λ = the latitude of the GPS ground base station; 
H = the ellipsoid height of the ground station (km).  

ZTD can be evaluated using GAMIT (the post-
processing GPS data software on UNIX base), which 
uses the difference between the true propagation path 
and the assumed straight-line of GPS-signal (see 
HERRING et al. [2015], for details). 

MODEL FITTING AND VALIDATION 

The daily and monthly GPS-PWV of the two cho-
sen GPS ground-based stations and the inflows of 
both reservoirs (between April 2010 and May 2014) 
were standardised, and any resemblances compared. 
In addition, a correlation analysis was performed us-
ing IBM SPSS Statistics software and the polynomial 
neural network (PNN) implemented–also known as 
the group method of data handling (GMDH). IVAKH-

NENKO [1971] provided the input variables needed to 
regress the mathematical relationships. GMDH is a 
data mining computational method; it can be used to 
create a relatively accurate mathematical model with-
out defining the relationship between the variables. 
The basic connection between inputs and an output 
can be expressed as: 

ݕ  ൌ ܽ଴ ൅ ∑ ܽ௜ ௜݂
௡
௜ୀଵ   (6) 

Where: a = the coefficients; n = the number of base 
functions; f = the base function.  

The well-known base function of GMDH is the 
Kolmogorov–Gabor polynomial: 

ݕ ൌ ܽ଴ ൅ ∑ ܽ௜ݔ௜
௠
௜ୀଵ ൅ ∑ ∑ ܽ௜௝ݔ௜ݔ௝

௠
௝ୀଵ

௠
௜ୀଵ ൅

൅∑ ∑ ∑ ܽ௜௝௞ݔ௜ݔ௝ݔ௞
௠
௞ୀଵ

௠
௝ୀଵ

௠
௜ୀଵ   (7) 

Where: the various x = the input variables; m = the 
number of variables.  

GMDH hereby “selects” the various algorithms 
(i.e., combinatorial (COMBI), multilayer algorithm, 
harmonic, and fuzzy). GMDH can, moreover, be used 
in neural networks (Fig. 2). The GMDH-type neural 
network is a popular and comparatively accurate re-
gression algorithm [EBTEHAJ et al. 2015]. Thus, we 
can choose the GMDH-type neural network with  
3 hidden layers as the main algorithm for testing the 
possibility that GPS-PWV can forecast reservoir in-
flow. The GPS-PWV will be analysed to confirm their 
correlation, and the input data will be separated into  
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Fig. 2. GMDH-type neural network; x1, x2, xm = the input 
variables, f = the base function, GMDH = group method  

of data handing; source: own elaboration 

2 groups: 1) 70% for the model fit data, and 2) 30% 
for the validation data; the achievement data-splitting 
that use to forecast inflow is the 70/30 ratio 
[JOTHIPRAKASH, KOTE 2011]. The model fit data will 
be analysed to forecast reservoir inflow using the 
GMDH-type neural network technique. Finally, the 
validation data will be analysed to assess the model. 

RESULTS AND DISCUSSION 

VARIABILITY OF GPS-PWV 

As long as the estimation of GPS-PWV 
for the average monthly GPS-PWV of the two 
chosen stations was between 20.92 and 
63.47 mm, the overall average would be 
48.39 mm. The average daily GPS-PWV of 
both stations was between 12.42 and 67.89 
mm. The average GPS-PWV at KKUT was 
48.93 mm and at UDON 48.41 mm. They had 
smaller values during the dry season (Novem-
ber–April), and trended to have higher ones 
during the wet season (May–October); albeit 
they fluctuated as usual between the seasons 
[SATOMURA et al. 2010]. Both the GPS-
PWVs were compared with the PWV from the 
ERA-Interim reanalysis products at the Ubon 
Ratana reservoir (point A: 16.75N, 102.5E) 
and the Lumpow reservoir (point B: 16.75N, 
103.5E) (Fig. 1). We found that the ERA-
Interim PWV and the GPS-PWV trended sim-
ilarly over the years (Fig. 3). A comparison of 
the average of daily PWV shows that they 
have a high coefficient of correlation (0.973) 
(Fig. 4); thus, GPS is an effective tool for 
PWV estimation. 

CORRELATIONS BETWEEN GPS-PWV  
AND THE INFLOW OF RESERVOIRS 

According to the records of the Royal Ir-
rigation Department of Thailand, the Ubon 
Ratana reservoir has a maximum monthly 
inflow of 2,433ꞏ106 m3 and a minimum of 

5ꞏ106 m3 (average 277.96ꞏ106 m3 per month). Its 
highest daily inflow is 194ꞏ106 m3 and its lowest 0 
(average 9.16ꞏ106 m3 per day). The Lumpow reservoir 
had the highest monthly inflow of 1,112ꞏ106 m3 while 
its lowest was 0 (average 147.92ꞏ106 m3), while its 
highest daily inflow was 101ꞏ106 m3 and its lowest 
was 0 (average 4.91ꞏ106 m3 per day). The inflow pat-
terns revealed GPS-PWV fluctuations that appear as 
dwarf flows in the dry months and massive flows dur-
ing the wet months. 

The standardisations of monthly and daily GPS-
PWV for both reservoir inflows were compared (Figs. 
5, 6). The variation trended to unidirectional fluctua-
tion, as the reservoir inflow peak shifted from the 
GPS-PWV peak over a few months (or 60–90 days). 
It is possible that the GPS-PWV is related to down-
pours, since the rainfall event often occurs when the 
GPS-PWV stays above 30 mm (Figs. 7, 8). The run-
off will take time to reach the rivers; such that the 
intervening period is known as the time of concentra-
tion (tc), such that the GPS-PWV might indeed be 
related to reservoir inflow.  

The respective relationship between monthly 
GPS-PWV and monthly inflow of both reservoirs in-
dicates an upper-middle coefficient of correlation. 
Accordingly, the monthly inflow of the Ubon Ratana 
reservoir had its highest coefficients of correlation 
within the last 1–2 months measured  (0.545 and 0.523, 

Fig. 3. Comparison of daily GPS-PWV and daily ERA-Interim PWV; 
PWV = precipitable water vapour, KKUT = Khon Kaen station, 

UDON = Udon Thani station; source: own study 

 

Fig. 4. Scatter plot of average daily GPS-PWV vs. average daily  
ERA-Interim PWV; PWV as in Fig. 3; source: own study 
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Fig. 5. Comparison of standardisations of monthly GPS-PWV and monthly inflows of: a) the Ubon Ratana reservoir,  

b) the Lumpow reservoir (black arrow = peak of monthly inflow, white arrow = peak of monthly GPS-PWV);  
PWV = precipitable water vapour; source: own study 

 
Fig. 6. Comparison of standardisations of daily GPS-PWV and daily inflows of: a) the Ubon Ratana reservoir,  

b) the Lumpow reservoir; PWV as Fig. 5; source: own study 
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Fig. 7. Scatter plot of monthly precipitation vs. monthly GPS-PWV at: a) Khon Kaen station, b) Lumpow reservoir station; 
PWV as in Fig. 5; source: own study 

 

Fig. 8. Scatter plot of daily precipitation vs. daily GPS-PWV at: a) Khon Kaen station, b) Udon Thani station;  
PWV as in Fig. 5; source: own study 

 

Fig. 9. Scatter plot of monthly inflow vs. monthly GPS-PWV at: a) Ubon Ratana reservoir, b) Lumpow reservoir; 
PWV as in Fig. 5; source: own study 

 

Fig. 10. Scatter plot of daily inflow vs. daily GPS-PWV at: a) Ubon Ratana reservoir, b) Udon Thani station; 
PWV as in Fig. 5; source: own study 
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respectively). Similarly, the monthly inflow of the 
Lumpow reservoir had its highest coefficients of cor-
relation within the last 1–2 months measured (0.566 
and 0.508, respectively). The respective coefficient of 
correlation between daily GPS-PWV and daily inflow 
of each reservoir indicates a relationship less than the 
monthly data (i.e., the highest respective correlation 
coefficient for the Ubon Ratana and Lumpow reser-
voir was 0.420 and 0.440). The standardised compari-
sons reveal that the respective peak of reservoir in-
flow shifted away from the respective average GPS- 
-PWV peak within a few months. The scatter plot of 
inflow versus GPS-PWV, moreover, showed that the 
high values for GPS-PWV often correlated with the 
extreme monthly inflow (Figs. 9, 10). Although the 
Pearson's correlation coefficient between inflow and 
GPS-PWV were intermediate, GMDH modelling 
a hidden relationship between them.  

POSSIBILITY TESTING OF GPS-PWV TO 
FORECAST RESERVOIR INFLOW USING GMDH 

Although the respective coefficient of correlation 
between the GPS-PWV and inflow is small, the 
GMDH can create an accurate model from the low- 
correlation variables. The retrospective monthly GPS- 
-PWVs (i.e., the previous 1–5 months) were used as 
the input data for the monthly GMDH model; in order 
to predict the monthly reservoir inflow during the cur-
rent month (Fig. 11a). The retrospective daily GPS- 
-PWVs (i.e., the previous 1–90 days) was then used as 
the input data for the daily GMDH model, in order to 
predict the daily reservoir inflow during the then cur-
rent day (Fig. 11b). 

 

Fig. 11. Input-output structure of inflow model: a) monthly, 
b) daily; PWV as in Fig. 5; source: own study 

The accuracy of the monthly Ubon Ratana model 
was hereby evaluated, and the mean absolute error 
(MAE) of the model was 54.19ꞏ106 m3 per month, 
with a coefficient of determination (R2) of 0.97 and 
a coefficient of correlation of 0.99. The validation of 
the model shows a MAE of 61.36ꞏ106 m3 per month, 
with a R2 of 0.93, and a coefficient of correlation of 

0.98 (Fig. 12a). The inflow prediction model for the 
monthly Lumpow reservoir model had a MAE of 
25.65ꞏ106 m3 per month, the best R2 (0.98), and an 
equivalent coefficient of correlation of 0.99. This vali-
dation was evaluated; wherein the MAE was 
46.64ꞏ106 m3 per month with a best R2 of 0.72 and 
a coefficient of correlation of 0.93 (Fig. 12b). 

The daily Ubon Ratana model was also evaluated, 
and the mean absolute error (MAE) of the model was 
5.40ꞏ106 m3 per day, with a coefficient of determina-
tion (R2) of 0.78 and a coefficient of correlation of 
0.89. The validation of the model had a MAE of 
7.15ꞏ106 m3 per day, with an R2 of 0.58, and a coeffi-
cient of correlation of 0.77 (Fig. 13a). The inflow 
prediction model of the daily Lumpow reservoir mod-
el identification had a MAE of 2.62ꞏ106 m3 per day, 
with the best R2 (0.84), and an equivalent coefficient 
of correlation of 0.91. This validation was evaluated; 
for which the MAE was 3.71ꞏ106 m3 per month with 
the best R2 of 0.61 and a coefficient of correlation of 
0.79 (Fig. 13b).  

Both the Ubon Ratana and Lumpow models pre-
sent well-defined, validated models (Tab. 1). For this 
reason, rainfall which becomes an aspect of inflow to 
reservoir flow is directly linked to atmospheric hu-
midity and temperature. As a result, GPS-PWVs rep-
resent water in the atmosphere column. Likewise, 
GPS-PWVs can be potential factors for use in hydro-
logical monitoring (i.e., flood forecasts, drought as-
sessment, and precipitation efficiencies) [BORDI et al. 
2014; SUPARTA, RAHMAN, 2016], and the monthly 
and daily inflow forecasting model, which uses GPS- 
-PWV as input data which responds excellently to 
extreme inflow (Figs. 14, 15). An advantage of GPS- 
-PWV is that it is not included in other parameters. 
For the validation of all models, it is plausible that 
GPS-PWV probabilities contribute significantly to 
receiving information about runoff in any given area. 
It is highly likely that GPS-PWV forecasts can be 
used to predict the inflows of reservoirs. 

Table 1. Accuracy comparison between monthly and daily 
models 

Model 
Average 
inflow 
106 m3 

Model  
identification 

Validation 

R2 
MAE 

106 m3 
R2 

MAE 
106 m3 

Ubon Ratana model 
Monthly model 277.96 0.97 54.19 0.93 61.36 
Daily model 9.16 0.78 5.40 0.58 7.15 

Lumpow reservoir model 
Monthly model 147.92 0.98 25.65 0.72 46.64 
Daily model 4.91 0.84 2.62 0.61 3.71 

Explanations: R2 = coefficient of determination; MAE = mean abso-
lute error. 
Source: own study. 

Since all other factors that might cause shifts have 
been accounted for, GPS-PWV should remain a tool 
for weather forecasting and hydrological monitoring, 
and also be used to improve rainfall models for many 

a) 

b) 
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Fig. 12. Monthly model fitting and validation of forecasted models: a) Ubon Ratana, b) Lumpow; source: own study 

 

Fig. 13. Daily model fitting and validation of forecasted models: a) Ubon Ratana, b) Lumpow; source: own study 
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Fig. 14. Observed monthly inflow vs. predicted monthly inflow: a) Ubon Ratana model, b) Lumpow model;  

source: own study 

 
Fig. 15. Observed daily inflow vs. predicted daily inflow: a) Ubon Ratana model, b) Lumpow model;  

source: own study 

of the numerical weather prediction models (i.e., 
short-range numerical model systems incorporating 
three-dimensional variations (SSNS-3DVARs) [LEI-
MING et al. 2012], which rely upon the same meas-
urements as are used in hydrological studies [BORDI 
et al. 2014]. The Ubon Ratana and Lumpow models 
used GPS-PWVs as the core variable for predicting 
inflows, which had a high degree of reliability. It is 
possible that reservoir inflows can thus be used to 
forecast inflow volumes using GPS-PWV, or to shad-
ow rainfall itself. 

CONCLUSIONS 

The daily and monthly inflows of reservoirs trend 
to vary between monthly GPS-PWV assessments. The 
standardisation of the two reservoirs used in the cur-
rent study revealed that such inflows vary in direct 
proportion to GPS-PWV assessments; wherein the 
assessed peaks trend towards similar patterns of in-
flows some of the time. Correlation analysis revealed 
that the highest coefficients of correlation between 
monthly inflow and GPS-PWV were within 1–2 
months of the GPS-PWV observations. The respective 
coefficient of correlation between daily inflow and 
GPS-PWV was lower than the monthly correlation. 
The GPS-PWV can be used for the atmospheric hu-

midity connected to rainfall, which takes time to con-
centrate before run-off arises. Models received from 
the respective identification processes, as with the 
present study, require more in-depth investigations to 
know how they will perform. The models had high R2 

values, high coefficients of correlation, and acceptable 
MAEs, confirming a strong relationship between both. 
The validation of both models produced effective and 
satisfactory results; moreover, the models which used 
GPS-PWV as input data responded to extreme inflow 
better than traditional variables. The monthly models 
have higher accuracy than the daily model, since the 
nature of GPS-PWV slowly varies followed by daily 
inflow. The monthly GPS-PWVs, which have a long-
er duration, are more compatible with monthly inflow. 
Accordingly, the GPS-PWV has potential for reser-
voir inflow forecasting. 
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Prawit UANG-AREE, Sununtha KINGPAIBOON 

Możliwość prognozowania dopływu do zbiornika na podstawie danych GPS o zawartości pary wodnej 

STRESZCZENIE 

W pracy przedstawiono wyniki badań możliwości użycia danych GPS o zawartości pary wodnej (GPS- 
-PWV) do prognozowania dopływu do zbiornika. Analizowano korelacje między miesięczną wartością GPS- 
-PWV a dopływem do dwóch zbiorników; zależność testowano, stosując algorytm sieci neuronowej, zwany me-
todą grupowania argumentów (GMDH). Dobowe i miesięczne dopływy do zbiorników były proporcjonalne do 
dobowych i miesięcznych trendów GPS-PWV. Maksymalny dopływ odbiegał jednak od maksymalnych średnich 
GPS-PWV. Silna zależność między GPS-PWV a dopływem została potwierdzona dużymi wartościami R2, wy-
sokim współczynnikiem korelacji i akceptowalnym średnim błędem bezwzględnym (MAE) zarówno w modelu 
dobowym, jak i miesięcznym. W modelu dla zbiornika Ubon Ratana miesięczny błąd bezwzględny wynosił 
54,19∙106 m3 a dobowy – 5,40∙106 m3. Dla porównania w modelu dla zbiornika Lumpow wartość miesięczna 
MAE wynosiła 25,65∙106 m3, a dobowa 2,62∙106 m3. Modele z wykorzystaniem GPS-PWV jako danych wej-
ściowych reagowały lepiej niż tradycyjne zmienne na dopływ ekstremalny i dlatego dopływ do zbiornika można 
przewidzieć bez znajomości rzeczywistego dopływu i danych opadowych. GPS-PWV jest więc pomocnym na-
rzędziem w regionalnej i narodowej gospodarce wodnej. Potrzebne są dalsze badania obejmujące większą liczbę 
zbiorników, aby potwierdzić prezentowane wyniki wstępne. 

Słowa kluczowe: GMDH, gospodarka wodna, hydrologia, PWV, zlewnia 


