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1 Introduction

Most of n-variate volatility models used in financial econometrics belong to either
the MGARCH or MSV (multivariate stochastic volatility or variance) class; see, e.g.,
Bauwens, Laurent, Rombouts (2006), and Tsay (2005). Only a few of them are prac-
tical tools for analysing large portfolios, e.g. the Scalar BEKK (SBEKK) model and,
in particular, the Dynamic Conditional Correlation (DCC) structure of Engle (2002).
Both cases represent the MGARCH class and in each we can use variance targeting
and approximate methods to estimate the parameter vector of dimension growing
with the portfolio size; the remaining parameters, requiring more numerical effort,
form a vector of fixed dimension irrespective of the number of assets. However, ac-
cording to the Bayesian posterior odds criterion, MGARCH models may explain data
much worse than MSV specifications; see Osiewalski, Pajor, Pipien (2007). So one
should be interested in applying MSV models instead of MGARCH.

Latent AR(1) processes, used in the MSV class to describe volatility, are very efficient
in dealing with outliers and, thus, in modelling tail behaviour. Since such modelling
is crucial for any risk assessment, the MSV class should be kept under consideration
in spite of the fact that MSV structures with many latent processes are too compli-
cated to be practical in highly dimensional problems. Easier way of modelling was
proposed by Osiewalski and Pajor (2007) through a hybrid model, based on Engle’s
DCC structure and the simplest MSV structure, the Multiplicative Stochastic Factor
(MSF, or Stochastic Discount Factor, SDF) specification. However, the MSF-DCC
(previously called SDF-DCC) model is still too complex and, thus, Osiewalski (2009)
has recently proposed some MSF-SBEKK (SDF-DCC) hybrids. This paper is devoted
to examining their empirical usefulness.

Main n-variate volatility models and the hybrid structures are presented in section
2l Section [3]is devoted to Bayesian model comparison for two sets of bivariate ob-
servations (n = 2), where we can obtain exact results considering unparsimonious
structures as well. In section [4] we describe our approximate posterior inference for
the MSF-SBEKK models and compare it to the exact one (using the same bivariate
data sets). In section |5 approximate posterior results are obtained for the MSF-
SBEKK models applied to a large set of returns on equities (n = 34). Conclusions
are grouped in section [6]

The approach adopted in this paper is very different from the modelling strategy of
Chib, Nardari, Shephard (2006), who proposed factor SV models for highly dimen-
sional data (together with their Bayesian analysis using Markov Chain Monte Carlo
tools). They did not apply any GARCH ideas and structures in their models, staying
within the pure SV class, but relying on sophisticated specifications. Instead, we
try to combine the simplest MSV and MGARCH ways of dealing with multivariate
volatility.
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2 Hybrid n-variate volatility specifications

Assume there are n assets. We denote by 7, = (r1,;...7,) n-variate observations
on their logarithmic return (or growth) rates, and we model them using the basic
VAR(1) framework:

re=0+r_1A+e; t=1,....T,....T+s; (1)

where T is the length of the observed time series and s is the forecast horizon. The
!

n(n + 1) elements of § = (§y (vecA)’)” are common parameters that are assumed a

priori independent of model-specific parameters, with, e.g., the N (O7 In(nJrl)) prior.

2.1 Main MSV and MGARCH models

In MSV specifications for €; in it is assumed that ; is conditionally Normal (given
parameters and latent variables, grouped in 6) with mean vector 0 and covariance
matrix ¥; that depends on latent variables, i.e.

et ~ N (Op ], 2t) -

Thus, the corresponding conditional distribution of r; (given its past and 6) is Nor-
mal with mean pu; = dy + r:—1A and covariance matrix >;. Competing n-variate
MSV models are defined using different latent processes and different structures of
Y; (symmetric and positive definite by construction). Main MSV specifications are
briefly presented in Table [T}

Table 1: Main MSV structures

Number of free parameters

Model | Form of the n X n matrix X, [latent variables]*
inT;, (t=1,2,...,T)
Cholesky decomposition: X3 = LthL;, 3n(n+1)
Tey | Gt = diag(exp (q11,6) ;- -, exp (gnn,t)), S 2
L; with ones on the diagonal and g;;,: below (i > j), n(n41)
{qri,:} are Gaussian AR(1) processes (k,l =1,...,n; k > 1) [ 2 ]
spectral decomposition: ¥; = PA,,P’7 n(n—1)
sy | Ae = diag(exp(aine), - exp(ann,0)), kT
qii,¢+ are Gaussian AR(1) processes (i1 =1,...,n), [n]
P is free orthogonal matrix of eigenvectors of 3¢
BSV | special case of JSV, restriction: P = I, f;ﬁ
MSF 3, = g+ A, A is symmetric positive definite (free), 2+ w
{Ing:} is a Gaussian AR(1) process [1]

* without initial conditions, which can be estimated

We describe in some detail the Bayesian analysis of the simplest MSV specification,
the Multiplicative Stochastic Factor (MSF, also called Stochastic Discount Factor,
SDF) model that is used to construct hybrid MSV-MGARCH structures. The MSF
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model relies on just one latent process gt to describe the dynamics of ¥; (see Jacquier,
Polson, Rossi, (1995); go can be fixed by assuming, e.g., go = 1): & = (\/9r,
lngt = L)Olngl‘/fl + OgTit, Ct ~ ”N(O[lxn]aA)7 e ~ ”N(Oa 1)7 Ct 1 s (t> s € Z)

The conditional covariance matrix of €; takes the very simple form ¥; = g; A, which

leads to the invariable conditional correlation coefficient p;;: = pi; = Nor (for
i,j =1,...,n); A = [a;] is a free symmetric positive definite matrix consisting of

% distinct entries.

We can assume independence among parameters and use the same prior distributions
as Pajor (2005a,b); for ¢: Normal with mean 0 and variance 100, truncated to (—1,1),
for 0;2: Exponential with mean 200, for A~': Wishart with mean I,,.

The n-variate Bayesian VAR(1)-MSF model can be analysed using Gibbs sampling
as a tool for simulating samples from the posterior distribution. This is due to the
Wishart or Normal forms of the full conditional distributions of A and §, which make
these steps of the Gibbs sampler easy even for large n. Other steps, numerically more
demanding, are the same for each n; see Jacquier, Polson, Rossi (1995), and Pajor
(2009). Despite its convenience in practical applications, the MSF specification is too
restrictive to be useful since it assumes the same dynamics for all entries of ¥;. This
assumption seems too high a price to be paid for the ease of numerical implementa-
tion.

In MGARCH specifications for ¢; in it is assumed that the conditional dis-
tribution of €; (given past, ¥;—1, and parameters) is n-variate Student ¢ with lo-
cation vector 0, inverse precision matrix H; and v > 2 degrees of freedom, i.e.
€t0,%s—1 ~ St(Opixn], Hy,v). From the empirical perspective, the use of the Stu-
dent t distribution instead of conditional Normality is fully justified; see Osiewalski
and Pipien (2004), and Osiewalski, Pajor, Pipieni (2007).

Particular n-variate MGARCH models are defined by imposing different structures on
H,;. They are different functions of the past of g;/¢; and the past of H, itself; if they
involve only the immediate past (of both, &;'e; and H;), the models are denoted as
MGARCH(1,1). The basic forms of H, are shown in Table 2| For the bivariate case
(n = 2), the prior distributions and Bayesian models are presented by Osiewalski,
Pajor, Pipien (2007).

Let us focus on the N-SBEKK(1,1) model (corresponding to v — oo, i.e. conditional
Normality), which is the simplest n-variate structure allowing for dynamic conditional
correlation. The SBEKK(1,1) case can be alternatively parameterised as

Hi=(1-8-7)A+p (5;—1&—1) +vH-1 (2)

where A is a free symmetric positive definite matrix of order n, with, e.g., an inverted
Wishart prior distribution, and 8 and ~ are free scalar parameters, jointly uniformly
distributed over the unit simplex. As regards initial conditions for H;, we can take
Hy = hol,, and treat hg > 0 as an additional parameter (a priori exponentially
distributed with mean 1). Note that, under the covariance stationarity restriction
(B+~ < 1), A is the unconditional covariance matrix of &;.
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Table 2: Basic MGARCH(1,1) structures

Number of free

Model Form of the n X n matrix H; (t =1,2,...; Hy assumed known) .
parameters in H,
Vecl?(Ht)fvech(Ao).JrB*vech(at'at) +C*V§ch(Ht,1),‘ ] _ 4n(nt)]n(n+1)
VECH Ay is a square matrix of order n (symmetric and positive definite), 2
B* and C™ free square matrices of order w O(n*)
diagonal special case of VECH, restrictions: w
VECH B*, C* - diagonal matrices O(n?)
Hy = Ao + Bey EtB., +CH;—,C’, ) o ) on? 4 nntl)
Ap is a square matrix of order n (symmetric and positive definite), 2
BEKK .
B and C are free square matrices of order n O(n?
(with b11 > 0 and c11 > 0 to ensure identification) (n)
T T
SBEKK special case of BEKK, restrictions: B = 821,, C =~21, 2 4 nlndl)
_T _ I
DCC Hy = (Dt)ilRt(Dt)ila Dy :diag(hll?tv-“ahnyit)v 2430+ n(n—1)
Engle (2002): h.iq‘,yt = aijo + ais?7t71 + bihii)t_l (Z =1,..., ’IL)7 2
only v - oo | Rt = PtQP, P = diag(q;lé,57 ey q;Et) v not counted
Qi =(1—B8-7)S+B(1 - 2)DicieDe + Qi1
S is a square matrix parameter (of order n, with all properties 0(n?)
of the correlation matrix);
B, v, aio, ai, b; (i =1,...,n) are nonnegative scalar parameters
(B+v<1,ai>0,b; <1)
CCC special case of DCC, restriction: 8 =~ = 0 (thus R, = S) 3n + %

Although the VAR(1)-N-SBEKK(1,1) specification is so simple, its Bayesian analysis
cannot rely on a fully automatic Gibbs chain as in the VAR(1)-MSF case. The
conditional posterior of the VAR(1) parameters is no longer of the Normal form as ¢
also appears in H; through lagged e;. The conditional posterior of A is not inverted
Wishart as A is not proportional to the conditional covariance matrix; it determines
just one term of the sum in . The complicated form of the conditional posterior
of § and ~ is not a problem since they are scalar parameters. But (J, A) is of high
dimension for large n and the use of Metropolis draws within the Gibbs steps (or the
Metropolis chain for all the parameters jointly, as in Osiewalski and Pipien (2004) and
further works on bivariate GARCH models) can be infeasible. Thus, any practical
estimation tool must rely on some crude approximation when the analysed portfolio is
very large. We could use OLS for the VAR(1) part and rely on variance targetting in
order to fix A; that is, A could be replaced by the empirical covariance matrix of the
OLS residuals from the VAR part. In practice, the Bayesian analysis for the scalar
parameters (3, v) and future returns would then be based on the conditional posterior
and predictive distributions given the values of the highly dimensional parameters

(6, A).
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2.2 MSF-DCC and MSF-SBEKK structures

Osiewalski and Pajor (2007) introduced a new hybrid structure by assuming the
following specification for the residual process &; in :

1 ..
et = GH{ \/gt, Ing: = plngi—1+ oy, (Cesme)" ~ GiN (Ofng1)x]s Int1) »

where H; has the DCC structure proposed by Engle (2002) and corresponding to the
one in Table 2] with v — co. Now, given the univariate process g; and the parameters,
the n-variate returns r; in follow the conditional Normal distribution with mean
iy = 0o + ri—1A and covariance matrix ¥; = g, H; depending on 5 + 3n + @
parameters (including hg). Contrary to the MSF model, the MSF-DCC conditional
covariances do not share the same dynamics and the correlation coefficients can vary
over time. Empirical evidence presented by Osiewalski and Pajor (2007) and Pajor
(2009) shows that the MSF-DCC (or SDF-DCC) model is promising; it keeps the
flexible conditional correlation structure of the Engle’s DCC specification, but fits
data better due to the presence of the latent AR(1) process. However, the Bayesian
analysis of the VAR(1) - MSF-DCC model (performed in the above mentioned works
only in bivariate and trivariate cases) is numerically too complicated for large n.
Osiewalski (2009) proposes new, extremely simple hybrid structures by assuming the
following specification for the residual process ¢; in :

1
e =G Vo,  Igi=9pg 1 +ogm,  (Cone) ~ N (Ogngnyxa]s Int1) -

That is, €, is conditionally (given its past, ¥;_1, the scalar latent process g; and the
parameters) Normal with mean vector 0 and covariance matrix ¢;Q;, where §2; is a
time-varying square matrix of order n that preserves the SBEKK structure. Again,
go can be fixed as in the MSF model. Two particular forms of ; are considered.

In the type I MSF-SBEKK model €2; = Hy, so it follows and does not depend on
the latent process. The conditional variances are equal to g:hi; ¢, that is they have
a more general form than in either the MSF or SBEKK model, but the conditional
correlation coefficient does not depend on ¢; and thus is of the SBEKK form. Note
that this generalised structure does not lead to the MGARCH form of the process
el = \th as H; depends on €;_;, not on €;_;.

In the type II MSF-SBEKK model the MGARCH structure is assumed for €7, i.e.

O = HY, H =(1-8-v)A+p (5:—1/5;?—1) +H{ .

Now £2; depends on the whole past of the latent process, so do the conditional vari-
ances and correlation coefficients of €,. Modelling time-varying conditional correlation
is no longer as simple as in the pure SBEKK or type I hybrid models.

Note that the "integrated" versions of our hybrid models can be defined by imposing
the restriction 8 + v = 1; see Pajor (2009) for the MSF-IDCC (or SDF-IDCC) speci-
fication and its applications. These models will not be considered in this paper.
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The MSF-SBEKK models (as well as MSF-DCC) belong to the MSV class as they
describe multivariate volatility using the latent AR(1) process. However, we call them
hybrid models in order to stress their difference from traditional "pure" MSV condi-
tional covariance structures that do not depend on past observations.

Both hybrid MSF-SBEKK models seem useful as they combine important properties
of their main structural components. The latent AR(1) process in the conditional
covariance matrix should help in explaining outlying observations, and the depen-
dence on the past data (through the BEKK structure of ;) prevents the entries of
the conditional covariance matrix g;£2; from sharing the same dynamic pattern. Thus
our models have time-varying conditional correlation coefficients without introducing
more latent processes. The MSF-SBEKK models describe ¥; = ¢:£); using 5+ %
parameters and nest both basic structures. In the limiting case: 0, — 0, ¢ = 0 we
are back in the SBEKK model, while 3 = v = 0 lead to the MSF case.

Assuming that the parameters of our hybrid specifications follow the same priors as
in both special cases (MSF, SBEKK), we can write the full Bayesian model as

p(rl,...,rT+5,lngl,...,lngT+s,6,A,ﬂ,'y,g0,U;2,ho)

=p (TT+1, cey TTgs|T, ey Ingy, . ,1ngT+S,5,A,ﬁ,7,cp,0;2,ho)
Xp (lngT_H, oo Ingryglr, .. ,rT,lngl,...,lngT,(S,A,B,’y,ga,ag_z,ho)
Xp (rl,...,rT,lngl,...,lngT,é,A,ﬂ,'y,ga,Jg_2,ho),

where
p(TT—i—l,"'arT+S|7A17"~7TT71ngla"'71ngT+5363Avﬁv’)’a@vo’;ZahO)
T+s
= H f}\l/' (Tt|/'[/tatht)7
t=T+1
p(lngT-‘rla"'71ngT+s|T17"'7TT71ngla-"alngT363A75773Q070;27h0)
T+s
= II /% ngleng-1,07).
t=T+1
p(Tla"'7rTalngl,"'alngTaé,A7ﬂ37a5070;2ah0) (3)

T
=p0)p(A)p(ho)p(B,7)p (% 09_2) H N (Tt|Mt,9tQt) lev (lngtwlngt—l,tf;)
t=1

The first two densities enable direct Monte Carlo simulation of future g; and 7y

given all the parameters and (g:, r¢) from the observation period (¢ = 1,...,T),
we successively draw Ingpy; and roy; (5 =1,...,s) from their conditional Normal
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distributions. The last term, i.e. (3, is the joint density of the observed return rates,
the T corresponding latent variables and all the parameters. The posterior density
function, proportional to , is very complicated and highly dimensional. The only
hope to perform any Bayesian analysis is in the application of Gibbs sampling, which
is based on the conditional distributions obtained from :

In (relpes ge8%)

e

p (5‘7'17 s 7TT71ngl7 ce 'alngTaA7ﬂ7Pya<p>0;2vh0) o8 p((s)

Il
—

t

=

D (A‘Tlﬂ s 7TTalngla s 51ngT3556777§050—;27h0) O(p(A) f]r\l/' (Tt“}’tatht) ’

ﬁ
Il
—

p (ﬁ777h0|rl7 cee 7TT71ngla v ,lngT,5,A7§0,U;2)
T
< p (8,7 p (ho) [T £& (reline, 9:) ,

t=1
p (@709_2“11’ e 7TT71ngl7’ .. ,h’lgT,57A,,8,’Y,h0)
T
xXp (8070';2) Hf]l\/ (lngt|¢1ngt—170§) )
t=1

p (lngt|7'17 ce 77”T711191a cee alngt—lalngt-‘rla . 'alngTa5aA7677awvg;2ah0)

T
X lev (lngtﬂplngtqﬁ;) f]{l (lngt+1\wlngt7a§) HfJY\Lr (Tj|ﬂja9ij) ;
j=t
t=1,...,T—1;
p (lngT|r1; R 7TTalngla- .. 71ngT7176aA7ﬁa’77¢)70‘g—2ah0)

x fx (Ingrlengr_y,02) f& (relpr, grQr)

The latent variables and parameters related to the SV component of the hybrid struc-
ture can be simulated in a similar way as in the pure MSF model, that is relatively
easy. Under a Normal-Gamma prior for the pair (go, 09_2), its bivariate conditional
posterior is also of the Normal-Gamma form. And, most importantly, the univariate
conditional posterior densities for In g; do not look too different from the pure MSF
case. In fact, it may pay to use the full conditional of g, ! as it involves a Gamma
kernel. In the type I model we obtain for t =1,...,T — 1

p(gt_1|’r17"'arTvglw"agt—lvgt—i-l,'"39T767A76777(p?0—;27h0)

n d
x fa (gt 1|§7 ;) fﬁr (lngt|<p1ngt,1,a§) fzir (lngt+1|<plngt,a§) ;

Jacek Osiewalski, Anna Pajor 186
CEJEME 1: 179-202 (2009)



www.czasopisma.pan.pl P N www.journals.pan.pl
TN

Bayesian analysis for hybrid MSF-SBEKK models...

p(g;l‘rla"'7rTaglv"'agT—1,57Aa/87779030—g727h0)

_n d
x fa <QT1|2> 2T> Iy (Ingrlengr ,07),

where dy = (r: — pe) Qf ! (re — p)'. Since the log-Normal kernels can be approx-
imated by some Gamma density, the Metropolis-Hastings steps have very efficient
proposal density for g; *; see Pajor (2009). In the type II model, the corresponding
full conditional densities are more complicated due to the dependence of ; on the
past of g;; we have for t =1,..., T —1:

p(g;1|Tla"'7rTagla"'7gt717gt+13"'79T75aA3577a¢709_27h0)

T
4 d "
x fa <gt 12,;) lev (1n9t|801119t—1,052,) f]{r (1H9t+1|901119t70§) H In (Tj|ﬂj7Qj)~
j=t+1

The last product, which did not involve g; (and thus was omitted) in the type I model,
is now a complicated function of g;. So we follow the numerical strategy described in
the Appendix in order to efficiently draw (within the Gibbs sampler) the whole vector
oflng; fort=1,...,T.

The conditionals of the VAR(1) coefficients and the parameters describing the SBEKK
part of the structure have non-standard forms. (hg,3,7) can be sampled using the
Metropolis-Hastings step within the Gibbs sampler. But the full conditional posteriors
of 6 and A (the parameters of dimension related to n?) create serious numerical
problems that restrict the exact Bayesian analysis to the cases with small or moderate
n. These problems can be avoided for large n by fixing § and A at some preliminary
estimates in the way described in section [

Before using the MSF-SBEKK models and their approximate Bayesian analysis for
large portfolios, we check the empirical adequacy of the proposed hybrid structures
in the bivariate case, where exact Bayesian inference and model comparison can be
performed even for unparsimonious specifications, like TSV or VECH(1,1).

3 The data and results of formal model comparison
in the bivariate case

In order to formally compare the MSF-SBEKK models with other bivariate GARCH
and SV specifications we consider almost the same set of basic models and use the
same two data sets as Osiewalski, Pajor, Pipienn (2007). The first data set consists of
the official daily exchange rates of the National Bank of Poland (NBP fixing rates) for
the US dollar and German mark in the period 1.02.1996 - 31.12.2001. The length of
the modelled time series of their daily growth rates (logarithmic return rates) is 1482.
The second data set consists of the daily quotations of the main index of the Warsaw
Stock Exchange (WIG) and the S&P500 index of NYSE. We model 1727 logarithmic
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returns from the period 8.01.1999-1.02.2006.

Basic descriptive characteristics of the daily growth (or return) rates expressed in
percentage points are presented in Table[3] In the case of exchange rates, both series
are highly non-Normal and they are quite strongly positively correlated. The other
data set shows smaller deviations from Normality and much weaker correlation.

For each data set we use the VAR(1) framework . The overall ranking of competing
Bayesian models and the decimal logarithms of the Bayes factors in favour of M;
(i.e. the VAR(1)-TSV model), log;, (B ;) for j = 1,...,13 (calculated for each data
set using the Newton and Raftery method), are shown in Table{dl Only the results for
the MSF-SBEKK models are new; the remaining ones were obtained by Osiewalski,
Pajor, Pipieni (2007), who present the Bayesian statistical methodology and particular
priors used. Note that B; ; indicates how much better is the fit of M; (relative to
M;).

Table 3: Sample characteristics for the two data sets used

Time series

(growth rates of:) Length | average | st. dev. | skewness | kurtosis | correlation
USD/PLN 0.03056 | 0.64173 | 0.41644 | 12.8484
6.02.1996-31.12.2001

DEM/PLN 1482 0.56675
6.02.1996-31.12.2001 0.00290 | 0.72792 | 0.68855 | 12.9013

WIG

8.01.1999-1.02.2006 0.05589 | 1.35218 | -0.11591 | 6.0776

S&P500 1727 - 0.17396
8.01.1999-1.02.2006 0.00058 | 1.19683 | 0.09250 | 4.9096

Table 4: Decimal logs of Bayes factors in favour of TSV (M)

Number of USD/PLN - WIG -
Model estimated DEM/PLN S&P500
VAR(1) + M; parameters
(and latent | Rank | log,o (Brsv,:) | Rank |log,q (Brsv,:)
variables)
TSV 18 (+37) 1 0 1 0
JSV 15 (+27) 2 15 2 10.5
BSV 14 (+27) 12 124 3 16.5
MSF-SBEKK type I | 14 (17) 3 31 1 19
MSF-DCC 20 (+7) 4 50 5-6 20.5
MSF-SBEKK type II| 14 (+7) 5 77.5 5-6 20.5
MSF 12 (+7) 6 92 7 26.5
T-BEKK(1,1) 19 7 104.5 11 35
+VECH(L,1) 29 8 106 12-13 36
t-DiagVECH(1,1) 17 9-10 119.5 10 33.5
t-SBEKK(1,1) 13 9-10 120 12-13 36
t-DCC(1,1) 18 11 122 8-9 31.5
t-CCC(1,1) 15 13 168.5 8-9 31

The results in Table [4 show that the hybrid structures beat (in terms of the marginal
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data density value) both their sub-cases and all MGARCH models considered here.
The high ranks of the MSF-SBEKK type I model are particularly promising as it
is relatively easy from the numerical perspective. Using just one latent process to-
gether with the SBEKK covariance structure seems a powerful modelling strategy. Of
course, the use of more latent processes improves fit enormously, but seems infeasible
for highly dimensional time series. A detailed discussion of empirical results is pre-
sented by Osiewalski, Pajor, Pipien (2007) for all the models, except the new ones. Let
us remind here that the conditional Normality assumption for the MGARCH models
is strongly rejected. In the case of exchange rates, the model-specific posterior distri-
butions of v, the degrees of freedom parameter, are concentrated in the interval (4, 5),
while for the stock indices they are located close to 11 - 12, with standard deviations
clearly excluding Normality.

4 Feasible approximate Bayesian inference in MSF-
SBEKK models

For all n-variate volatility structures considered here, except MSF, we are not able
to perform exact Bayesian analysis for large n. Now we focus on the MSF-SBEKK
models that seem the most promising compromise between generality and parsimony.
However, even in these models the conditional posteriors of é and A (the parameters
of dimension related to n?) are non-standard. Rejection sampling or the Metropolis-
Hastings algorithm within Gibbs steps would not be feasible for large n. Since J is
of no particular interest and obtaining its posterior distribution is not important, we
can use its value resulting from the application of OLS to the VAR(1) system. We
also suggest using the same estimate of A as in the case of the N-SBEKK structure
(subsection ; that is, A can be replaced by the empirical covariance matrix of the
OLS residuals from the VAR(1) part. However, we can still apply the Gibbs sampler
(based on the conditionals presented in subsection for the remaining parameters,
latent variables and future observations. This is the approximate Bayesian approach
we propose for large n.

Formally, one can describe our approach as follows. Let x and A group the quan-
tities of interest and nuisance parameters, respectively; in the MSF-SBEKK mod-
els A = (4, A). We are interested in obtaining the marginal posterior p(k|data) =
= [, p(k|data, X) p (A|data) dX and we are able to efficiently draw x from its condi-
tional posterior given A, but we cannot draw A. So we replace the marginal posterior
of A, p(\|data), with a very sharp (degenerate) distribution concentrated at some
preliminary estimate of A (say, X) This results in using p <f$|data, A= X), as if one
conditioned on a data-based value of A, instead of p (k|data).

In the bivariate cases considered in the previous section it is possible to compare exact

and approximate Bayesian results. Thus, in Tables [5] and [6] we present the posterior
means and standard deviations of the parameters in both cases. The decimal loga-
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rithms of the data density values (both true and "conditional", corresponding to the
parameters 6 and A fixed at their estimates) are also shown. In this way we check
how fixing § and A at some preliminary estimates changes the Bayesian measure of
fit. Big changes can be observed for exchange rates and much smaller ones for the
stock data. In the type II model using our estimates leads to higher values of the data

density.

For financial applications it is important how the exact and approximate

Table 5: Posterior means (and standard deviations) of the parameters of the MSF-
SBEKK models and logged data density values for the exchange rates (T' = 1482)

MSF-SBEKK type I

[ MSF-SBEKK type 11

parameter - -
[ exact [ approximate | exact [ approximate
501 0.044 (0.009) | 0.030 (0) | 0.042 (0.009) | 0.030 (0)
502 70.005 (0.010)| 0.002 (0) | 0.003 (0.010) | _0.002 (0)
511 0.020 (0.025)| 0.017 (0) |-0.005 (0.026)| 0.017 (0)
512 -0.012 (0.026) | 0.023 (0) | 0.001 (0.027) | 0.023 (0)
521 20.012 (0.021)| -0.081 (0) |-0.010 (0.022)| -0.081 (0)
522 0.040 (0.025) | -0.114 (0) |-0.039 (0.026)| -0.114 (0)
a1 0.153 (0.029) | _0.409 (0) | 0.378 (0.140) | 0.409 (0)
aia 0.053 (0.018)| 0.261 (0) | 0.055 (0.056) | 0.261 (0)
a2 0.174 (0.034) | 0.524 (0) | 0.480 (0.195) | 0.5624 (0)
7 0.411 (0.086) | 0.332 (0.082) | 0.915 (0.028) | 0.857 (0.032)
o2 0.540 (0.070) | 0.549 (0.062) | 0.173 (0.038) | 0.229 (0.043)
B 0.084 (0.013) | 0.096 (0.010) | 0.057 (0.015) | 0.034 (0.009)
5 0.878 (0.015) | 0.902 (0.011) | 0.925 (0.025) | 0.964 (0.010)
B+ 0.962 (0.008) [0.998 (0.001) | 0.982 (0.012) | 0.999 (0.001)
To 0.053 (0.051) | 0.082 (0.056) | 0.074 (0.076) | 0.062 (0.036)

log,, (p (data))

d = —852.6

d — 20

F=—899.2

f+i93

Table 6: Posterior means (and standard deviations) of the parameters of the MSF-
SBEKK models and logged data density values for the stock indices (T = 1727)

parameter

[ MSF-SBEKK type 1

[ MSF-SBEKK typo 11

[ exact [ approximate | exact [ approximate
o1 0.072 (0.026) | 0.056 (0) |0.071 (0.026) | 0.056 (0)
502 0.028 (0.022) | 0.001 (0) | 0.028 (0.023) | 0.001 (0)
11 0.015 (0.024) | -0.008 (0) | 0.017 (0.024) | -0.008 (0)
512 0.012 (0.020) | -0.006 (0) | 0.015 (0.020) | -0.006 (0)
o1 0.302 (0.027) | 0.371 (0) ] 0.305 (0.027) | _0.371 (0)
d22 -0.022 (0.026) -0.013 (0) -0.023 (0.025) -0.013 (0)
ait 1.127 (0.267) | 1.633 (0) | 1.308 (0.254) | 1.633 (0)
a1z 0.150 (0.104) | 0.289 (0) | 0.240 (0.110) | 0.289 (0)
a2z 0.720 (0.176) | 1.432 (0) | 1.009 (0.200) | 1.432 (0)
" 0.872 (0.156) | 0.934 (0.045) | 0.934 (0.007) | 0.987 (0.005)
o2 0.036 (0.041) | 0.020 (0.012) | 0.012 (0.004) | 0.011 (0.003)
g 0.021 (0.006) | 0.023 (0.005) | 0.020 (0.004) | 0.020 (0.004))
~ 0.970 (0.007) | 0.971 (0.006) | 0.970 (0.007) | 0.966 (0.009)
B+v 0.991 (0.003) | 0.994 (0.003) | 0.990 (0.005) | 0.987 (0.006)
ho 2.881 (1.026) | 2.856 (1.008) | 3.606 (0.712) | 3.458 (1.052)
Togrg (p (data)) | d = —2278.3 d=03 T=—22798 T+33
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posterior results on volatility and conditional correlation may differ. In Figures [I]
and [2] we present the results on the time-varying conditional correlation coefficient
P12t = \/u% based on the form of €;, the matrix defining the particular MSF-
SBEKK specification. In Figure [3| we show the posterior means of the conditional
standard deviation o;; = ,/giw;;,¢ measuring volatility of the first time series (1 =1).
In Table [7] basic inferences on conditional correlation and volatility are summarized
by time averages of posterior means and standard deviations. The overall impression
is that the differences between the model structures and between the exact and ap-
proximate approaches are not crucial. In particular, the dynamics of volatility and
correlation is described in a very similar way; the empirical correlation coefficient
between two sequences of competing estimates is always very high, especially for the
stock data. Even though exact and approximate posterior inferences may differ for
the basic model parameters (see Table @, they remain quite close for volatility and
conditional correlation.

Our examples indicate that there is no substantial difference between the type I and II
models, but the numerical demands of the type I model are smaller. We use our own
computer code in GAUSS, based on earlier codes written by the second author; see
Pajor (2009). The results were obtained using at least 100 000 burnt-in and 500 000
final Gibbs passes, which took about 20 hours of Intel Core2 CPU X6800 (2,93GHz)
in the case of the type I model. Generating less draws at the final stage would have
saved time at the cost of precision loss. The time needed for carrying out all com-
putations is 5 to 9 times larger in the case of the type II model, where the number
of the evaluations of the n-variate Normal density is O(T?), while it is O(T) for the
type I specification. Also, the Gibbs sampler seems to converge faster for the type
I model, so less burnt-in Gibbs passes are needed. Hence we recommend to use the
simpler type I structure.

Table 7: Conditional correlation and volatility: time averages of the posterior means
and standard deviations in the MSF-SBEKK models

Data set Average of l btype ! [ pre It
[approximate [ exact | approximate | exact

E (p1z.¢]data) | 0.2800 |0.1458] 0.2117 ]0.1610
exchange [ D (p12,¢[data) 0.0244 0.0378 0.0623 0.0771
E (01,¢|data) 0.5957 0.5594 0.5320 0.5353
D (01,¢]data) 0.1932 0.1812 0.1379 0.1280
rates E (02 ¢[data) 0.6645 0.6191 0.5951 0.6001
D (02 ¢|data) 0.2150 [0.2008| 0.1544 | 0.1436
E (p12¢|data) | 0.1899 |0.1871| 0.1855 | 0.1900
stock [ D (pi2,¢]data) 0.0154 0.0293 0.0211 0.0324

E (01,¢|data) 1.2269 1.2314 1.2114 1.2252
D (01,]data) 0.1602 0.1789 0.1353 0.1430
indices | E (o02,¢[data) 1.1429 1.1116 1.1274 1.1169
D (o03,¢]data) 0.1496 0.1623 0.1263 0.1303
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Figure 1: Conditional correlation (posterior mean + standard deviation),
exchange rates
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Figure 2: Conditional correlation (posterior mean £ standard deviation)
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Figure 3: Volatility measure o1, (posterior means)
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5 An example of approximate Bayesian inference for
a large number of assets

In order to show how our n-variate MSF-SBEKK models work for large n, we present
selected posterior results based on stock data representing 34 companies. Summary
statistics for their daily logarithmic returns in the period 30.01.2003-29.08.2007 are
shown in Table B} on August 29, 2007 companies number 1-23 were included in
mWIG40 and number 24-34 in WIG20, two important indices of the Warsaw Stock
Exchange. The approximate Bayesian approach (using the proposed data-based val-
ues of the highly dimensional matrix parameters) is applied. The posterior results
on volatility and conditional correlation for the prices of BDX (Budimex) and AGO
(Agora) are presented in some detail. Their logarithmic return rates and the posterior
means of the conditional standard deviations o; ; are plotted in Figures E| and @ while
the time averages of the posterior means and standard deviations of ¢; ; are given (for
all companies) in the last columns of Table 8] Note that in both models these averages
are similar, with average D (o; ¢|data) always smaller for the type II model; the same
applies to the posterior moments for the main MSF-SBEKK parameters (see Table E[)
The results on conditional correlation p;;; between BDX and AGO are shown in Fig-
ure @ the time averages of the posterior means (standard deviations) of p;; for this
pair are 0.188 (0.002) and 0.184 (0.006) in the type I and type II model, respectively.
In both models the dynamics of volatility and conditional correlation is described in
a similar way; the empirical correlation coefficient between two sequences of compet-
ing estimates is always above 0.9. For the sequences of E (o, |data) obtained in the
models of type I and II, we get 0.992 in the case of BDX and 0.996 in the case of
AGO; for the sequences of F (p2 24.¢|data) we get 0.916.

The results presented here are obtained using 200 000 burnt-in and 200 000 final
Gibbs passes. In the type I model convergence to the stationary distribution seems
fast - about 40 000 burnt-in passes would have been sufficient; in terms of compu-
tational time, this example (with n = 34) is almost 10 times more demanding than
the bivariate one. For the type II model, the time needed for carrying out all the
computations (with A = 80, see Appendix) is 3 times larger than for the type I struc-
ture; convergence to the stationary distribution is observed after about 130 000 Gibbs
passes.
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Table 8: Sample characteristics for the data set used (7' = 1149) and results
on volatility

st. average average average average

i |company |average dev kurtosis| min max |E(o; ¢ldata)|D(o; |data)|E(o; |data)|D(o; ¢|data)
’ type I type I type IT type I1
1 BPH 0.112 [ 1.906 | 5.562 |-10.566 | 9.444 1.819 0.193 1.816 0.184
2 BDX 0.097 [2.395| 10.843 | -10.807 | 21.035 2.249 0.238 2.241 0.227
3 DUD 0.142 [ 2.731| 84.964 | -47.505 | 12.936 2.576 0.273 2.546 0.258
4 ECH 0.203 [1.889| 6.584 | -8.278 | 8.961 1.790 0.190 1.784 0.181
5| EMP 0.206 |2.588 | 74.084 | -15.575 | 43.621 2.467 0.262 2.443 0.248
6 GRJ 0.188 [2.176 | 10.395 | -12.516 | 15.453 2.081 0.220 2.072 0.210
7| BHW 0.053 | 1.583 | 28.478 | -20.096 | 8.734 1.504 0.159 1.495 0.152
8 BSK 0.094 [1.373| 7.070 | -6.432 | 6.652 1.303 0.138 1.300 0.132
9 KTY 0.113 [ 1.939| 5.921 |-11.823 | 9.019 1.845 0.195 1.843 0.187
10| KPX 0.318 |3.429| 19.599 | -15.082 | 35.398 3.234 0.343 3.207 0.326
11| KRB 0.048 | 1.850| 20.879 | -21.472| 8.961 1.760 0.186 1.745 0.177
12| MCI 0.373 [3.734| 11.532 | -20.373 | 33.178 3.553 0.376 3.529 0.358
13| MIL 0.131 [2.236| 9.139 |-12.783 | 14.458 2.132 0.226 2.121 0.215
14| MSX 0.165 |3.716 | 12.516 | -24.381 | 28.768 3.546 0.376 3.511 0.356
15| MSZ 0.226 |4.248| 8.241 |-25.300 | 23.974 4.029 0.427 4.015 0.408
16| NET 0.023 [ 1.939| 16.115 | -20.567 | 8.444 1.834 0.194 1.821 0.185
17| EMF 0.091 |2.999| 15.846 | -22.012 | 24.686 2.870 0.304 2.858 0.290
18| ORB 0.122 [2.050| 7.959 |-15.558 | 10.178 1.952 0.207 1.938 0.197
19| PGF 0.097 |2.083| 16.043 | -10.536 | 21.767 1.960 0.208 1.950 0.198
20| PRC 0.027 [4.948 | 11.569 | -28.768 | 34.484 4.689 0.497 4.644 0.472
21| STX 0.105 |3.762| 12.627 | -29.523 | 23.863 3.581 0.379 3.548 0.360
22 STP 0.395 |2.742| 11.824 | -9.237 | 23.309 2.607 0.276 2.597 0.264
23| VST 0.325 [2.758 | 9.848 |-10.536 | 18.666 2.628 0.278 2.624 0.266
24| AGO 0.009 (2.070| 5.495 |-11.955| 8.072 1.964 0.208 1.960 0.199
25| BRE 0.167 (1.895| 5.010 | -7.633 | 8.898 1.802 0.191 1.805 0.183
26| BZW | 0.108 |2.066| 4.092 | -8.259 | 7.496 1.963 0.208 1.960 0.199
27| CST 0.191 (1.950| 9.507 |-10.488(13.262 1.844 0.195 1.835 0.186
28] GTN | 0.209 |3.455|35.036 (-45.392(24.613 3.312 0.351 3.275 0.334
29| KGH | 0.182 |2.543| 5.684 (-15.590| 9.093 2.426 0.257 2.421 0.245
30| PEO 0.088 (1.964| 4.751 | -6.579 [11.919 1.869 0.198 1.870 0.190
31| PKN 0.106 [1.908| 3.923 | -9.298 | 7.746 1.815 0.192 1.818 0.184
32| PXM 0.350 (2.778| 7.447 |-11.725(16.252 2.630 0.279 2.619 0.266
33| PND 0.244 (4.090| 34.971 |-53.870(28.395 3.903 0.414 3.867 0.393
34| TPS 0.044 (1.798| 3.733 | -8.359 | 5.617 1.712 0.181 1.717 0.174

Table 9: Posterior means (and standard deviations) of the main MSF-SBEKK

parameters

e ]

(o2

[

B

v [ B+~

type I model

0.4995
(0.0339)

0.1874
(0.0113)

0.0167

0.8523
(0.0014) | (0.0180)

0.8690
(0.0168)

type II model

0.5572
(0.0304)

0.1775
(0.0102)

0.0152

0.8824
(0.0014) | (0.0163)

0.8976
(0.0152)
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Figure 4: Daily growth rates of BDX prices and their volatility estimates
Daily growth rates of BDX (January 31, 2003 - August 29, 2007)
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6 Concluding remarks

MSV specifications can have much more explanatory power (as measured by Bayes
factors) than MGARCH models, but they are more difficult to estimate due to the
presence of latent processes. Only the Bayesian approach (equipped with MCMC
simulation methods) can simultaneously and efficiently deal with unknown parame-
ters, latent variables and future observables, but not in too complicated MSV models
of n-variate time series with large n.
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Figure 5: Daily growth rates of AGO prices and their volatility estimates
Daily growth rates of AGO (January 31, 2003 - August 29, 2007)
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In order to be able to analyse highly multivariate portfolios, we need relatively simple
n-variate volatility models that use one latent process and can be easily estimated,
but have non-trivial covariance structure. The VAR(1) - MSF-SBEKK type I model
meets these conditions. Its Bayesian analysis can rely on preliminary estimates for
highly dimensional nuisance parameters and can be performed for large n. Our em-
pirical examples demonstrate both high explanatory power (n = 2) and practical
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Figure 6: Conditional correlation between BDX and AGO,
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usefulness (n = 2, n = 34) of this new model. In further research one could apply
it in the portfolio optimization problems, along the lines presented for MSV models
by Pajor (2009). Also, formal Bayesian comparison between our model (that uses
past data in the conditional covariance matrix through the SBEKK structure) and
the factor models proposed by Chib, Nardari, Shephard (2006) would be interesting.
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Appendix - Generating latent variables in the MSF-
SBEKK model of type II

Let Ing = (Ingy,...,Ingr)’; our target density is:
p(Ingi,....Ingrlr,... ,TT,5,A,5,7790,09_2,h0)

T
x Hfzr\Li (relpes 9:%) £ (1n9t|901ngt—170’§) .
=1

Since it is not practical to sample directly from this density, we use the Metropolis-
Hastings (M-H) algorithm. Following Shephard and Pitt (1997) and Smith and Pitts
(2006), we propose to partition the elements of In g into contiguous blocks and generate
one block at a time from a Gaussian distribution. Let Ing; o = (Ing,,...,Ingy) be
a block of the log volatility vector with 1 < a < b <T. Then

p (lngt,a:b| lngt\a:bﬂnh Ty 67 A75777 8070-9_27 hO)

T b+1
o< [T £& (el 9e20) T[ £& (ingelpIngi—1,07)
t=a t=a

forl1<a<b<T,and

p (lngt,a:b| lngt\a:bvrrh s TT, 5a A7ﬂ777 8070'9727 h’O)
T b
x H TN (relpee, 9182) H Iy (lngt|<p1ngt,1,a§) )
t=a t=a
forl<a<b=T,
where Ingpo:p = Ing\Inga:p (ie. Ingpap = (Ing,...,Inga—1,Ilngp11,...,In gr) for
l<a<b<T).

The proposal density is N (111 gﬁlgb, B), where B = (HDLL -LIVL' o

P o, (see Fleming

and Kirby 2003), 1 is a k x 1 vector of ones, L is a lower-triangular k x k matrix of
ones, k=b—a-+1,In gff(f:b is the iterate of In g 4.5 from the previous sweep of the
sampler. As in Smith and Pitts (2006), the block size (k) is drawn at the beginning
of each sweep from a Poisson distribution with mean A. In our empirical examples
A =25 for n =2 and A = 80 for n = 34.

It is important to stress that Smith and Pitts (2006), and Chan, Kohn and Kirby
(2006) use (for the M-H step) the multivariate Gaussian proposal density obtained

from a quadratic approximation to

l (111 gt,a:b) - hlp (ln gt,a:b| In gt\a:ba T1y,...,TT, 6a Av ﬁv Y, P 09_27 hO) .
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— —1
— 821 (111 gt,a:b)
N {In Gt,a:b,

Oln gt,a:b8 In gt,a:bl

where h@b is the mode of I (Ing;q.p) that is found numerically. In our model,
however, this approach would be computationally too intensive and would make the
sampling scheme very slow.
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