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Abstract

In this paper we present the Bayesian model selection procedure within the
class of cointegrated processes. In order to make inference about the cointegra-
tion space we use the class of Matrix Angular Central Gaussian distributions.
To carry out posterior simulations we use an alorithm based on the collapsed
Gibbs sampler. The presented methods are applied to the analysis of the price
- wage mechanism in the Polish economy.
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1 Introduction

The general aim of this paper is to formally compare competing Bayesian models
with the error correction mechanism, which may differ in the lag length, the type of
deterministic processes, the number of cointegrating relations and overidentifying re-
strictions imposed on the cointegration space (e.g. the (trend) stationarity of a given
component of the analysed multivariate process) and/or the space of adjustment co-
efficients (e.g. weak exogeneity of a subset of the analysed variables). The obtained
posterior probabilities of each model may be used in further analyses and decision
making processes.
The methods presented here will be applied to the analysis of the price - wage mech-
anism in the Polish economy. The analysed 52 quarterly data include five variables:
average wages, current prices (W), price index of consumer goods (P), labour produc-
tivity, constant prices (Z), price index of imported goods (M), rate of unemployment
(U) and covers the thirteen year period ranging from 1995 to 2007.
This paper is laid out as follows: section 2 introduces the sample model, sections 3
and 4 present the set of competing models and some aspects of the Bayesian model
selection respectively, section 5 contains an empirical example and section 6 concludes.

2 The basic Bayesian Vector Error Correction Model

Let us consider the n-dimensional cointegrated process {xt}t=1,2, ...,T , where xt =
(xt1, xt2, . . . , xtn)′, t = 1, 2, . . . , T . According to the Granger representation theorem
any cointegrated process may by written in the error correction form (Strachan, van
Dijk 2007):

∆xt = α(β+′xt−1 + ϕ′1d1t) + Γ0wt +
k−1∑
i=1

Γi∆xt−i + ϕ2d2t + εt =

= αβ′z1t + Γ′z2t + εt (1)

and in matrix notation

Z0 = Z1βα
′ + Z2Γ + E = Z1Π′ + Z2Γ + E (2)

where Z0 = (∆x1,∆x2, . . . ,∆xT )′, Z1 = (z11, z12, . . . , z1T )′, z′1t = (x′t−1 d
′
1t), Z2 =

(z21, z22, . . . , z2T )′, z′2t = (w′t,∆x
′
t−1,∆x

′
t−2, . . . ,∆x

′
t−k+1, d

′
2t), β = (β+′ ϕ′1)′, Γ =

(Γ0,Γ1, . . . ,Γk−1, ϕ2)′, E = (ε1, ε2, . . . , εT )′, εt ∼ iiNn(0,Σ), t = 1, 2, . . . , T . Matri-
ces d1t, d2t introduce deterministic trends to the VECM form and wt contains other
non-random regressors, α is the n×r matrix of adjustment coefficients, β is the m×r
matrix containing cointegrating vectors; m ≥ n and m = n if there are no determin-
istic components in the cointegrating relations. Both matrices, α and β, are of rank
r, where 0 ≤ r ≤ n. For r = n we assume α = In.
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The decomposition of the reduced rank Π matrix as the product of the two full
column rank matrices α and β is very convenient because of the natural interpre-
tation, but its main drawback is ambiguity, i.e. for any r × r full rank matrix
C : Π = αβ′ = αCC−1β′, in other words - data contain information only about
the cointegration space. The cointegration space is the element of the Grassmann
manifold (Gr,m−r), which is the set of all r dimensional subspaces in Rm. Following
Strachan and Inder (2004) approach we make use of the many-to-one relation between
the Stiefel manifold (Vr,m) and the Grassmann manifold. The points of the Stiefel
manifold are r−frames, i.e. sets of r orthonormal vectors in Rm. In order to make
Bayesian inference about the cointegration space, it is possible to work with β ∈ Vr,m
and adjust the integrals with respect to β by the volume of the orthogonal group O(r)
to account for the fact that the dimension of Vr,m exceeds the dimension of Gr,m−r.
Assuming that β ∈ Vr,m we do not exclude any direction of the cointegration space,
and by imposing uniform prior on the set of semi-orthogonal matrices Vr,m, we impose
uniform prior on the Grassmann manifold (Gr,m−r). It is worth to emphasize that
both manifolds considered here are compact, so uninformative priors are proper and
unique, so, even if we want to be uninformative about the cointegrating space, we
can calculate posterior odds ratios in order to choose between competing models (see
e.g. James 1954 for the formal discussion and Strachan, Inder 2004 for the discus-
sion in the context of VECM). Strachan and Inder (2004) present the construction
of not only uninformative, but also informative priors in which the researcher can
incorporate prior knowledge about the cointegration space. They use the class of Ma-
trix Angular Central Gaussian distributions, MACG (Chikuse 1990). To carry out
efficient posterior simulations in such models, Koop, León-González, Strachan (2006)
(see also Koop, Potter, Strachan 2008) developed two algorithms, based on a collapsed
Gibbs sampler (see e.g. Liu 1994). We present that one of their algorithms, which
can be used when matrices β and α can have different dimensions and so can be used
in models with deterministic terms in cointegrating relations and/or in over-identified
models. In this algorithm the following parameterisations of the Π matrix will be
used:

α̃β̃′ = α̃DD−1β̃′ = (α̃D)(β̃D−1)′ ≡ αβ′, (3)

where D is an unidentified r × r symmetric positive definite matrix. In the first
parametrisation both matrices β̃ and α̃ have real space as their support. For D =
(β̃′β̃)

1
2 , β in the second parametrisation has orthonormal columns and α remains

unrestricted. The sampler alternates between these parameterisations and involves
draws from the Normal and inverted Wishart distributions (also from the inverted
Gamma distributions, when we treat scalars controlling the precisions of prior distri-
butions as additional parameters).
We impose on β̃ and α̃ matrix Normal distributions:

β̃|τ, r,m ∼ mNm×r(0,m−1Ir, Pτ ) (4)
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and
α̃|Σ, ν, r ∼ mNn×r(0, νIr,Σ) (5)

Parameters ν and τ control degrees of informativeness of the distributions stated above
and we impose for them inverted Gamma distributions ν ∼ iG(sν , nν), τ ∼ iG(sτ , nτ ).
In the Pτ matrix the researcher may incorporate prior knowledge. In order to obtain
the prior distribution for β, we use theorem 1.

Theorem 1 (Chikuse, 1990, 2003) Let us suppose that Z has the m × r matrix-
variate central Normal distribution with parameter Ω (Z ∼ mNm×r(0, Ir,Ω)), whose
density is

p(Z) = (2π)−
rm
2 |Ω|− r2 exp

[
−1

2
tr(Z ′Ω−1Z)

]
,

where Ω is m×m positive definite matrix. Then we have the density of its orientation
HZ = Z(Z ′Z)−

1
2

p(HZ) = |Ω|− r2 |H ′ZΩ−1HZ |−
m
2 . (6)

From the uniqueness of the polar decomposition (see e.g. Cadet 1996) of β̃ (β = Hβ̃)
and according to Theorem 1, β has matrix angular central Gaussian distribution
with parameter Pτ : β|τ, r ∼ MACG(Pτ ). If we assume that Pτ = Im we get a
uniform distribution over the Stiefel manifold and so a uniform distribution over the
Grassmann manifold.
The priors for the remaining parameters are:

• inverted Wishart for Σ: Σ ∼ iW (S, q) (we opt for the informative prior for Σ,
because, in order to estimate the marginal likelihood of the data, we will use
the Newton - Raftery method),

• matrix Normal for Γ: Γ|Σ, h ∼ mN(0,Σ, hI),

• inverted Gamma for h, if the researcher wants it to be estimated: h ∼ iG(sh, nh).

3 The set of competing models
The considered VECM forms may differ in the lag length of VAR (k), the type of
deterministic processes (d), the rank of the Π matrix (r), the structural overidentifying
restrictions imposed on the cointegrating space (o) and the space spanned by the
matrix of adjustment coefficients (e).
We will consider five commonly used forms of the deterministic trends in the VECM
form (see e.g. Johansen 1996, Strachan, van Dijk 2007).

d=1: ϕ1d1t = µ1+δ1t and ϕ2d2t = µ2+δ2t, there is a linear trend in the cointegrating
relations and the process xt has a quadratic trend,
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d=2: ϕ1d1t = µ1+δ1t and ϕ2d2t = µ2, there is still a linear trend in the cointegrating
relations and a linear trend in the process xt,

d=3: ϕ1d1t = µ1 and ϕ2d2t = µ2, the model allows for a linear trend in the process
xt and a non-zero mean in the cointegrating relations,

d=4: ϕ1d1t = µ1 and ϕ2d2t = 0, there is no trend in the process xt and a non-zero
mean in the cointegrating relations,

d=5: ϕ1d1t = 0 and ϕ2d2t = 0, there is no trend in the components of the process
xt and cointegrating relations have zero mean.

The most commonly tested structural restrictions imposed on the cointegration space
are of the form:

1. sp(β) ⊆ sp(H) i.e. β = Hψ, where Hm×s is a known matrix and ψs×r (r ≤
s < m) contains unknown parameters. This restriction is imposed on all coin-
tegrating vectors. The cointegration space is fully determined. As sp(H) =
sp(H(H ′H)−1/2) we can assume that H is an element of the Stiefel manifold
(H ∈ Vs,m). This restriction leads to the model of the following form:

Z0 = (Z1H)ψα′ + Z2Γ + E = (Z1H)ψ̃α̃′ + Z2Γ + E. (7)

We know that β′β = Ir, so Ir = β′β = ψ′H ′Hψ = ψ′ψ ⇒ ψ ∈ Vr,s and we can,
for example, impose for this matrixMACG(P̃τ ) distribution (i.e. mN(0, s−1Ir, P̃τ )
for ψ̃).

2. sp(b) ⊆ sp(β) i.e. β = (b φ) = (b b⊥ψ), where bm×s (s ≤ r) is a matrix con-
taining known cointegrating vectors and φm×(r−s) contains unknown cointe-
grating vectors. As sp(b) = sp(b(b′b)−1/2) we can assume that b is an ele-
ment of the Stiefel manifold (b ∈ Vr−s,m). According to Theorem 2 applied to
X1 = b, G(X1) = b⊥ and U1 = ψ, inference in such a model can be made as in
the basic model:

Z0 = (Z1b⊥)ψα′2 + (Z1b)α′1 + Z2Γ + E = (Z1b⊥)ψ̃α̃2
′ + (Z1b)α′1 + Z2Γ + E,

ψ̃|τ, r − s,m− s ∼ mNm−s×r−s(0, (m− s)−1Ir−s, P̃τ ), ψ|τ ∼MACG(P̃τ ),

α1|ν,Σ ∼ mN(0, νIs,Σ), α̃2|ν,Σ ∼ mN(0, νIr−s,Σ)

Theorem 2 (Chikuse, 1990, 2003) Let us write a random matrix X on Vr,m
as X = (X1X2) with X1 and X2 beingm×s andm×(r−s) matrices, respectively
(0 < s < r). Then we can write X2 = G(X1)U1, where G(X1) is any matrix
chosen so that (X1G(X1)) is orthogonal, and as X2 runs over Vr−s,m, U1 runs
over Vr−s,m−s and the relationship is one-to-one. The differential form [dX] for
the normalized invariant measure on Vr,m is decomposed as the product [dX] =
[dX1][dU1] of the forms [dX1] and [dU1] on Vs,m and Vr−s,m−s, respectively.
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This type of restriction can be used to check whether one of the components
of the process xt is stationary. By including in the model different types of
deterministic trend, the hypothesis about trend stationarity can also be tested.

3. β = (H1ψ1, H2ψ2, . . . ,Hlψl), where Hi, i = 1, 2, . . . , l are m × si matrices, ψi
are si × ri matrices, ri ≤ si, l ≤ r,

∑l
i=1 ri = r. This type of restriction

contains the forms stated above as special cases

The restrictions for the adjustments coefficients can be formulated in a similar way to
those imposed on β. One of the most important restrictions is the sufficient condition
for weak exogeneity (for the estimation of the long-run parameters and the remaining
adjustment parameters), i.e. α2 = 0, where α2 contains adjustment parameters for
the components of xt, say x2t, which weak exogeneity we check (see e.g. Urbain 1992).
This hypothesis can be formulated as sp(α) ⊆ sp(Ã), i.e α = Ãψ, where Ã = (Is 0).
As a prior distribution for ψ̃ = ψ(β̃′β̃)−

1
2 we could use mN(0, νIr, Ã′ΣÃ).

4 Bayesian model selection

Bayesian methodology enables us to compare different models through the posterior
probability (see e.g. Zellner 1971, Osiewalski 2001, Pajor 2003). The model with the
highest posterior probability is usually considered the best.
Let us consider a set of non-nested competing Bayesian models {Mξ : ξ = (k, d, r, o, e) ∈
Ξ}:

Mξ : pξ(x, θ(ξ)) = pξ(θ(ξ))pξ(x|θ(ξ)), ξ ∈ Ξ,

where x denotes the data, θ(ξ) ∈ Θ(ξ) is the vector of parameters of theMξ model and
pξ(θ(ξ)) is the prior density. Using the Bayes theorem, we can evaluate the posterior
probability of each model:

p(Mξ|x) =
p(Mξ)p(x|Mξ)∑
ζ∈Ξ p(Mζ)p(x|Mζ)

, (8)

where
p(x|Mξ) =

∫
Θ(ξ)

pξ(x|θ(ξ))pξ(θ(ξ))dθ(ξ), ξ ∈ Ξ

is the marginal density of the data under model Mξ. In this paper we will evaluate
these integrals using the Newton-Raftery (N-R) method within the collapsed Gibbs
sampler, so as the estimate for p(x|Mξ) the harmonic mean of the likelihood values of
a sample from the posterior distribution will be used (Newton, Raftery 1994, Kass,
Raftery 1995):

p̂(x|Mξ) =

(
1
m

m∑
i=1

pξ(x|θ(ξ)i)−1

)−1

. (9)

Justyna Wróblewska
CEJEME 1: 57-69 (2009)

62



Bayesian Model Selection in the Analysis of Cointegration

The N-R estimator p̂(x|Mξ) converges almost surely to the true value p(x|Mξ) as
m→∞, but it does not have a finite variance. The prior probabilities of competing
models, p(Mξ), ξ ∈ Ξ, are assumed by the researcher. Often we want to treat all
models as equally probable. Assuming equal prior probabilities for elements of the set
of different VAR/VECM forms is not straightforward, because some of combinations
of the individual elements of ξ are impossible (e.g. r = 0 and o 6= 0) or observationally
equivalent to one another (e.g r = 0, d = 2 and r = 0, d = 3). To overcome this
difficulty we will use an algorithm proposed by Strachan and van Dijk (2007):

1. Assume equal probabilities for individual elements of ξ, e.g. for r ∈ {0, 1, . . . , n}
impose p(r) = (n+ 1)−1.

2. For all combinations of the individual elements of Ξ set weights: k(Mξ) =
p(k)p(d)p(r)p(o)p(e).

3. Set k(Mξ) = 0 for all impossible combinations.

4. Set k(Mξ) = 0 for all but one observationally equivalent combinations.

5. Compute prior model probabilities as

p(Mξ) =
k(Mξ)∑
ζ∈Ξ k(Mζ)

.

5 An empirical example: the analysis of the price
inflation in Poland

The methods presented above will be used in the analysis of the price - wage spiral in
the Polish economy. The classical analysis (using the Johansen procedure) of the price
- wage mechanism in the Polish economy is presented by: Welfe, Majsterek, Florczak
(1994), Welfe, Majsterek (2000, 2002), and in the Bayesian approach by Wróblewska
(2008). Short-run analysis of price inflation in Poland from a Bayesian perspective
is presented by Osiewalski, Welfe (1998). The analysed 52 quarterly data include
five variables: average wages, current prices (W), price index of consumer goods (P),
labour productivity, constant prices (Z), price index of imported goods (M), rate of
unemployment (U) and covers the thirteen year period ranging from 1995 to 2007.
Figure 1 (see the Appendix) presents plots of the analysed data in levels and in first
differences. Small letters denote natural logarithms of the original variables.
These graphs suggest that we can not assume constant variance for all but produc-
tivity, which seems to be trend stationary. As proposed by Johansen (1996, p. 74)
we will check this inside the VECM form by testing the hypothesis sp(b) ⊆ sp(β),
i.e. β = (b, φ), where e.g. for the third variable in the five-dimensional process
b′ = (0, 0, 1, 0, 0).
The visual inspection of the analysed variables may also suggest that wages and prices
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are trend stationary if we incorporate quadratic trends for the variables in the model.
However their graphs look even too smooth and for this reason we should analyse
theirs stochastic nature with more care. When we look at the plots of their first
differences we do not observe any substantial mean reversion. These features may
suggest that wages and prices are integrated of order two. If this is true the data may
give higher posterior probability for models with the Π matrix of low rank (close to
zero).
We will consider the set of models, which differ in the number of lags k ∈ {1, 2, 3},
deterministic terms d ∈ {1, 2, 3, 4, 5}, the number of stable equilibrium relations
r ∈ {0, 1, 2, 3, 4, 5}, the overidentifying restrictions on these relations o ∈ {0, 1, 2}
and one restriction for the adjustments coefficients e ∈ {0, 1}. Table 1 presents all
considered overidentifying restrictions. Homogeneity condition is an example of the
restriction imposed on all cointegrating vectors sp(β) ⊆ sp(H),i.e. β = Hϕ, where

H =


1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 0 0

0 0 0 1

 .

There is 540 (k, d, r, o, e) combinations. After removing all impossible combinations
and all but one equivalent combinations we are left with 366 different models. We wish
to treat them as equally possible so we compute the prior model probabilities in the
way suggested by Strachan and van Dijk (2007), which gives p(M(k,d,r,o,e)) = 0.0027.
We analyse quarterly data, so we have decided to incorporate zero mean seasonal
dummies in the model. The results are based on the following priors:

• β̃|r,m ∼ mN(0,m−1Ir, Im), which leads to β|r ∼MACG(Im),

• α̃|ν, r,Σ ∼ mN(0, νIr,Σ),

• Σ ∼ iW (In, 7),

• Γ|Σ, h ∼ mN(0,Σ, hI),

• ν ∼ iG(2, 3) (E(ν) = 1, V ar(ν) = 1),

• h ∼ iG(0.02, 3) (E(h) = 0.01, V ar(h) = 0.0001)

• p(M(k,d,r,o,e)) = 0.0027.

The joint prior resulting from this specification has been truncated by the stability
condition imposed on the parameters of the cointegrated process.
Table 2 presents the most probable models (with posterior probability not less than as-
sumed prior probability p(M(k,d,r,o,e))). Their posterior probabilities sum up to 0.992.
The results presented in Table 2 confirm our hypothesis about trend stationarity of
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productivity. The data give much support for the model with only one cointegrating
relation, which may be a signal that the data are I(2). We have decided to check
the characteristic roots for the models listed in Table 2. The posterior means and
standard deviations (in brackets) of the moduli of these characteristic roots are given
in Table 3. In all cases apart from unit roots we have additional roots higher than 0.9

Table 1: The overidentifying restrictions
o = 0 no restriction for the cointegration space
o = 1 trend-stationarity of labour productivity
o = 2 homogeneity condition
e = 0 no restriction for the adjustment coefficients
e = 1 weak exogeneity of import prices

(very close to 1). This seems to confirm our presumptions that there is I(2) unit root
in the data. For these reasons we have decided to compare the same set of models
for the transformed data. We have replaced prices (both domestic and import) with
inflation, and wages with their first differences. Using such transformation, we loose
information about some of the long-run properties of the analysed data. We can not
use the nominal-to-real transformation, because the data do not give much support
for the long-run price homogeneity (the posterior probability of this restriction was
0.001). Table 4 presents the most probable models for the transformed data (with

Table 2: The most probable models
k d r o e p(M(k,d,r,o,e)|x) log10(p̂(x|M(k,d,r,o,e)))
2 3 1 1 0 0.615 52.068
2 2 2 1 0 0.229 51.639
2 3 2 1 1 0.077 51.164
2 3 2 1 0 0.071 51.131

posterior probability not less than assumed prior probability p(M(k,d,r,o,e))). Their
posterior probabilities sum up to 0.9972. The model with only one cointegrating
relation with assumed stationarity of productivity is still in the group of the most
probable models, but it achievied lower probability than the model with two cointe-
grating relations and the same restriction imposed on the cointegrating space. These

Table 3: The posterior means and standard deviations (in brackets) of the moduli of
the characteristic roots of the most probable models
M(2,3,1,1,0) 1 1 1 1 0.989 0.573 0.214 0.160 0.113 0.065

(0.0000) (0.0000) (0.0000) (0.0000) (0.0093) (0.1442) (0.0892) (0.0674) (0.0558) (0.0474)
M(2,2,2,1,0) 1 1 1 0.988 0.945 0.628 0.221 0.166 0.118 0.067

(0.0000) (0.0000) (0.0000) (0.0105) (0.0542) (0.1646) (0.0913) (0.0689) (0.0572) (0.0488)
M(2,3,2,1,1) 1 1 1 0.989 0.945 0.620 0.207 0.155 0.110 0.063

(0.0000) (0.0000) (0.0000) (0.0101) (0.0543) (0.1708) (0.0872) (0.0658) (0.0544) (0.0461)
M(2,3,2,1,0) 1 1 1 0.988 0.941 0.633 0.220 0.165 0.117 0.067

(0.0000) (0.0000) (0.0000) (0.0107) (0.0559) (0.1636) (0.0911) (0.0686) (0.0569) (0.0486)

results confirm our presumtions about the nature of the analysed process and show
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that the price - wage mechanism in the Polish economy should be rather analysed in
the framework of models which take into account the possibility of I(2) nature of the
nominal variables (see e.g. Johansen 1996, Banerjee, Cockerell, Russell 2001, Kong-
sted 2003, in the context of the relationship of prices and wages in the Polish economy
see Kelm, Majsterek 2007 and for a Bayesian perspective see Strachan 2007).

Table 4: The most probable models for the transformed data
k d r o e p(M(k,d,r,o,e)|x) log10(p̂(x|M(k,d,r,o,e)))
2 2 2 1 0 0.735 49.221
2 3 1 1 0 0.206 48.669
2 2 2 1 1 0.021 47.684
2 4 2 2 1 0.013 47.467
2 5 2 2 1 0.0093 47.325
2 3 2 2 1 0.0089 47.304
2 4 2 2 0 0.004 46.946

6 Conclusions
The methods of comparing VECM representaions presented here can give us much
insight into the nature of the analysed multivariate processes. It should be emphasized
that in the Bayesian framework it is possible to formaly compare even a very large and
complex set of competing models and thus to avoid problems occuring in sequential
testing procedures within the traditional (non-Bayesian) approach to cointegration.
The analysis of the price-wage spiral in the Polish economy showed that some of the
variables may be integrated of order two. The complete Bayesian I(2) analysis in that
case would be both statisticaly and empirically interesting and important.
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Appendix - the dataset
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Figure 1: The analysed data: levels and differences
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