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Abstract

In this paper we show that in the lognormal discrete-time stochastic volatility
model with predictable conditional expected returns, the conditional expected
value of the discounted payoff of a European call option is infinite. Our empir-
ical illustration shows that the characteristics of the predictive distributions of
the discounted payoffs, obtained using Monte Carlo methods, do not indicate
directly that the expected discounted payoffs are infinite.
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1 Introduction
The classical Black-Scholes model assumes that asset prices follow a geometric Brow-
nian motion, and the risk-free interest rate is constant. Thus, numerous studies on
option pricing have modified the Black-Scholes model to allow for stochastic volatility
of the underlying asset processes or stochastic interest rates. Hull and White (1987)
studied option pricing in the case of constant interest rate and stochastic volatility,
where volatility followed an independent geometric Brownian motion. Mahieu and
Schotman (1998) estimated the lognormal discrete-time stochastic volatility model
under the empirical measure P and applied directly the solution of Hull and White
(1987) for option pricing. Amin and Ng (1993) built the option pricing model which
incorporates both a stochastic interest rate and a stochastic volatility process for
stock returns. Their results were used directly by Jiang and Sluis (1999) in context
of a discrete-time bivariate stochastic volatility model. In this paper we show that
in the case of the lognormal discrete-time stochastic volatility model (in which the
conditional variance is lognormally distributed) the conditional expected value of the
discounted payoff may be infinite under physical (real world) measure P . The Risk-
Neutral Probability Measure or Local Risk Neutral Valuation Relationship (see Duan
1995, 1999), under which the expected payoffs on call options are finite, lead to the
change of the assumption about the tails of the distribution of the underlying asset.
The paper is organized as follows. Sections 2 presents the discrete-time stochastic
volatility model and shows that the conditional expected value of the discounted pay-
off of a European call option is infinite. Section 3 contains an empirical illustration.
Finally, section 4 concludes.

2 A discrete-time stochastic volatility process and
European call option pricing

Let (Ω, ψ, P ) be a probability space and F = {ψt, t = 0, 1, ..., T+s} be an increasing,
complete filtration satisfying ψT+s = F . Let St > 0, t = 0, 1, ..., T + s, be the price
of a stock at time t. We assume that the process {St}t=0,1,...,T+s is adapted to the
filtration F . The return process st is defined as:

st = ln(St/St−1). (1)

The discrete-time stochastic volatility model of st may be written as:

st = µt +
√
htεt, (2)

lnht = γ + φ lnht−1 + σhηt, t = 1, 2, ..., T + s, (3)

where εt and ηt are assumed to be iiN(0,1), and are mutually independent (a review
of SV models is provided in Psychoyios, Skiadopoulos and Alexakis 2003). We assume
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that the conditional mean of the return process µt is ψt - predictable (in Mahieu and
Schotman 1998 µt is constant).
Now, we consider a European call option with maturity T + s. The payoff function is
(ST+s −K)+ = max{ST+s −K, 0}, where ST+s is the price of the underlying asset
(no dividend being paid) at time T + s and K is the exercise price. The discounted
payoff considered at time T is

WT |T+s = e−rs(ST+s −K)+,

where r is the risk-free interest rate (assumed constant and known). The value of the
option is given by

CT |T+s = EQ(WT |T+s|ψT ) = e−rsEQ((ST+s −K)+|ψT ),

where Q is an equivalent martingale measure.
It is important to stress that the specification (2)-(3) relaxes only Black and Scholes
constant volatility assumption (the volatility follows a separate process). In deter-
ministic volatility models an investor incurs only the risk from a randomly evolving
asset price. Subject to certain modelling assumptions (see Black and Scholes 1973)
it is possible to perfectly replicate the payoff of the option through dynamic trading.
Thus, there is unique preference independent price for the option. This price can be
calculated as the discounted expected value under the equivalent martingale measure.
In the SV model (presented above) there are two sources of risk: the risk from the
asset price and from the volatility of the asset. It is clear that this model is incom-
plete. Due to the incompleteness of markets, the equivalent martingale measure is not
unique. It is well known that if P corresponds to a complete market model then the
equivalent martingale measure Q is uniquely defined by P . However, if P corresponds
to the more realistic case of an incomplete market model (e.g. stochastic volatility
model) then the assumption on P does not determine the martingale measure Q in a
unique way. In the incomplete market model, such as the stochastic volatility model,
there is no unique martingale measure. The choice of the martingale measure is par-
allel to defining the state price density (see Jiang 2007).
Many papers investigate option prices in a risk-neutral world and for the case that the
volatility risk premium is zero. Note that in Jiang and Sluis (1999), under assumption
that the risk premium in both interest rate and asset return processes as well as the
conditional volatility processes are all zero (that is, the risk-neutral process is assumed
to be the same as the objective underlying process), the conditional expected value
of the discounted payoff is calculated via Monte Carlo simulation. It is important to
stress that in the case of the SV model the conditional expected value of WT |T+s is
infinite under the original measure P . The predictive distribution of WT |T+s has the
same right tail as the right tail of the underlying distribution of ST+s.
Since St = estSt−1, for t = 1, ..., T + s, we have E(St|ψt−1) = St−1E(est |ψt−1). Un-
der our assumption st|ht, ψt−1 ∼ N(µt, ht), thus E(est |ht, ψt−1) = eµt+0.5ht . Since
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lnht|ψt−1 ∼ N(γ + φ(lnht−1 − γ), σ2
h), it follows that the conditional distribution of

e0.5ht given ψt−1, is log lognormal. Thus, it is easily to show that

E(est |ψt−1) = E(eµt+0.5ht |ψt−1) = +∞,

which implies that the conditional expected value of WT |T+s is infinite.
Similarly, using the law of iterated expectations, one can show that when the interest
rate is stochastic and the conditional variance of the asset process is lognormally
distributed, the conditional expected value of WT |T+s is infinite under measure P .
Note that when we assume that µt = r − 0.5ht (now µt is not predictable), we have
E(St|ψt−1) = St−1e

r. But when εt has a t-Student distribution with any degrees of
freedom, it is easy to show that E(est |ψt−1) = +∞. If in the risk-neutral measure the
return also has a fat right tail such as the t-Student distribution, then the call option
price (defined as an expected value of the discounted payoff under this measure) is
also infinite.

3 An empirical illustration
We analyse the data from the Warsaw Stock Exchange. The growth rate of the WIG20
index (yt = 100st, St is the index level at time t) is modelled using the discrete-
time AR(1)-SV model, i.e. in the specification (1)-(3) µt = δ + ρ(yt−1 − δ). We
use the Bayesian approach, which takes completely into account uncertainty, which
comes from prediction and from the parameters, by construction of the predictive
distribution of the discounted payoff. A measure of uncertainty can be attached to
the option price by computing predictive quantiles. The parameters have the following
prior structure:

p(δ, ρ, γ, φ, σ2
h) = p(δ)p(ρ)p(γ)p(φ)p(σ2

h),

where we use proper prior densities assuming the following distributions: δ ∼ N(0, 1),
ρ ∼ U(−1, 1),γ ∼ N(0, 100),φ ∼ N(0, 100)I(−1,1)(φ), σ−2

h ∼ G(1, 0.005).
The prior distribution for δ is standardized normal, U(−1, 1) denotes the uniform
distribution over (-1,1). The prior distribution for φ is normal, truncated by the re-
striction that the absolute value of φ is less than one (I(−1,1)(.) denotes the indicator
function of the interval (−1, 1), which is the region of stationarity of lnht). The sym-
bol G(v0, s0) denotes the Gamma distribution with mean v0/s0 and variance v0/s20
(thus σ−2

h has a Gamma prior with mean 200 and standard deviation 200; see Jacquier
Polson and Rossi 2004). The initial condition h0 is equal to y2

0 . These assumptions
reflect rather weak prior knowledge about the parameters.
We use daily observations (closing quotes) of the WIG20 index over the period from
January 2, 2001 to February 6, 2008. The data was downloaded from www.money.pl.
The dataset of the daily logarithmic growth rates (expressed in percentage points),
yt, consists of 1782 observations. The first observation is used to construct initial
conditions, thus T = 1781 (number of modelled observations). The data are plotted
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Table 1: Quantiles of the discounted payoff of the European call options for s = 31
µT+k = δ + ρ(yT+k−1 − δ) for k = 1, ..., s µT+k = rd − 0.5ωT+k for k = 1, ..., s

quantile of order quantile of order
K 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

2400 63.55 373.86 597.68 841.03 1251.47 31 326.12 537.23 765.39 1141.73
2500 0 274.66 498.48 741.83 1151.96 0 226.92 438.03 666.19 1042.22
2600 0 175.46 399.28 642.63 1052.76 0 127.41 338.83 566.68 943.02
2700 0 75.95 299.77 543.43 953.56 0 28.21 239.63 467.48 843.82
2800 0 0 200.57 443.92 854.36 0 0 140.12 368.28 744.62
2900 0 0 101.37 344.72 754.85 0 0 40.92 269.08 645.11
3000 0 0 2.17 245.52 655.65 0 0 0 169.57 545.91
3100 0 0 0 146.32 556.45 0 0 0 70.37 446.71
3200 0 0 0 46.81 457.25 0 0 0 0 347.2
3300 0 0 0 0 357.74 0 0 0 0 248
3400 0 0 0 0 258.54 0 0 0 0 148.8
3500 0 0 0 0 159.34 0 0 0 0 49.6
3600 0 0 0 0 60.14 0 0 0 0 0
3700 0 0 0 0 0 0 0 0 0 0
3800 0 0 0 0 0 0 0 0 0 0
3900 0 0 0 0 0 0 0 0 0 0
4000 0 0 0 0 0 0 0 0 0 0
4100 0 0 0 0 0 0 0 0 0 0
4200 0 0 0 0 0 0 0 0 0 0
4300 0 0 0 0 0 0 0 0 0 0
4400 0 0 0 0 0 0 0 0 0 0
4500 0 0 0 0 0 0 0 0 0 0

in Figure 1 and 2 (see the Appendix). It can be seen from the graph that the growth
rates seem to be centered around zero, with changing volatility and the presence of
outliers.

Table 2: Quantiles of the discounted payoff of the European call options for s = 92
µT+k = δ + ρ(yT+k−1 − δ) for k = 1, ..., s µT+k = rd − 0.5ωT+k for k = 1, ..., s

quantile of order quantile of order
K 0.05 0.25 0.5 0.75 0.95 0.05 0.25 0.5 0.75 0.95

2400 0 353.4 712.38 1120.03 1844.81 0 216.38 542.19 905.2 1542.87
2500 0 255.44 614.42 1022.38 1747.16 0 118.42 444.23 807.24 1444.91
2600 0 157.48 516.46 924.42 1648.89 0 20.77 346.27 709.28 1347.26
2700 0 59.83 418.5 826.46 1551.24 0 0 248.62 611.32 1249.3
2800 0 0 320.85 728.5 1453.59 0 0 150.66 513.67 1151.34
2900 0 0 222.89 630.85 1355.32 0 0 52.7 415.71 1053.69
3000 0 0 222.89 630.85 1355.32 0 0 52.7 415.71 1053.69
3100 0 0 26.97 434.93 1159.71 0 0 0 219.79 857.77
3200 0 0 0 336.97 1061.75 0 0 0 121.83 759.81
3300 0 0 0 239.32 963.79 0 0 0 24.18 662.16
3400 0 0 0 141.36 865.83 0 0 0 0 564.2
3500 0 0 0 43.4 768.18 0 0 0 0 466.24
3600 0 0 0 0 670.22 0 0 0 0 368.28
3700 0 0 0 0 572.57 0 0 0 0 270.63
3800 0 0 0 0 474.61 0 0 0 0 172.67
3900 0 0 0 0 376.65 0 0 0 0 74.71
4000 0 0 0 0 279 0 0 0 0 0
4100 0 0 0 0 181.04 0 0 0 0 0
4200 0 0 0 0 83.08 0 0 0 0 0
4300 0 0 0 0 0 0 0 0 0 0

We consider all European options on the WIG20 index, which were quoted on the
Warsaw Stock Exchange (WSE) on February 6, 2008 (at the end of observed sample).
The exercise dates are March 20, 2008 (i.e. s = 31 trading days) or June 20, 2008
(i.e. s = 92 trading days). It was assumed that the risk-free interest rate is 5.84%
per annum (r is equal to the 6 month WIBOR rate quoted on February 6). The em-
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pirical results presented in Pajor (2007) allowed us to infer that a stochastic interest
rate is not very important for forecasting of the discounted payoff. The predictive
distributions of the discounted payoff have such huge dispersions that in practice the
differences are negligible.
We compare the predictive distributions of the discounted payoff obtained assuming
that in the forecast horizon µT+k = δ + ρ(yT+k−1 − δ) for k = 1, ..., s and those ob-
tained with µT+k = rd − 0.5ωT+k, where rd = r/251, ωT+k = 0.01hT+k, k = 1, ..., s.
In the first case (i.e. µT+k = δ + ρ(yT+k−1 − δ) for k = 1, ..., s), µT+k is ψT+k - pre-
dictable, and the conditional expected value of the discounted payoff of a European
call option is infinite. In the second case (i.e. µT+k = rd − 0.5ωT+k), µT+k is not
predictable, but the expected rate of return on St is the risk-free interest rate, and
we have E(ST+s|ψT ) = ST e

srd/100. Consequently, the conditional expected value of
the discounted payoff of the European call option is finite and can be written as the
expected Black and Scholes price, where the expectation is taken over the conditional
distribution of the mean volatility (see Hull and White 1987).

Table 3: True value of the discounted payoff of the European call options (column
A), prices of the options (column B) and reference prices (column C) on February 6,
2008. Data were downloaded from http://bossa.pl

s =31 s =92
K A B C A B C

2400 466.6222 543.8 577.45 323.99 - 649.7
2500 367.3409 - 484.85 226.1079 - 571.55
2600 268.0596 373.55 397.5 128.2257 - 498.8
2700 168.7782 285 317.4 30.34348 - 431.85
2800 69.49692 215 246.3 0 - 370.9
2900 0 160 185.55 0 - 316.15
3000 0 122 135.65 0 - 316.15
3100 0 88 96.05 0 152.95 224.75
3200 0 68 66.1 0 135 187.45
3300 0 43 44.12 0 91.95 155.35
3400 0 27 28.61 0 69.95 128
3500 0 15 18.05 0 - 104.85
3600 0 10.88 11.08 0 - 85.4
3700 0 6 6.63 0 - 69.2
3800 0 2.6 3.88 0 - 55.75
3900 0 2 2.22 0 - 44.74
4000 0 2.1 1.24 0 - 35.74
4100 0 1 0.68 0 - 28.43
4200 0 - 0.37 0 - 22.53
4300 0 - 0.2 0 - 17.79
4400 0 - 0.1 - - -
4500 0 0.11 0.05 - - -

We report in Table 1 and 2 the main characteristics of the predictive distributions of
the discounted payoff for the European call option on the WIG20 index. All presented
results were obtained with the use of the Metropolis and Hastings algorithm within
the Gibbs sampler using 105 iterations after 5·104 burn-in Gibbs steps (see Pajor 2003
for details).
The settlement prices for derivative securities were equal to 2870 (for s = 31) and
2731 (for s = 92), while the last observed value of the WIG20 index was equal to
2941.65. Consequently, the options with the exercise price above 2800 (2900 or more)

Anna Pajor
CEJEME 1: 71-81 (2009)

76



A Note on Option Pricing

for s = 31 and 2700 (2800 or more) for s = 92 were not executed. The true values
of the discounted payoff are located between the medians and the quantiles of order
0.75 or between the quantiles of order 0.25 and the medians. However, the observed
market prices and reference prices of the options are in more cases located above the
quantiles of order 0.75 or 0.95.

Table 4: Sample means and standard deviations computed using draws from the
predictive distributions of the discounted payoffs. Case A relates to µT+k = δ +
ρ(yT+k−1 − δ), while case B relates to µT+k = rd − 0.5ωT+k

s =31 s =92
Case A Case B Case A Case B

K mean st. dev. mean st. dev. mean st. dev. mean st. dev.
2400 624.31 356.94 560.68 331.29 787.62 586.18 614.80 506.79
2500 529.61 349.53 467.09 322.44 699.34 573.92 531.53 490.07
2600 438.75 337.78 378.30 308.54 614.99 558.27 453.68 469.60
2700 353.79 320.72 296.74 288.74 535.38 539.20 382.25 445.55
2800 276.92 298.12 224.62 263.41 461.36 516.76 317.89 418.53
2900 210.11 270.64 163.89 233.68 393.52 491.39 261.01 389.30
3000 154.54 239.78 115.34 201.60 332.38 463.58 211.80 358.70
3100 110.32 207.58 78.47 169.50 278.19 433.99 169.98 327.69
3200 76.59 176.08 51.71 139.44 230.71 403.49 135.02 297.14
3300 51.92 146.80 33.25 112.67 189.81 372.75 106.34 267.75
3400 34.49 120.76 20.94 89.82 155.05 342.45 83.15 240.04
3500 22.55 98.38 12.95 70.95 125.86 313.15 64.65 214.37
3600 14.58 79.64 7.94 55.70 101.62 285.28 50.03 190.95
3700 9.34 64.25 4.83 43.58 81.74 259.13 38.64 169.82
3800 5.93 51.86 2.93 34.03 65.58 234.88 29.79 150.94
3900 3.76 42.02 1.77 26.58 52.52 212.59 22.96 134.20
4000 2.39 34.26 1.06 20.81 42.03 192.28 17.70 119.44
4100 1.55 28.15 0.65 16.34 33.65 173.87 13.67 106.49
4200 1.03 23.28 0.40 12.84 26.99 157.23 10.56 95.16
4300 0.68 19.35 0.24 10.13 21.67 142.26 8.20 85.29
4400 0.46 16.21 0.15 8.02 - - - -
4500 0.32 13.68 0.10 6.34 - - - -

In Figure 3 (see the Appendix) we present histograms of the predictive distributions
of the discounted payoff of the European options with the exercise price (K) equal to
2700 index points. The first bars of graphs denote probabilities that the options will
not be exercised. The little gray squares represent the true values of the discounted
payoff. The predictive histograms are characterized by huge dispersion and thick tails,
thus uncertainty about the future payoff was very big ex-ante. However, the predic-
tive distributions produced by the AR(1)-SV model are more spread (see quantiles in
Table 1 and 2) and have thicker right tails than the predictive distributions produced
by the SV model with µT+k = rd − 0.5ωT+k for k = 1, ..., s. It can be seen from the
graphs that in SV model with µT+k = δ + ρ(yT+k−1 − δ) for k = 1, ..., s the last bars
of the histograms are higher. It is in accordance with our theoretical results.
Finally, it is important to stress that the characteristics of the predictive distribu-
tions of the discounted payoffs obtained using the numerical methods do not in-
dicate directly that the expected discounted payoffs are infinite. When µT+k =
δ + ρ(yT+k−1 − δ), the empirical (sample) means, computed using draws from the
predictive distributions of the discounted payoffs, are only higher than those in the
SV model with µT+k = rd − 0.5ωT+k (see Table 4). But these sample means cannot
be used as approximations of the expected discounted payoffs.
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4 Conclusions
In this paper we show that in the lognormal stochastic volatility model with pre-
dictable conditional expected returns the conditional expected value of the discounted
payoff of a European call option is infinite. This is due to the fact that the “underlying
asset price tomorrow” has an infinite expectation. The assumptions under which the
expected payoff is finite lead to the change of the thickness of the tails.
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Appendix - Figures
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Figure 1: Daily quotations of WIG20 index (January 2, 2001 – June 20, 2008). The
vertical line represents the end of the observed sample (February 6, 2008)
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Figure 2: Daily growth rates of WIG20 index (January 2, 2001 – June 20, 2008). The
vertical line represents the end of the observed sample (February 6, 2008)
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s = 31, K=2700, T+k =  + (yT+k-1-) 

 

s = 92, K=2700, T+k =  + (yT+k-1-) 

 

s = 31, K=2700, T+k = rd - 0.5T+k 

 

s = 92, K=2700, T+k = rd - 0.5T+k 
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Figure 3: Histograms of the predictive distributions of the discounted payoff. The
small graphs represent the same predictive distributions as the big graphs, but in a
different scale. The gray square represents the true value of the discounted payoff
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