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Abstract

Volatility persistence is a stylized statistical property of financial time-series

data such as exchange rates and stock returns. The purpose of this letter is to

investigate the relationship between volatility persistence and predictability of

squared returns.
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1 Introduction

The one-period return on a stock with price Pt at time t is defined as

yt = log(Pt) − log(Pt−1).

Let {Ft} be a filtration (an increasing sequence of sigma algebras) modeling the
information set available at time t. We assume

yt = σtzt (1)

where zt ∼ i.i.d.(0, 1) and adapted to {Ft} and σt is a stochastic process adapted
to {Ft−1}. The process {xt} is said to be adapted to the filtration {Ft} if for each
t ≥ t0, xt is Ft-measurable.
We have E(yt|Ft−1) = 0 and E(y2

t |Ft−1) = σ2
t . The process {yt} has conditional

mean zero and it is conditionally heteroskedastic with conditional variance σ2
t . Thus

σt represents the volatility of the price change between times t− 1 and t.
Volatility persistence is a stylized statistical property of financial time-series data such
as exchange rates and stock returns. The purpose of this note is to investigate the
relationship between volatility persistence and predictability of squared returns, y2

t .

2 The result

In order to explicitly take into account volatility persistence in the returns series,
we assume that yt follows a GARCH(1,1) model. It provides a measure of volatility
expressed as follows:

σ2
t = ω + α1y

2
t−1 + β1σ

2
t−1 (2)

where ω, α1, and β1 are parameters such that ω > 0, α1, β1 ≥ 0.
We shall make the following two assumptions: (A.1) α1 + β1 < 1 (A.2) (α1 + β1)

2 +
α2

1(κz − 1) < 1, where κz is the kurtosis of zt.
The coefficients α1 and β1 reflect the dependence of the current volatility upon its
past levels and the sum α1 + β1 indicates the degree of volatility persistence. To see
this we rewrite equation (2) as

σ2
t = ω + (α1 + β1)σ

2
t−1 + α1νt−1

where νt−1 = y2
t−1 − σ2

t−1. It follows that

σ2
t =

ω

1 − α1 − β1
+ α1

[

νt−1 + (α1 + β1) νt−2 + (α1 + β1)
2
νt−3 + ...

]

(3)

Equation (3) shows that α1 + β1 determines how long a random shock to volatility
persists. Thus the sum φ = α1 + β1 is often referred to as the persistence parameter.
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Now, we consider a measure of predictability of the squared returns, y2
t , relative to

h-steps forecast defined by

R2(h) = 1 −
var(et(h))

var(y2
t )

where et(h) = y2
t+h − E(y2

t+h|Ft). This predictability index has been utilized also by
Hong and Billings (1999), Otranto and Triacca (2007) and Pena and Sanchez (2007).
We observe that in the ARCH(1) case (i.e. β1 = 0) we have

R2(h) = α2h
1 , h = 1, ...

Thus it is trivial to conclude that:

1. α1 =
√

R2(h+1)
R2(h)

2. limh→∞

2h

√

R2(h) = α1

In this note we will show that this results hold also for a GARCH(1,1) model.
We first show that

R2(h) =
α2

1(α1 + β1)
−2(α1 + β1)

2h

1 − 2α1β1 − β2
1

In order to do this, we rewrite the equation for σ2
t in (2) with νt = y2

t − σ2
t , obtaining

the following well-known ARMA(1,1) representation for that y2
t :

y2
t = ω + φy2

t−1 + νt − β1νt−1 (4)

The equation (4) can be written in the more compact form

φ(B)y2
t = ω + β1(B)νt (5)

where B is the backward shift operator, φ(B) = 1−φB and β1(B) = 1−β1B. Under
assumption (A.1), the ARMA representation (5) is causal and invertible (although
σ2

ν = E(ν2
t ) is not necessarily finite). The assumptions (A.1) and (A.2) ensure that

σ2
ν <∞.

By section 3.1 of Brockwell and Davis (1991), causality implies that there exists a
sequence of constants {ψi} such that

∞
∑

j=0

|ψj | <∞

and

y2
t =

∞
∑

j=0

ψjνt−j + µ t = 0,±1, ...
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The ψj ’s are obtained from the relation

ψ(z)φ(z) = β1(z)

with ψ(z) =
∑

∞

j=0 ψjz
j |z| < 1.

In particular, we have ψ0 = 1 and ψj = α1(α1 + β1)
j−1 for j ≥ 1. Thus

∞
∑

j=0

ψ2
j = 1 + α2

1 + α2
1(α1 + β1)

2 + α2
1(α1 + β1)

4...

= 1 + [1 + (α1 + β1)
2 + (α1 + β1)

4 + ...]α2
1

= 1 +

[

1

1 − (α1 + β1)2

]

α2
1

=
1 − 2α1β1 − β2

1

1 − (α1 + β1)2

and

h−1
∑

j=0

ψ2
j =

∞
∑

j=0

ψ2
j −

∞
∑

j=h

ψ2
j

=
1 − 2α1β1 − β2

1

1 − (α1 + β1)2
− [α2

1(α1 + β1)
2(h−1) + α2

1(α1 + β1)
2h...]

=
1 − 2α1β1 − β2

1

1 − (α1 + β1)2
− [1 + α2

1(α1 + β1)
2 + ...]α2

1(α1 + β1)
2(h−1)

=
1 − 2α1β1 − β2

1

1 − (α1 + β1)2
−
α2

1(α1 + β1)
2(h−1)

1 − (α1 + β1)2

and hence we have

var(y2
t ) = (1 + ψ2

1 + ...)σ2
ν

=

[

1 − 2α1β1 − β2
1

1 − (α1 + β1)2

]

σ2
ν

and

var(et(h)) = (1 + ψ2
1 + ...+ ψ2

h−1)σ
2
ν

=

[

1 − 2α1β1 − β2
1

1 − (α1 + β1)2
−
α2

1(α1 + β1)
2(h−1)

1 − (α1 + β1)2

]

σ2
ν
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It follows that

R2(h) = 1 −
1 − 2α1β1 − β2

1 − α2
1(α1 + β1)

2(h−1)

1 − 2α1β1 − β2
1

=
α2

1(α1 + β1)
2(h−1)

1 − 2α1β1 − β2
1

=
α2

1(α1 + β1)
−2(α1 + β1)

2h

1 − 2α1β1 − β2
1

Now, we can show that the persistence parameter φ = α1 + β1 can be expressed in
terms of the predictability’s measure of squared returns. We have

R2(h+ 1) =
α2

1(α1 + β1)
2(h+1−1)

1 − 2α1β1 − β2
1

=
α2

1(α1 + β1)
2(h−1)(α1 + β1)

2

1 − 2α1β1 − β2
1

= R2(h)(α1 + β1)
2

Thus

α1 + β1 =

√

R2(h+ 1)

R2(h)

We conclude this section obtaining the persistence parameter φ = α1 + β1 as limit of

the sequence
{

2h

√

R2(h)
}

.

We have

lim
h→∞

2h

√

R2(h) = lim
h→∞

2h

√

α2
1(α1 + β1)−2(α1 + β1)2h

1 − 2α1β1 − β2
1

= (α1 + β1) lim
h→∞

2h

√

α2
1(α1 + β1)−2

1 − 2α1β1 − β2
1

= α1 + β1

= φ

3 A simulation study

In this paper we have investigated the relationship between the GARCH(1,1) persis-
tence parameter φ and the R2 of h-step forecasts of squared returns. In particular we
have shown that the persistence parameter φ can be obtained as limit of the sequence
{

2h

√

R2(h)
}

. As an illustration of how this analytic relationship can be used in the
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practice, we note that if the maximum likelihood estimation (MLE) of φ, φ̂ = α̂1 + β̂1,
is downward biased and if

α̂2
1(α̂1 + β̂1)

−2

1 − 2α̂1β̂1 − β̂2
1

> 1

then there exists a δ ∈ N such that the estimator

2h

√

R̂2(h) =
(

α̂1 + β̂1

)

2h

√

α̂2
1(α̂1 + β̂1)−2

1 − 2α̂1β̂1 − β̂2
1

for h ≥ δ produces parameter estimates which compare favorably with that of the
MLE.
This fact is relevant since it is well known that the MLE of φ is often severely down-
ward biased in small samples; see Bollerslev, Engle, Nelson (1994) and Hwang and
Valls Pereira (2006).

In order to show how the estimator 2h

√

R̂2(h) works a small Monte Carlo experi-
ment is conducted. The simulation results are obtained with 1000 replications for the
following GARCH(1,1) model:

yt = σtzt

σ2
t = ω + α1y

2
t−1 + β1σ

2
t−1

with ω = 0.01, α1 = 0.2, β1 = 0.6 (DGP I) and with ω = 0.01, α1 = 0.1, β1 = 0.6
(DGP II). These values are utilized also in the simulation experiment presented in
Hwang and Valls Pereira (2006). When the DGP I is used and the sample size is 100,

in the 78.9% of cases the estimator 14

√

R̂2(7) (we have posed h = 7) performs better

than MLE φ̂. When the DGP II is used and the sample size is 100, this percentage
rises to the 88.8%.
The results from our Monte Carlo study suggest that when

α̂2
1(α̂1 + β̂1)

−2

1 − 2α̂1β̂1 − β̂2
1

> 1

there exists a δ ∈ N such that the quantity

2h

√

α̂2
1(α̂1 + β̂1)−2

1 − 2α̂1β̂1 − β̂2
1

for h ≥ δ, works as a multiplicative bias correcting factor for the MLE φ̂.
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