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1 Introduction

Parametric methods of estimation, for example maximum likelihood method, require
strong assumptions about the data-generating process, for example normality of the
error term. Often, if these assumptions are not fulfilled, these methods provide in-
consistent estimators of the model parameters. This fact lead researchers to look for
semiparametric estimators, which rely on very weak assumptions about the data, es-
pecially about the error term, but assume certain functional form of the dependency
between explained and explanatory variables, for example linear form.

Manski (1975, 1985) introduced the semiparametric maximum score estimator of pa-
rameters in the binary and multinomial choice model which is consistent under very
mild assumptions. It allows for heteroskedasticity of the unknown form and arbitrary
distribution of the error term. The idea of this method is based on considering proper
"score function". Because in applications we are often interested in prediction which
maximizes the accuracy, we may search for vector of parameters which maximizes the
fraction of correctly predicted observations in the sample. This is the "score func-
tion" for this case. It turns out that vector which maximizes the score function is a
consistent estimator of parameters of the model.

Properties of the maximum score estimator are well known. Manski (1985) proved
consistency. Kim and Pollard (1990) derived its asymptotic distribution and showed
that it is nonnormal. Huang, Abrevaya (2005) showed that the bootstrap method
does not provide consistent estimators of the confidence intervals. Moon (2004) ana-
lyzed the problem of nonstationary regressors and showed consistency in that case.
Horowitz (1992) replaced nondifferentiable indicator function in estimator of Manski
by a smooth cumulative distribution function and achieved a smoothed maximum
score estimator. Horowitz (1992, 2002) showed that the smoothed maximum score
estimator has the normal limit distribution and that the bootstrap provides consistent
estimates of the confidence intervals.

In this article we generalize the score function so that it encompasses other regres-
sion models and allows consistent estimation with the advantages of the estimator of
Manski. The article is organized as follows: in the next section we introduce the gen-
eralized score function and informally present its motivation. The next five sections
(2-6) present formal construction of the models and theorems of consistency. The
seventh section addresses the problem of estimating using OLS to a sample restricted
by maximum score. The eighth section presents the results of a Monte Carlo study.
In the last section we present conclusions. Proofs of theorems are in the appendices.

2 The generalized score function
Informally, the idea of our maximum score type estimators is based on searching

for the subset of observations where the mean of the explained variable is as high as
possible with additional restriction on the number of observations in this subset. This
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subset is determined by the linear restriction involving explanatory variables.

It turns out that the parameters of this restriction are consistent estimators of the
parameters of the model. Instead of the number of observations of this subset, we
may consider its measure expressed as a fraction or a percentage of the whole sample.
This parameter will be denoted by 7. For different values of this parameter different
estimators can be obtained and the quality of estimation may depend on choice of
this parameter. This problem is analyzed later in this paper.

Let us consider the linear model y = By + 87« + u. Then we consider the subset of
the (z,y) in which variable y has a value greater than ¢. We have

{(@y):y>cr={(z,y): bo+ Tz +u>ch={(x,y): Tz +u>c—Fo} (1)

If we assume that the measure of this subset is equal to 7, then ¢ + 3y is a quantile
of the order 1 — 7 of the variable 87z + u.

If E[u] = 0, then the subset of size 7 having the highest expected value of y is de-
scribed by condition 37z > ¢+ By = B;. So, if we search for a subset bounded by
linear restriction and having the highest mean of the explained variable y, we may
expect that the parameters of this condition are close to 8 and ;.

More precisely, we are able to estimate parameters standing by the explanatory vari-
ables and we are not able to estimate the intercept. The reason is that we estimate
B> = ¢+ [y not knowing c.

Similarly to models for binary choice, parameters are estimated up to a multiplicative
constant. In practice some additional normalizing condition is added, which guar-
anties identification, for example, in probit regression the unit variance of the error
term is imposed. We, similarly as in Manski (1985) assume unit length of the param-
eter vector, so we estimate 3* = ﬁ, where ||8|| is the Euclidean norm of .
Estimating the model without an intercept and up to the multiplicative constant is
satisfactory in some applications. It provides information about the direction of the
relations between variables (sign of the parameters) and allows verifying hypotheses
about the significance of variables. It also allows ranking of observations with respect
to the predicted value of the explained variable which is sufficient, for example, in
credit scoring applications.

In the case of applications where estimating the intercept is required, there is a so-
lution based on a maximum score. In the case of the tobit and truncated regression
model, it turns out that applying ordinary least squares to a subset separated by
our maximum score estimator, that is, to a subset determined by the restriction
BYx > Bon, where By and Byn are maximum score type estimators, provides a con-
sistent estimator of the original parameters of the model, including the intercept.
Note that the OLS estimator applied to the whole sample is inconsistent. So the
maximum score allows deletion of observations which cause inconsistency.

The consistent estimators (3 of the normalized parameter vector 5* are achieved as
the solution of certain maximization problems. Now we present the outline of the
construction of the estimator and of the proof of consistency for linear regression.
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The formal description of the model and the proof of consistency for linear regression
and other models are presented in next sections. We consider the following linear
regression model

y =0+ 67z +u, (2)

where z is the k-dimensional vector of the explanatory variables, y is the explained
variable and w is the error term. We also assume, that there is given the sample of
length N, (z;,y;) i =1,..., N, drawn from (z,y).

The estimator 3% is given by the following formulae

N
1
BN, Bon] =  argmax vl (b i > o) — p(~— 1(b7z; > bo) —7)2 (3)
[b,bo): 11[bbo]ll= 1NZ N;
BN
By = N (4)
N

Its heuristic derivation is as follows. Our goal is to find a subset of observations of
fixed size 7 and bounded by the hyperplane b7z > by where the mean of the explained
variable y is maximal in comparison to other subsets of size 7 and bounded by linear
restriction. Since condition b”x > by is fulfilled when multiplied by positive constant
¢, that is

bla > by < b x > chy (5)

we add the condition which guarantees identification ||[b,bo]|| = 1. As a result we
obtain the following optimization problem:

N N

1
Zyl bT2; > by) subject to N Z 107z > bo)=7.  (6)

[b,bo]: H[b bo]H 1N i=1

In order to prove consistency, we want to apply the theorem of consistency of M-
estimators (Engle, McFadden (1999), p. 2121). We cannot use it directly, because
it involves obtaining estimators as a solution to certain optimization problems under
deterministic restriction 8 € ©. In our case we have an additional restriction which
depends on the explanatory variables % sz\; 1(bTz; > by) = 7. We may construct
the following modified maximization problem:

N 1

1
max = — (b z; > bo) — pul— Y 10Tz > by) — 72, 7
bbo]: lbbolll=1 N ;yz ( i = 0) [N ( i = 0) } ( )

M=

=1

where p > 0 is constant and is chosen by the researcher. Due to the theorem of
convergence of the quadratic penalty method (Nocedal, Wright (1999), p. 494), the
solution of this problem is close to the solution of the problem (6) for high values of
. We simply substituted the restriction by the quadratic penalty.

Next, we may apply the theorem of consistency of M-estimators to the problem (7).
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It turns out that having a sufficiently large sample and choosing a sufficiently large

value of 4 we may achieve, with an arbitrary high probability, estimators which are

arbitrary close to the true values of the parameters % Since we are interested

only in g* = ﬁ, we take By = ”g—gu

In equation (3) the value Gy is not the estimator of Fy. It is an additional parameter
which depends on 7. It is a quantile of order 1 — 7 of the variable 8% z. So we are
interested only in the first element of the pair [Gn, Bon]-

Comment 2.1 The indicator function 1(-) can be replaced by a smooth cumulative
distribution function K (-) and we can achieve a smoothed mazimum score type estima-
tor, similarly to Horowitz (1992). In this case we must solve the following optimization
problem

1 N bT.TLL' — bo N xl — bO
maz o i K (————) subject to — 7 (8
[b,bo]: [|[b:bo]||=1 N ;y ( h ) J Z:: —) = (8)

3 The linear regression model
We consider the following linear regression model

y= 0o+ Tz +u. (9)

Assumption 3.1

1. y=Bo+ Pz +u, x € RE (K > 1), u is random scalar, 3y € R and 3 € RX
are constant;

2. The support of x is not contained in any proper linear subspace of R ;

3. There exist at least one k € {1,..., K} such that B # 0 and for almost every

value of & = (x1,22,...,T—1,Tk41,.--,ZK) the conditional distribution of xy,
conditional on T has everywhere positive density with respect to the Lebesgue
measure;

4. E(ulx) =0 for almost every x;
5. Elz] < oo;

6. {Yyn,xn :n=1,...,N} is random sample from (y,x).

The estimator B3 of the parameter vector 8* = H%H is given by the following formula
1 N

By, Bon] =  argmax Zy 107 2; > by) — 21 (b"z; > bo) —7)2, (10)
[b.bo]: li[b.bo]l=11V z:l
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By = (1)

s = ON
18n1°

where parameter 7 € (0, 1) is arbitrary. The following theorem is satisfied:

Theorem 3.1 Under Assumption 3.1 the estimator 3% defined by formulae (10) and
(11) is a strongly consistent estimator of the vector of parameters 3* = H:%”m model

(9)-

The proof of this theorem is presented in Appendix A.

4 The binary model

We consider the following binary regression model

_J1 when Bo+ BTz +u>0
|0 when Bo+ 8Tz +u<0.

Assumption 4.1

1.y=1Bo+ Tz +u >0), z € RE (K > 1), u is random scalar and By € R i
B € RX is constant;

2. The support of x is not contained in any proper linear subspace of R ;
3. 0< P(y =1|z) <1 almost everywhere;

4. There exists at least one k € {1,...,K} such that B # 0 and for almost

every value of & = (x1,Z2,...,Tk—1,Tkt1,--.,Txk) the conditional distribution
zy, conditional on T has everywhere positive density with respect to the Lebesgue
measure;

5. g(Ely]) = BTz + Bo, where g : (0,1) — R is increasing;

6. {yn,xn :n=1,...,N} is random sample from (y,x).

The estimator B3 of the vector of parameters 8* = H:%H is given by the following
formula
1 1
[Bn,fBon] = argmax — Y wyl(bTx; > bo) — p(—= 1(bTz; > by) — 7)%, (13)
b.bol: Nb.bol=1 N ; N ;
* ﬂN
BN = (14)
¥ Tewl

where the parameter 7 € (0,1) can be arbitrary.The following theorem is satisfied.

Marcin Owczarczuk 12
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Theorem 4.1 Under assumption 4.1 the estimator defined by formulae (13) and (14)
is a strongly consistent estimator of the vector of parameters g* = ﬁ in model (12).

The proof of this theorem is presented in Appendix B.

5 Truncated regression

We consider the following truncated regression model

y=0o+08"z+u, (15)

Assumption 5.1

1.y =B+ B 2+ u, x € RX (K > 1),u is random scalar, By € R, f € RX, C is
a known constant;

2. The support of x is not contained in any proper linear subspace of R¥.

3. There exist at least one k € {1,..., K} such that B, # 0 and for almost every

value of & = (x1,%9,...,Tk—1,Tkt1,-..,Txk) the conditional distribution of x
conditional on & has everywhere positive density with respect to the Lebesgue
measure;

4. E(u|x) =0 for almost every x;

5. Elz] < oo;

1 oo T .
6. T=F, . (C—Bo—BTa) fC*ﬂg*ﬁTCE UdFqu — 0 for By + B* x — o0;

7. AYyn,xn :n=1,..., N} is random sample from (y,z)|y > C.
The estimator (3 of the vector of parameters 5* = ﬁ is given by the following
formula
1 N
By, Bon] =  argmax Zyl 107z > bg) — Zl x; > by) —7)2, (16)
[b.bo]: lI[b.bolli=14V N =
* BN
Oy = 75— (17)
N 8wl

Parameter 7 € (0,1) is a function of N such that 7 N=%° 0. The following theorem is

satisfied

Theorem 5.1 Under assumption 5.1 the estimator given by the formula (16) and
(17) is a strongly consistent estimator of the vector of parameters 3* in model (15).

The proof of this theorem is presented in Appendix C.

13 Marcin Owczarczuk
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6 The tobit model

We consider the following tobit model

:{ﬂo+ﬂTﬂc+u for fo+fTa+u>C 18)

0 for By +ple+u<C

Assumption 6.1

1.y = max(C, By + BT +u), v € RE (K > 1), u is random scalar, 3y € R,
B € RX, C is a known censoring constant;

2. The support of x is not contained in any proper linear subspace of R¥ ;

3. There exist at least one k € {1,..., K} such that By # 0 and for almost every

value of & = (x1,%2,...,Tk—1,Tk+1,---,Txk) the conditional distribution of xy
conditional on T has everywhere positive density with respect to the Lebesgue
measure;

4. E(u|z) =0 for almost every x;

5. Elx] < oo

1 oo T )
6. =R (C—Fo=FT) fciﬁ(ﬁﬁ” udFyj; — 0 for fo + "2 — oo;

7. A{yn,xn:n=1,..., N} is random sample from (y,x).

The estimator (3 of the vector of parameters 5* = HL\I is given by the following
formula
1 &
BN, Bon] =  argmax vl (b s > bo)—pu(~— - 1(b%z; > bo)—7)2, (19)
ol bl N Zl N ;
BN
Oy = ——. (20)
M o]

Here 1,...,N* < N are indices of the noncensored observations (i.e. (z,y):y > C)

observations. Parameter 7 € (0,1) is a function of N such that 7 Mo,

Comment 6.1 We reduced the problem of estimation of the tobit model to a problem
of estimation of a truncated regression model.

The following theorem is satisfied

Theorem 6.1 Under assumption 6.1 the estimator defined by (19) and (20) is strongly
consistent estimator of the vector of parameters * in the model (18).

Proof. The proof of this theorem is the same as proof of the theorem for truncated
regression, according to the Comment 6.1.

Marcin Owczarczuk 14
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7 Applying OLS to the restricted sample

In the case of tobit and truncated regression the least squares method used to the
whole sample gives inconsistent estimates of the parameters. However, the OLS esti-
mation applied to a subsample satisfying the restriction implied by mazimum score
gives a consistent estimator of the unknown parameters.

Theorem 7.1 Under assumption 5.1, the OLS estimator applied to the sample sat-
isfying condition Byx > Bon, where parameters By and Bon are given by formula
(16), is a consistent estimator of the parameters 8 and By in model (15).

The proof of this theorem is presented in Appendix D. A similar theorem is valid for
tobit model, because we may reduce the problem of estimating the tobit model to the
problem of estimating truncated regression.

The just described reasoning can be easily illustrated graphically. Here we present
it for tobit regression. We generated a sample of 500 observations according to the
following scheme

y=2+z+e, e~N(0,1), z~N(0,4), (21)

y* = max(0,y). (22)

The scatter plots for this sample are presented on Figures 1, 2 , 3 and 4.
In Figure 1, the true relationship between variables x and y is presented. Estimating
the regression of the form y = ax + b + ¢ using OLS gives a consistent estimator of
the unknown parameters.
However, we have censoring and we observe a relation presented in Figure 2. The
OLS estimator is inconsistent. We obtain a line that has a smaller slope than the
true regression line. The reason for this is the fact that points on the left side of the
graph turn the line - this is the effect of censoring.
However, further restriction on the sample - deleting points on the left side of the
graph, that is points on the left of the vertical line on Figure 3, makes the OLS
estimator consistent. We simply delete observations causing the smaller slope of the
regression line.

8 Monte Carlo simulation

In this section we present Monte Carlo simulations illustrating small sample properties
of the maximum score type estimators. Our theoretical results are asymptotic, so it
is interesting to verify whether these estimators have also good properties in finite
samples.

The main goal of the simulations is to answer the following questions:

1. Are the bias and variance of the maximum score estimators comparable to the
bias and variance of the classical estimators in the normal homoskedastic case?

15 Marcin Owczarczuk
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o

Figure 1: True, unobserved relation between variables y and x with the regression
line estimated by OLS.

2. Are the maximum score estimators robust to heteroskedasticity when the size
of the sample is moderate? Are they more robust that the classical methods,
i.e. maximum likelihood in the case of tobit and truncated regression, logistic
regression in the case of binomial regression and OLS in the case of linear
regression?

The scheme of experiments was as follows. We tested 4 models: linear, binomial,
tobit and truncated regression. In all experiments the number of observations was set
to 1500. There were 1000 replications per experiment. For the error term we used
the following distributions: uniform, normal and Student with 3 degrees of freedom
and unit variance.

We used the moderate size of the sample, but it cannot be small when using maxi-
mum score. Maximum score separates a relatively small subset of observations and
calculates mean of the explained variable in this subset. So in order to keep the pre-
cision of the estimates, this mean must be estimated precisely. A moderate size of
the sample implies a relatively moderate size of the separated subset and precision of
the estimator of the mean.

We used Student distribution of the error term in order to check the quality of the
estimates when the distribution of the error term has fat tails. The uniform distribu-
tion represents situation where the error term is bounded.

Marcin Owczarczuk 16
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Figure 2: Observed relation between y* and x with the OLS regression line (the line
with the smaller slope) and the true regression line (the line with the greater slope).

10

= O

-10

Figure 3: Deleting observations on the left side of the line cancels the OLS bias.
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Figure 4: The true regression line and the OLS regression line estimated on a re-
stricted sample. The lines match almost perfectly.

The number of replications was set to 1000 which gave the stability of results. We used
popular methods like logistic regression or OLS as benchmarks. The data generating
process is as follows

y=1+4+x1+22+¢, (23)
x1 ~ N(0,1), (24)

x9 ~ N(0,1), (25)
(26)

e € {N(0,1),t3,U[-1,1]},
Y for linear regression
1(y > 0) for binomial regression
max(y,0) for tobit regression
yly >0 for truncated regression.

So the following models were estimated

y = Bo + Brx1 + Boxo, (28)

assuming that (y*,z1,x2) is observed. We used distributions without and with het-
eroskedasticity. In case of heteroskedasticity, we introduced it in the following form:

€heteroskedastic — €V/ |1'1 + 1'2| (29)

Marcin Owczarczuk 18
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Table 1: Linear regression, bias of normalized slope

distribution maximum score OLS

normal 0.0028 0.0018
normal het. -0.0006 -0.0009
ts 0.0007 0.0005
ts het. 0.0034 0.0025
uniform 0.0003 0.0000
uniform het. 0.0019 0.0036

Table 2: Linear regression, rmse of normalized slope

distribution maximum score OLS

normal 0.0507 0.0367
normal het. 0.0449 0.0395
t3 0.0507 0.0365
ts het. 0.0457 0.0369
uniform 0.0526 0.0367
uniform het. 0.0458 0.0382

8.1 Experiment 1 - estimating the standardized vector of slopes

In this experiment we are interested in estimating the vector g* = ﬁ = %
In the proofs of consistency we used normalization ||[3;, (]| = 1. Here, similarly to

Horowitz (1992) we use a slightly different normalization, namely ||61]] = 1. The
reason is that we are not interested in estimating the intercept, and since there are
only two slopes, one of them is identified up to a sign knowing the second one. Using
normalization ||f1]| = 1 we may focus on small sample properties of estimates of only
one parameter, 35. Its true value is equal 1. We set 7 = 0.5 for linear and binomial
regression and 7 = 0.2 for truncated and tobit regression. Because of numerical com-
plexity, we used the smoothed maximum score version with the normal kernel and
the bandwidth parameter h = 1.

In the case of linear regression we compared the maximum score estimator with OLS.
In the case of binomial regression we compared the maximum score estimator with
logistic regression. In the case of tobit and truncated regression we compared the
maximum score estimator with OLS and the maximum likelihood method.

Despite this fact that estimating the tobit model may be reduced to truncated regres-
sion estimation by deleting censored observations, in our experiments we used the full
sample for the estimation purposes. It resulted in slightly smaller mean square errors
of the estimators.

We may observe that in the case of estimating the normalized vector of coefficients,
all methods give approximately unbiased estimates. This is very interesting, because
as far as estimating the full vector of coefficients of truncated and tobit regression
is concerned, maximum likelihood is consistent only in case of normal distribution
without heteroskedasticity. Monte Carlo experiments show that, despite this fact,
this method provides approximately unbiased estimates of normalized vector of coef-

19 Marcin Owczarczuk
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Table 3: Binomial regression, bias of normalized slope

distribution maximum score logit

normal 0.0048 0.0062
normal het. 0.0027 0.0015
ts 0.0015 0.0017
ts het. 0.0006 0.0029
uniform 0.0047 0.0023
uniform het. 0.0023 0.0031

Table 4: Binomial regression, rmse of normalized slope

distribution maximum score logit

normal 0.0751 0.0639
normal het. 0.0692 0.0654
t3 0.0668 0.0534
ts het. 0.0657 0.0573
uniform 0.0766 0.0644
uniform het. 0.0692 0.0642

Table 5: Tobit regression, bias of normalized slope

distribution maximum score OLS ML

normal 0.0026 0.0009 0.0007
normal het. 0.0046 0.0031 0.0019
t3 0.0025 0.0032 0.0020
ts het. 0.0022 -0.0007 -0.0010
uniform 0.0020 0.0023 0.0027
uniform het. 0.0052 0.0030 0.0028

Table 6: Tobit regression, rmse of normalized slope

distribution maximum score OLS ML

normal 0.0566 0.0442 0.0400
normal het. 0.0554 0.0452 0.0402
ts 0.0544 0.0422 0.0366
ts het. 0.0524 0.0446 0.0381
uniform 0.0583 0.0440 0.0407
uniform het. 0.0580 0.0468 0.0424

Table 7: Truncated regression, bias of normalized slope

distribution maximum score OLS ML

normal 0.0045 0.0035 0.0036
normal het. 0.0038 0.0014 0.0009
ts 0.0009 0.0001 0.0002
ts het. 0.0017 -0.0002 -0.0002
uniform 0.0048 0.0029 0.0023
uniform het. 0.0040 0.0017 0.0005

Marcin Owczarczuk 20
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Table 8: Truncated regression, rmse of normalized slope

Table 9: Tobit regression,

distribution maximum score OLS

ML

normal 0.0734 0.0486 0.0502
normal het. 0.0731 0.0513 0.0508
t3 0.0717 0.0441 0.0462
ts het. 0.0690 0.0462 0.0461
uniform 0.0838 0.0530 0.0538
uniform het. 0.0769 0.0549 0.0539

bias of full vector of parameters

distribution | maximum score-OLS OLS ML

Bo B B2 Bo B B2 Bo B1 B2
normal 0.0081 -0.0011 -0.0058]0.3033 -0.2821 -0.2822|-0.0002 0.0004 0.0002
normal het. | 0.0188 -0.0085 -0.0018|0.2946 -0.2975 -0.2960| 0.0491 -0.0601 -0.0591
ts 0.0286 -0.0100 -0.0079(0.2843 -0.2706 -0.2689|-0.0146 0.0228 0.0242
ts het. 0.0134 0.0107 0.0072 [0.2797 -0.2769 -0.2782| 0.0170 -0.0126 -0.0143
uniform -0.0031 0.0032 0.0007]0.3073 -0.2859 -0.2849| 0.0024 -0.0078 -0.0059

uniform het.

0.0078 -0.0040 -0.0039

0.2978 -0.3033 -0.3021

0.0693 -0.0828 -0.0811

ficients. A similar situation can be observed for OLS and logistic regression. Greene
(1981) analyzed estimating tobit and truncated regression using OLS. He proved con-
sistency of OLS under normality of the vector of the explanatory variables and showed
(by Monte Carlo experiments) robustness to this distributional assumption.

The advantage of maximum score is that its robustness is proved not only empirically
but also theoretically for a greater class of data-generating processes. Maximum score
has a slightly greater variance than other methods.

8.2 Experiment 2 - estimating the full vector of parameters

As it was mentioned earlier, in the case of tobit and truncated regression, OLS ap-
plied to subsample separated by maximum score, gives a consistent estimator of the
unknown parameters of the model. In this experiment we compared OLS applied to
a subsample separated by maximum score to OLS applied to the whole sample and
maximum likelihood method. We set parameter 7 = 0.2.

In the case of estimating the full vector of coefficients of the tobit or truncated re-
gression model, OLS is always biased and Monte Carlo experiments confirm this fact.

Table 10: Tobit regression. rmse of full vector of parameters

OLS ML
Bo B1 B2 B

maximum score-OLS

Bo B1 B2

distribution

Bo B2

normal

normal het.

0.1786 0.0957 0.0954
0.2775 0.1563 0.1575

0.3042 0.2832 0.2832
0.2955 0.2988 0.2973

0.0285 0.0309 0.0298
0.0558 0.0696 0.0690

t3 0.1746 0.0916 0.0907(0.2851 0.2715 0.2699|0.0355 0.0420 0.0446
t3 het. 0.2519 0.1456 0.1423]0.2805 0.2783 0.2796|0.0343 0.0446 0.0453
uniform 0.1901 0.0993 0.0976]0.3081 0.2868 0.2859(0.0305 0.0319 0.0319

uniform het.

0.2849 0.1578 0.1589

0.2986 0.3046 0.3033

0.0742 0.0905 0.0882
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Table 11: Truncated regression. bias of full vector of parameters

distribution

maximum score-OLS

Bo B B2

OLS

Bo B1 B2

ML

Bo B1 B2

normal 0.0256 -0.0108 -0.0081|0.4046 -0.2461 -0.2443| 0.0005 -0.0018 0.0005
normal het. | 0.0723 -0.0064 -0.0040|0.3378 -0.2451 -0.2452|-0.3619 0.1675 0.1668
t3 0.0622 -0.0123 -0.0144(0.3053 -0.1816 -0.1823|-0.1815 0.0958 0.0947
ts het. 0.0621 0.0105 0.0107 [0.2735 -0.1820 -0.1829|-0.4523 0.2233 0.2214
uniform 0.0062 -0.0041 -0.0001{0.4335 -0.2692 -0.2681| 0.0337 -0.0280 -0.0272

uniform het.

-0.0053 0.0048 0.0007

0.3451 -0.2812 -0.2811

-0.4214 0.1635 0.1625

Table 12: Truncated regression. rmse of full vector of parameters

distribution |[maximum score-OLS OLS ML
Bo B1 B2 Bo B1 B2 Bo B1 B2

normal 0.2462 0.1165 0.1165]0.4055 0.2478 0.2461[0.0556 0.0448 0.0437
normal het. [0.3800 0.1897 0.1861|0.3388 0.2483 0.2480(0.3722 0.1813 0.1788
ts 0.2407 0.1116 0.1150|0.3067 0.1845 0.1852(0.7607 0.2206 0.2208
ts het. 0.4052 0.1981 0.2041]0.2751 0.1867 0.1880(0.9706 0.3286 0.3210
uniform 0.2582 0.1212 0.1198]0.4343 0.2707 0.2697[0.0670 0.0517 0.0510
uniform het.|0.3860 0.1928 0.1982|0.3460 0.2838 0.2837|0.4293 0.1756 0.1754

Maximum likelihood is consistent only in the case of the normal distribution without
heteroskedasticity, but Monte Carlo experiments show that it is robust to this assump-
tion for tobit regression. In the case of the truncated model, maximum likelihood gives
strongly biased estimates when normality and homoskedasticity assumption do not
hold.

Meanwhile, OLS applied to a subset separated by a maximum score always gives un-
biased estimates. Its variance is high due to the fact that the model is estimated on
a smaller sample.

It would be interesting to analyze how to choose 7 in order to minimize root mean
square error. This problem is not addressed in this paper.

9 Conclusions

In this paper we presented mazimum score estimators for broad classes of regression
models. The concept of our method is based on generalizing score function of Manski
(1975, 1985). We proved consistency when estimating the normalized vector of slopes
under very mild conditions. Our estimators are robust to heteroskedasticity and con-
sistent regardless of the shape of the distribution. We also showed how the maximum
score can be used to remove the bias of OLS when estimating tobit and truncated
regression models.

Monte Carlo simulations confirmed that these estimators are approximately unbiased
in moderate samples. Also estimating models using OLS on the sample restricted by
the maximum score generates approximately unbiased coefficients, but the variance
is larger that the variance of classical estimators.

As far as future work is concerned, it would be interesting to derive the asymptotic
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distribution for our class of maximum score estimators. It would also be interesting to
verify if the bootstrap gives consistent estimates of confidence intervals. The problem
of nonstationary regressors can also be addressed.
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10 Appendix - general note on the proofs of consis-
tency

Proofs of consistency use a similar technique as the proof of consistency of the esti-
mator of Manski (1985). The proofs are conducted in several steps and are based on
verifying assumptions of the theorem of consistency of M-estimators. The proofs of
assumptions: (1) compactness of the parameter space, (2) the continuity of the limit
function and (3) the uniform convergence of the sample function mimic analogous
proofs of Manski (1985). The proofs about the maxima of the limit function are the
author’s own work.

11 Appendix A - consistency of maximum score for
linear regression

First we show that [By, o] is a strongly consistent estimator of [B,BT] = T
Then, on the basis of this fact we show consistency of 8% .

The proof of this theorem is conducted in several steps and generally is based on
verifying assumptions of the theorem of consistency of M-estimators.

The natural choice of function Qo(#) from this theorem is the expected value of
function @, (#) defined by (10).

Qo(b, bo) = ElyL(bx; = bo)] — w(E[1(b"a; > bo)] — 7)* (30)

11.1 The maxima of Qy(0)

We prove in Lemma 11.1 , that maxima of Qy(#) are contained in arbitrary small
neighborhood of point [/3’, BT}, where 3; is quantile of order 1 — 7 of variable 37 z.
Due to this lemma we may use the theorem of consistency of M-estimators with
comment to this theorem about multiple maxima of the objective function (Engle,
McFadden (1999), p. 2122).

Lemma 11.1 Let
med(p, by) = Elyl(bTx > by)]  subject to E[1(bTx > by)] =7 (31)

Function Quod(b, by) has exactly one mazimum, which is located in point [5, /3’7], where

B, is quantile of order 1 — 1 of AT x.

Proof. Let us consider a different, arbitrary vector [4, d,], which also satisfies con-
dition P[6Tx > &) = 7 and |[|[,d,]|| = 1. We show that it has lower value of the
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criterion function.
Ely|8"z > B;] - E[yl6"x > 6]
= E[y|87z > ;] — Ely|d"x > b
= E[Bo + "z +ulTz > B;] — E[Bo + 8"z + ul6"x > 6]
= E[Bo|8"x > B:] + B[ x|6Ta > B;]
+ E[ulfz > ;] — E[Bo|6" > 6]
— E[BTz|6T2 > 6] — Eu|éTz > )
= o + E[6"z|5" e > B;] + 0 — fo — E[6"z[6" 2 > do] — 0
= E[5Tx|6Ta > B;] — E[Tx|0Ta > 6] (32)

There are following cases to consider

LA{z: pTz>p}={x: 6"z >do}
Then BT, 3,] = [, 5], due to:

(a) condition of identification: ||[3, 3.]|| = [|[3, do]|| = 1, which excludes [3, do] =
clB, B-] for some c.

(b) condition that the distribution of z is not contained in any proper linear
subspace of R¥ which excludes collinear elements of vector 2 and param-
eters being linear combination of other parameters.

2. {z: T >B,}#{x: §Tx >}
We have
E[3"2|8x > B,] — E8"|6Tx > 6]
1
= meTﬂfl(ﬁTﬂﬁ > B:)] —
g 6Tz (1(,6% > 6,) =167z > 50)”

T

1

T 4(sT
mE[ﬁ x1(6" z > do)]

= ;E _ﬁTx(l(,BTx > 6, AN6Tx > 80) +1(BTx > B, A6Tx < by)

— 16T > 6o A B2 > B,) —1(6Tx > 6o A Bl < mﬂ

= %E -ﬁTx(l(ﬁTx > B AoTw < 8g) —1(6Tx > 6o AT < ﬁr))]
_ i(E [5%1(,@% >3, A 6T < 50)]
- FE [5%1(5% >0 ATz < ﬂT)D (33)
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Note that ( the proof of this fact is shown later)

P72 > B, N6Tx < 6g) = P[0Tz > 6o ATz < B =¢ (34)

The constant ¢ cannot be equal to zero, because the measure of this set is nonzero,
due to the assumption that the conditional distribution of x has everywhere positive
density. So

i(E [5%1(5% > B, N0Tx < 50)] — E[BTxl(éTx >0 ATz < m])
- :(E [ﬁmw% 2 fr NOTa < 50>} - E{ﬁ%(é% > 6y A BT < 6T)D
(35)
Note that
Bra|(6Te > B ATw < &) > BT x|(6Tx > 6o A ST x < Br) (36)

because on the left side there is condition 372 > 3, and on the right 37z < .. So
E|BT2|(Bx > B, NéTx < 50)} > E[ﬁTmK&Tx > 60 ABTr < Br) (37)
So finally

Ely|fTz > B;] — E[y|6"x > 6] > 0 (38)

SO
ElylfTe > §,] - ElyloTx > ] > 0 (39)

So [BT, BT] is the only one maximum of (31).
Proof. Now we prove the following fact

PIpTx > B, Aot < 8] = P[0Tz > 6o A T2 < 3,] (40)
We have
PlpTx > B.] = P[6T2 > 6] =7 (41)
P72 > B, A6Ta < 6] + P[BTx > B, A 6T > )
= P[6T2 > 60 A T2 > ]+ P[6Tz > 6o A T2 < ;]
=P[pTz > B, AT x < &
= P[6Tx > 6o A Tz < 3] (42)
Marcin Owczarczuk 26
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Lemma 11.2 M - the set of mazima of Qo(b,bo) - is contained in arbitrary small
neighborhood of point [3, 5], that is

v€>03M>OM C B([ﬁa BT]’ 6)7 (43)
where B(x,r) is a ball centered in x and radius r.

Proof. Due to the theorem of convergence of quadratic penalty method we know
that the set of maxima of Qg(b,by) converges to the set of maxima of Q% (b, by),

and due to the Lemma 11.1 we know that the set of maxima of Q¢ (b, by) is equal

{[B, BT]}, which completes the proof.

11.2 Compactness of ©

The set [b, bo] : ||[b, bo]|| = 1 is sphere in RE*T1 which is closed and bounded so it is
compact.

11.3 Continuity of Q(6)
We have
Qo(b,bo) = E[y1(bTx; > bo)] — w(E[L(bTz; > by)] — 7)? (44)

We show that the first component is continuous with respect b, by to for by # 0 and
that the expression in the square is also continuous with respect b, by to for by # 0,
which gives the continuity of the whole function which is a superposition of continuous
functions.

Lemma 11.3 E[1(bTz; > by)] under assumption 3.1 is continuous function of b, by
for by # 0.

Proof. We prove this lemma for b; > 0. The case when b, < 0 is similar.

E[(bTx > by)] = / 167 > bo)dF, — / LT + by > bo)dE,

RK RK
bo 0T )
— [ [z = S e dodFs -
rE-1JR by bk
:/ /; . fk(xk|§:)dxde5g (45)
peo S

The inner integral is a function of Z, b i by which is continuous with respect to b
and by, measurable with respect to Z and uniformly bounded. Due to the Lebesgue
convergence theorem E[1(bTz; > b)] is continuous function of b and by when by > 0
and when b, < 0.
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Lemma 11.4 E[y1(b"x; > by)] under assumption 3.1 is continuous function of b, by
for b, # 0.

Proof. The proof is similar to proof of Lemma 11.3. We prove lemma for by > 0.

Ely1(b"z > bo)] = E[(Bo + 87 + u)1(b"2; > bo)]
= [ﬂol( x; > b )] + E[ﬂTJU].(bTQSi > bo)] + E[ul(le‘,' > bo)]
= BoE[1(b"w; > bo)] + E[3T a1 (b s > bo)] 40 (46)

The continuity of the first component is proved in Lemma 11.3. We prove continuity
of E[BTx1(bTz; > by)]. We have

Bl3Tz1(0"z > b)) = | BTa1(b"x > by)dF, = (47)
RK

= ﬁTxl(bTx + by > bo)d
bT
/ / 51 (a, > b Mkl E)deydF; = (48)
RK 1

/RK 1/& 5 ﬁTxfk(ka)dwde" (49)

The inner integral is function of Z, b and by, which is continuous with respect to b
and by, measurable with # and uniformly bounded ( because the expected value of
exists). So due to the Lebesgue dominated convergence theorem, E[y1(bx; > bg)] is
continuous function of b and by, when b, > 0 and when b, < 0.

11.4 Uniform convergence of Q, () to Qy(6)

We prove that Qn(ﬁo) — Q(fp) in probability and for every e > 0 we have Qn(ﬂ) <
Qo(0) + € for every § € © with probability approaching 1. These are the conditions

stated in comment to the theorem of convergence of M-estimators (Engle, McFadden
(1999), p. 2122). First

1 N

Nzyil 5 Z; >ﬂ7’

187z > B,) — )2 "=

MHZ

z:l
BlyL(37a: > B,)) — w(BL(F ;= B,)] - 7)? a.s. (50)

from the Kolmogorov strong law of large numbers and from the fact that if the se-
quence converges almost surely, then its continuous function converges almost surely
to the function of its limit. So Q,(6y) — Q(6y) almost surely.

Now we may use the uniform law of large numbers for upper semicontinuous functions
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( Ferguson 1996, p. 109). Function 1(b"z > by) is upper semicontinuous and it has
only two values - 01 1. So the assumptions of the uniform law of large numbers for
upper semicontinuous functions are met. So for every e > 0, Q,,(6) < Qo(6) + € for
every 0 € © almost surely.

12 Appendix B - consistency of maximum score for
binomial regression

The proof is also based on verifying assumptions of the theorem of consistency of M-
estimators. The natural choice of the function Qo(6) is expected value of the function
Q@ (0) defined by equation(13).

Qo(b,bo) = Ely1(b"z > bo)] — u(E[L(b"x > by)] — 7)? (51)

12.1 The maxima of Qy(0)

We prove in Lemma 12.1 that maxima of function ()¢ (#) are contained in an arbitrary

small neighborhood of point [B, [37] = H%g’gj\l’ where BT is quantile of order 1 — 7 of

variable 37z. Due to this we may use the theorem of consistency of M-estimators
with comment about multiple maxima of the objective function (Engle, McFadden
(1999), p. 2124). First we show auxiliary lemma

Lemma 12.1 Let
mod(p bo) = Elyl(bTz > by)]  subject to  E[1(bTx > by)] =7 (52)

FunctionQg**(b,bo) has exactly one mazimum, which is in point 13, 3;], where B, is
quantile of order 1 — 1 of ST x.

Proof. Let us consider other vector [4, 8], which also satisfies condition P[§7z >
do) = 7 and ||[4, d,]|| = 1. We show that it has the lower value of the criterion function.
Ely|6Te > B;] — Elyl6"x > &]
= EWy|8" s > B;] - Ely|o"x > b
= Blg~ (8" 2)|8"x > ;] — Elg™ (87 2)6"x > do] (53)

The following cases must be considered

LA{z: BTz >p}={x: 6"z > do}
Then [Tz, 3;] = [9, do], due to:

(a) condition of identification: 113, 8-l = 1116, do]|| = 1, which excludes [8, §g] =

clB, B;] for some c.
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(b) condition, that the distribution z is not contained in any proper linear
subspace of R¥, which excludes collinear elements of z and parameters
being a linear combination of other parameters.

2. {z: Bl > 8} #{z: §Tax > 6}
We have

Elg~"(8")|8"x > ;] — Elg~" (87 2)|0"x > &]

" Pl <ﬂ;x>2ﬂ] g (8" )18 > ;)] -
m g~ (87 2)1(0% 2 > 60)]
= ) (187 2 5 <1067 2 ) )|

g {g_l(ﬁTx) (1(ﬁTx > B ANOTx > 80) +1(8Tx > B A 6T x < 5p)

-
10Tz > 60 A BTz > B,) =172 > 6o ATz < ﬁﬂ)}

= lE {gl(ﬂT:c) (l(ﬂTx > B, N6 x < 8) —1(6%x > 6o A Bl < ﬂT))]

=

== <E [gl(ﬂT:z:)l(ﬂTz >pA6Tx < 50)]

B

- E[g_l(ﬂTx)l(éTac >80 ApTr < ﬁT)D (54)
Note that

P[BTz > B, N6Tax < 6g) = P[0Ta > 6o N Tx < B = ¢ (55)

The constant ¢ cannot be equal to zero because the measure of this set is nonzero,
due to the assumption that the conditional distribution of x has everywhere positive
density. So

i(E {9—1(5%)1(5% > B N0Tx < 50)}

—E|g (B 2)1 ((5Ta?>(50/\ﬁTac<ﬁT)]>

:j_(E[ (BT z > B, /\(5x<50)}

—FE|g~ (ﬂTm)|(5T:c > 6o A BTz < ﬁT)}) (56)
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Note that
g (BT (BT x> B N 6T x < 8o) > g7 (BT )| (07w = 60 A BT < Br) (57)

because on the left side we have condition 87z > 3, and on the right 872 < 8, and
function g~!(-) is increasing. So

Elg Y (pT2)|(pTx > B, NdTx < 50)} > E[gl(ﬁTx)KéTx >80 ATz < B)| (58)

So finally
Ely|6"x > 8] — E[y|d"x > 6] > 0 (59)

SO

Ely|fTz > 3,] — E[y|6Tz > 6] >0 (60)

So [87T, 3,] is the only one maximum of function (31).

Lemma 12.2 M - the set of mazima of Qo(b,bo) - is contained in arbitrary small
neighborhood of |8, (-]

ve>OE|u>OJ\4 C B([B7 BT]? 6) (61)

Proof. Due to the theorem of convergence of quadratic penalty method, we know
that the set of maxima of Qq(b,by) converges to the set of maxima of Q% (b, by),
and due to the Lemma 12.1 we know that the set of maxima of Qf?(b,bo) is equal
{18, B+]}, which completes proof.

12.2 Compactness O

The set [b,bo] : ||[b,bo]|| = 1 is a sphere in RE*! which is closed and bounded, so
compact.

12.3 Continuity of Q(0)

We have
Qo(b,bo) = E[y1(bTx; > bo)] — w(E[L (b x; > b)) — 7)? (62)

We show that the first component is continuous with respect to b, by for by # 0. The
expression in square is also continuous with respect to b, by for by # 0 (this fact was
shown in the proof for linear regression), which gives continuity of the whole function
as superposition of the continuous functions.

Lemma 12.3 E[y1(b"x; > by)] under assumption 4.1 is continuous function of b, by

for by, # 0.
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Proof. The proof is similar to the proof of Lemma 11.3. Similarly we prove lemma
for by, > 0.

Ely1(7s > bo)] = Blg~ (87)1 (572, > b)) (63)
We have
Bly ™ (3010 = b)) = [ g7 (BT > b,
= /RK g BT L)1 (DT & + by, > bo)dF,
= [ [t - P oo

-/ / i) fu(anl)dordFs (69

The inner integral is a function of Z, b i by which is continuous with respect to b and
by, measurable with respect to Z and uniformly bounded, because ¢g—! is bounded
and measurable. Due to the Lebesgue convergence theorem E[1(bTz; > by)] is a
continuous function of b and by when by, > 0 and when b, < 0.

12.4 Uniform convergence of Q,(0) to Q,(f)

We have
E[y1(b"z; > bo)] — p(E[L(b"z; > bo)] — 7)?
PlBo+ BTz +u>0AbT2 > b) T 9
= _ > _
PbTz > by P : 2 bo] = 7) (65)
and
N
NZyz (bTz; > by) — Z Ty > by) —7)2
=1 =1
PN[ﬂ0+ﬂTx+u>0/\b >bo] 9
> _
Py 6Tz > by (PN[b x; > bo] —7) (66)

Every set, the probability of which is calculated above, is a halfspace or a sum of
two halfspaces. We may use the theorem of Rao (Rao R. R. (1962), p. 675), and
obtain the result that the elements of (66) converge to corresponding elements of (65)
uniformly in b and bg.
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13 Appendix C - consistency of maximum score for
truncated regression

The proof of this theorem is similar to the proof of consistency for linear regression.
However it must be commented.

Comment 13.1 The conditional expected value of y in the truncated regression model
18 given by

Elyly > C]

1
= mﬂyl(y > C)]
1

_ . ;
B P[ﬁo+ﬂTx+u>O]E[(ﬁ0+ﬂ z+u)1(Bo+ 3 z+u>C)
1

" PlBo + BTz +u > C] (EWO +872)1(Bo + T x +u > C))

+ Elul(Bo + Sz +u > C)])

1
T PR+ Tz +u>C]

((ﬁo T GT2)PlGo+ T+ u > C]

+ E[ul(Bo + 8z +u > C)])

= T 1 - dF,
Bo+ 8 x+1—Fu(C—Bo—ﬁTx) /C_%_B%u u (67)

Note that for fized F,, we have

Fu(C = fo—BT2) = 0 for fo+ Tz — o0 (68)

oo

/ udF, — E[u] =0 for fo+ T2z — oo (69)
C—Bo—pTx

Note that the distribution F,, may depend on x (heteroskedasticity) so not always the

last term in (67) converges to zero when By + BT x increases. The additional set of

assumptions is necessary to ensure this property. However if

1 o0
udFy,, — 0 for + T2 — o0 70
i /cmm o= 0 for Go+p (70)

then argmarQq(0) when T decreases, so for sufficiently large values of By + BT,
converges to [, B;], like in case of linear regression.
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14 Appendix D - consistency of OLS applied to a

restricted sample

Proof. We use Comment 13.1. Because By i Bon are consistent estimators of 3 and

BT then

1 /Do n—oo
udF,, —
1- Fu\w(c - 60N - BEI) C—Bon—BL=x |

1 /°°
udF,,
1= Fuu(C = 6o — 072) Jo_pypra "

with probability 1.
Then

1 /°° T
udFy,, — 0 for Bo+ "z —
1- Fu|x(c - 60 - /ng) C—Bo—pTx | ’

So using (71) and (72) we obtain

1 o0
lim lim / udFy, ., =0
N—0oo oy +Afa—oo 1 — Fu|w(C — Bon — /317\}35) C—Bon—BLa |

with probability 1.

(71)

We may use the theorem for omitted variable problem (Greene W. (2003), p. 148)

and as omitted variable x5 from this theorem we take

T ‘1(01_50_6%) fgo_ﬁo_ﬁ% udF,),. with parameter 8, = 1. So the bias converges

to zero for N — oo and 7 — 0.

Marcin Owczarczuk 34
CEJEME 1: 7-34 (2009)



