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Abstract

The purpose of this paper is to model daily returns of the WIG20 index.
The idea is to consider a model that explicitly takes changes in the amplitude
of the clusters of volatility into account. This variation is modelled by a
positive-valued deterministic component. A novelty in specification of the
model is that the deterministic component is specified before estimating the
multiplicative conditional variance component. The resulting model is subjected
to misspecification tests and its forecasting performance is compared with that
of commonly applied models of conditional heteroskedasticity.
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1 Introduction
The WIG20 index of the Warsaw Stock Exchange has been published since 16 April
1994. It is based on the value of a portfolio with shares in 20 major and most liquid
companies in the main stock market. A detailed description and history of the index
can be found in Brdyś, Borowa, Idźkowiak and Brdyś (2009). During its first year it
did not yet comprise 20 companies and was very volatile. The index has now been
published for more than 22 years, so its daily values form a rather long financial
time series. There are not many published studies (in English) that analyse the
(logarithmic) returns of the WIG20 index. The set of papers in which GARCH(1,1)
models are fitted to the daily returns of WIG20 contains two in which the object
of interest was the performance of GARCH in estimating the Value at Risk (Makiel,
2012, or Malecka, 2013). Joint volatility of WIG20 and a large number of foreign stock
indices using Copula-GARCH was the concern of Czapkiewicz and Basiura (2014).
These papers did not report any GARCH parameter estimates.
In these papers modelling returns of WIG20 using GARCH an implicit assumption
has been that the return process is weakly stationary. In this work we question this
assumption using a rather long series of WIG20 returns and test weak stationarity
against the alternative that the variance of the process is time-varying. Early
proponents of this view were Diebold (1986) and Lamoureux and Lastrapes (1990)
who argued that high persistence in return series as viewed through GARCH may
be due to shifts in the unconditional variance of the process. There is a growing
literature based on a multiplicative decomposition of the return variance into a
conditional variance component and a deterministic component describing changes
in the unconditional variance. Examples include Feng (2004), van Bellegem and
von Sachs (2004), Engle and Rangel (2008), Brownlees and Gallo (2010) and Mazur
and Pipień (2012). In this work we follow the line of research started by Amado
and Teräsvirta (2008), see also Amado and Teräsvirta (2013, 2014, 2017). The
deterministic component is a linear combination of logistic or generalised logistic
functions in which the transition variable is (rescaled) time.
One of our aims is to complete the previous literature by providing a comprehensive
analysis of daily log returns of the WIG20 index using the best practices. We follow
the modelling procedure outlined in Amado and Teräsvirta (2017) with modifications
suggested in Silvennoinen and Teräsvirta (2016). This will be interesting per se, but
we also consider the performance of these multiplicative time-varying GARCH models
in forecasting and compare it to that of the standard GARCH(1,1) model. For this
purpose we save a part of the log return series for out-of-sample forecasting.
The paper is also intended to serve as an example of what a careful analysis of a return
series in the GARCH framework may require. It is structured as follows. The model
is introduced in Section 2. Specification issues are discussed in Section 3, parameter
estimation in Section 4 and model evaluation in Section 5. The application of the
modelling strategy to the WIG20 series is described in Section 6. There is also a brief
description of the data. Results from fitting two variants of the Spline-GARCH model
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of Engle and Rangel (2008) to the WIG20 series are reported in Section 7. In Section
8 the early observations until 1 April 2004 are discarded and our model as well as
the Spline-GARCH one are fitted to the remaining subseries. Section 9 is devoted to
out-of-sample forecasting and forecast comparisons. Section 10 concludes.

2 The model
The model under consideration is the time-varying GJR–GARCH model of Amado
and Teräsvirta (2008, 2013, 2017). It contains a deterministic component that changes
smoothly over time. To define the model, let

yt = E(yt|Ft−1) + εt (1)

where Ft−1 contains the historical information available at time t− 1. For simplicity,
it is assumed that E(yt|Ft−1) = 0. The innovation sequence {εt} has a conditional
mean E(εt|Ft−1) = 0, and variance σ2

t . The innovations are assumed to have the
standard decomposition

εt = ζtσt (2)

where {ζt} ∼ iid(0, 1), Eζ3
t = 0, and E|ζ2

t |2+φ <∞, φ > 0. The time-varying variance
σ2
t is further decomposed multiplicatively such that

σ2
t = htgt (3)

where ht describes the short-run dynamics of the variance of the returns, whereas gt
is a positive-valued deterministic component. The conditional variance component ht
is modelled as the GJR–GARCH(1, 1) process of Glosten, Jagannathan and Runkle
(1993):

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1I (φt−1 < 0) + β1ht−1 (4)

where φt = εt/g
1/2
t and I(A) is the indicator variable, defined as I(A) = 1 when A

is true, and zero otherwise. Equation (4) is assumed to satisfy the set of conditions
for positivity and stationarity of the conditional variance of φt. This implies α0 > 0,
α1 > 0, α1 +κ1 > 0, β1 ≥ 0, and α1 +κ1/2 + β1 < 1. Higher-order representations of
(4) are possible, but in applications of the GJR–GARCH model found in the literature
the order invariably equals one.
The GJR–GARCH(1, 1) model is nested in (3) when gt ≡ 1. The unconditional
variance component gt is smooth and time-varying, introducing nonstationarity into
σ2
t . It is defined as follows:

gt

(
t

T
; θ1

)
= gt = δ0 +

r∑
l=1

δlGl

(
t

T
; γl, cl

)
(5)
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where θ1 = (δ′,γ′, c′1, ..., c′r)′ ∈ Θ1 = (∆ × Γ × C), with δ = (δ0, δ1, . . . , δr)′,
γ = (γ1, . . . , γr)′, c′l = (cl1, . . . , clKl

)′, l = 1, . . . , r, is an element of the parameter
space of gt. The transition function in (5) is the general logistic transition function:

Gl

(
t

T
; γl, cl

)
=
(

1 + exp
{
−γl

Kl∏
k=1

(
t

T
− clk

)})−1

(6)

It is a continuous and non-negative function bounded between zero and one. We make
the following assumptions about (5) and (6); see Amado and Teräsvirta (2017):

AG1. The elements of δ ∈ ∆ are restricted such that δ0 > 0 is fixed,
maxj=1,...,q |δj | ≤Mδ <∞ and infθ1∈Θ1 gt(θ1, t/T ) ≥ gmin > 0.

AG2. The slope parameter γl > 0, l = 1, . . . , r, and the location parameters
c1k < c2k < · · · < crk.

AG2 and δ0 fixed in AG1 are identifying restrictions. The latter is needed because
ht contains a free intercept and the decomposition (3) is multiplicative. The restriction
δ0 = 1 is notationally convenient. Any positive constant will do, although from the
computational point of view some choices are better than some others. This constant
has to be fixed to achieve identification.

The transition function allows the unconditional variance to change smoothly between
regimes as a function of the transition variable t

T . The parameters cl and γl
determine the location and the speed of the transition between different regimes.
When r = K1 = 1, the function gt increases monotonically over time from 1 to 1 + δ1
when δ1 > 0 or decreases from 1 to 1+δ1 when −1 < δ1 < 0, with the location centred
at t/T = c1. The slope parameter γl in (6) controls the degree of smoothness of the
transition: the larger γl, the faster the transition is between the extreme regimes. For
example, when r = K1 = 1 and γ1 → ∞, gt collapses into a step function. When γl
is large, it is numerically convenient to use a transform γl = exp{ηl} and estimate ηl;
see Goodwin, Holt and Prestemon (2011) or Silvennoinen and Teräsvirta (2016). For
other transformations that alleviate potential numerical problems when γl is large,
see Chan and Theoharakis (2011) and Ekner and Nejstgaard (2013).
Equations (1)−(6) define the time-varying GJR–GARCH (TVGJR–GARCH)
model. The unconditional variance in this model is time-varying and equals
Eε2

t =Eζ2
t htgt = gtEht. This means that when δ1 = . . . = δr = 0, the unconditional

variance Eε2
t = δ0Eht (constant). When δl 6= 0 for r > 1 and Kl ≥ 1, equations

(5) and (6) form a very flexible parameterisation capable of describing nonmonotonic
deterministic changes in the unconditional variance. How to find out that gt is a
positive constant or, more generally, how to select r, will be discussed in the next
section.
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3 Specification of the model
Specification of gt is a data-driven process. As already indicated, the number of
transitions r is not known and has to be determined (r = 0 is also possible). In
each transition function, Kl has to be decided. The common alternatives are Kl = 1
and Kl = 2. Since a model with r + s transitions, s > 0, is not identified when the
true number of transitions equals r, this number has to be found by proceeding from
specific to general. Amado and Teräsvirta (2017) first fit a GARCH or GJR–GARCH
to the series and then determine r by a sequence of specification tests, adding one
transition to the model at a time. The order of the logistic function can be determined
by a sequence of tests as in smooth transition autoregressive models; see Teräsvirta
(1994).
Silvennoinen and Teräsvirta (2016) observed that power of the test Amado and
Teräsvirta (2017) suggested may suffer from the fact that under the alternative the
estimates of the sum α1 + κ1/2 + β1 tend to one. This is a natural outcome as
α1 + κ1/2 + β1 < 1 is a necessary and sufficient condition for weak stationarity in
first-order GJR–GARCH models. The model thus tries to accommodate as much
nonstationarity generated by the deterministic component as possible. To avoid this,
their solution was to specify r first, without estimating the GARCH component.
Due to leaving the conditional variance unspecified for the purpose of focusing on
the specification of the deterministic, unconditional component has the implication
that the test statistic no longer has its standard asymptotic distribution. Ignoring
this will lead to a size distortion of the test. This problem is overcome by computing
the p-values for the tests via simulation, where an artificial GARCH process is used
to generate an imitation of the actual data set. This works well in simulations in
which the GARCH model is known, and it turns out that size-adjusted power vastly
exceeds that of the misspecification test applied in Amado and Teräsvirta (2017).
The situation becomes slightly more complicated in applications where the form of
neglected heteroskedasticity is unknown.
Investigations in Hall, Silvennoinen and Teräsvirta (2017) have led to the conclusion
that special attention is to be placed on matching the persistence of the GARCH
process present in the data. On the contrary, other features, such as implied kurtosis
or relative balance of weights of the GARCH parameters only have a negligible effect
on the performance of the test. As this measure of persistence is quite obviously
difficult to estimate in the presence of the time-varying variance component, we
proceed to estimate the standard GARCH(1,1) model over a rolling window of length
1000 observations. For each, we compute the implied persistence as well as the
measure of kurtosis. If the unconditional variance indeed varies over time, most
such windows may be expected to contain a source for nonstationarity, and hence
the persistence estimate appears to be higher than it actually is. We therefore
choose the 10th and the 25th percentiles of the resulting persistence distribution.
The corresponding persistence measures are 0.95 and 0.97. Excess kurtosis turns
out to stay fairly constant, just below one, over the windows with the aforementioned
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persistence levels, thus being a close match with the kurtosis implied by the estimated
GARCH models. Using the results in He and Teräsvirta (1999) we then backtrack the
corresponding GARCH parameters to be used in simulating the distribution of test
statistic and calculating the p-values. Due to the higher level of persistence, using the
latter measure (0.97) is expected to result in more conservative conclusions than the
ones from using the former (0.95).
To summarise, the approach used here proceeds with sequential testing for an
additional transition in gt by increasing r in equation (5) while keeping Kl = 1
in equation (6). After the final shape of the deterministic component is specified,
the resulting sequence of single transitions may be simplified and merged into fewer
transitions but withKl = 2. We note that the sequence of tests proposed in Teräsvirta
(1994) could in principle be used for specifying the orderKl of the additive transitions.
However, as we have to rely on simulations to obtain p-values for the test statistic,
it turns out to be impractical to carry out the test sequence as it was originally
proposed. This has mostly to do with controlling for convergence and acceptance of
particular simulation rounds. This has been left for future research, as one can devise
alternative methods for overcoming such issues. The performance of each of them
must, however, be analysed before making any recommendations.
Instead, our approach here is to assess the strength of rejection of the null hypothesis
in the test in Silvennoinen and Teräsvirta (2016) where the linear approximation
for the transition under test is of linear, quadratic, or cubic form. These tests are
labelled here as LM1, LM2, and LM3, respectively, the last one being the test originally
proposed in Silvennoinen and Teräsvirta (2016). Lack of power in each is most likely
to be due to either under- or over-fitting the transition that is being tested. Hence,
comparison of p-values and the test statistic values (recall that in absence of GARCH,
the distributions of the three statistics are χ2

1, χ2
2, and χ2

3, respectively), together with
visual inspection of the data series may be used to guide the choice Kl.

4 Estimation of the model
Estimation of the parameters of the TVGJR–GARCH model is carried out by
maximum likelihood. In previous work it has turned out that straightforward
maximisation runs into convergence problems. A better way of maximise the log-
likelihood is to do it by dividing each iteration into two parts. This has been
discussed by Song, Fan and Kalbfleisch (2005). In addition to a numerical superiority
this approach has a strong theoretical advantage. Using the results of Song et
al. (2005), Amado and Teräsvirta (2013) were able to show that, under regularity
conditions, maximum likelihood estimators of the parameters of the TVGJR–GARCH
model are consistent and asymptotically normal. This makes it possible to consider
misspecification tests for the model, see Amado and Teräsvirta (2017). This result
also applies to time-varying variance (TVV) models where ht ≡ 1. This fact justifies
the sequential testing approach to determining the number of transitions.
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5 Evaluation of the model

The estimated TVGJR–GARCH model can be evaluated both formally using
misspecification tests and informally by looking at the estimates of ht. They can
be expected to satisfy α̂1 + κ̂1/2 + β̂1 < 1 by some margin. If this is not the case,
there may be unmodelled nonstationary left in the process, so the model would
not be satisfactory. Formal misspecification tests are generalisations of tests in
Lundbergh and Teräsvirta (2002) as discussed in Amado and Teräsvirta (2017). In
this work we apply the test called ’ARCH nested in GARCH’. Combining (2) and
(3) gives εt = ζt(htgt)1/2, where ζt ∼ iid(0, 1). This is the situation under the null
hypothesis. Under the alternative, εt = zt(htgtft)1/2, where now zt ∼ iid(0, 1), and
ft = 1 +

∑r
j=1 ψjζ

2
t−j . This means that under the alternative there is unmodelled

dependence in ζt, characterised by an ARCH(r) process. Another alternative, not
considered here, is that ft = 1 +

∑r
j=1 ψjx

2
t−j , where x2

t is an observable positive-
valued stationary random variable.
There is another, more straightforward, way of looking for unmodelled structure:
testing for higher-order GARCH. Bollerslev (1986) already derived the relevant test
statistics. Another test applied in this work is the test of TVGJR–GARCH against
smooth transition TVGJR–GARCH, proposed by Hagerud (1997). It is a test of
linearity of ht. Under the alternative,

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1I(φt−1 < 0) + β1ht−1

+ {α01 + α11φ
2
t−1 + κ11φ

2
t−1I(φt−1 < 0)}G(φt−1; γ, c) (7)

where

G (φt−1; γ, c) =
(

1 + exp
{
−γ

L∏
l=1

(φt−1 − c)
})−1

, γ > 0. (8)

Under H0: γ = 0, the transition function (8) is constant and the model thus a
TVGJR–GARCH model. For details of the test, see Hagerud (1997) or Lundbergh
and Teräsvirta (2002). It should be mentioned, however, that the smooth transition
GJR–GARCH is a generalisation of the standard GJR–GARCH model, where (in the
first-order case) I(φt−1 < 0) is replaced by (8):

ht = α0 + α1φ
2
t−1 + κ1φ

2
t−1G (φt−1; γ, c) + β1ht−1.

The null hypothesis is γ = 0 in (7). The test of this hypothesis can be viewed as a
test of the hypothesis that asymmetry in the response of the conditional variance
to φt−1, the lagged rescaled return, is adequately described by the component
κ1φ

2
t−1I(φt−1 < 0) in (4). Test results appear in Section 6.4.
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6 Fitting the model to WIG20 returns (full sample)

6.1 The data

In this section we consider modelling the WIG20 daily percentage logarithmic returns
from 3 January 1996 until 31 March 2015. The series that has 4777 observations
appears in Figure 1. We exclude the early observations of the index, established
in April 1994, from the analysis because early on the index comprised only a small
number (less than 20) stocks and was very volatile. The most recent observations
from 1 April 2015 up until 30 April 2016 in our time series are saved for forecasting.

Figure 1: Daily logarithmic returns of WIG20, from 3 January 1996 to 31 March 2015

−
15

−
10

−
5

0
5

10

2000 2005 2010 2015

Figure 1 shows that the amplitude of the clusters is fairly high between 1997 and
2003 with a couple of very high (in absolute values) returns and decreases thereafter.
There is a new increase that culminates around 2009 and a short but distinct
spurt in 2011. Table 1 contains some statistics of the returns. It is seen that
while the standard skewness measure indicates negative skewness, this is completely
non-existent in the robust skewness measure based on quantiles. The observed
skewness is due to a very small number of negative returns that do not have a
counterweight on the positive side. The idea of skewing the whole error distribution
is not supported by the robust skewness measure, and is not considered here.
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Table 1: Statistics for the WIG20 log return series and the rescaled series εt/ĝ1/2
t ,

3 January 1996 to 31 March 2015

WIG20 εt/ĝ
1/2
t

Minimum −14.16 −6.295
Maximum 13.71 6.093
Mean 0.023 0.017
Std. Dev. 1.739 0.965
Skewness −0.241 −0.226
Rob. SK −0.006 0.008
Ex. Kurt. 4.581 2.387
Rob. KR 0.180 0.123

6.2 Specification of the model

As already mentioned, specification begins by assuming that the conditional
heteroskedasticity is constant, ht ≡ 1 in (3). Constancy of the deterministic
component is tested using the Lagrange multiplier test for LM3 described in Hall
et al. (2017), as well as using the LM2 and LM1 tests, as explained in Section 3. The
nonrobust and robust versions are used, and the p-values are found by simulation as
described in Section 3. The results can be found in Table 2.
The null hypothesis is rejected, but attempts to estimate the alternative fail, which
is due to the fact that the third-order Taylor approximation to the alternative is
not sufficiently adequate. Consequently, the tests used to determine K1 in (6) yield
inconclusive results. The solution, resembling the one in Amado and Teräsvirta (2014)
who were modelling an approximately 23000 observations long daily return series,
consists of splitting the time series into two and specifying gt separately for these
two subseries. Constancy is rejected for both subseries. The shape of the transitions
is determined as described in Section 3. Based on the p-values, a quadratic shape
is preferred for both subseries (this being most clear in the robust test results), and
hence the conclusion is that both transitions have K1 = 2 in (6).
However, to avoid compromising the fit of the model for the sake of saving a few
parameters at this stage, a single transition with K1 = 2 is estimated as two
transitions with K = 1 in each instead. There is no evidence to suggest that the first
subseries would require additional transitions. Testing for an additional transition in
the second subseries results in adding another one, and this new transition is deemed
to be a second-order one. Hence, two first-order transitions are added to represent
it, and a model with r = 4 is estimated. At this point, the nonrobust LM test does
not provide evidence of yet another transition, but the robust test is pointing in the
opposite direction.
The subseries are then joined and the TVV model with the six first-order
‘subtransitions’ estimated. The estimated model is then tested against a TVV model
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with an additional transition. The p-values exceed 5%, and the model is thus deemed
adequate. As a robustness check against overfitting, the full data set is used to
estimate a model with four first-order ‘subtransitions’. The null hypothesis of four
transitions is rejected for the LM1 and LM2 tests, however, and the shape of this
transition found to be similar to the preceding ones, K = 2 in (6). This again points
towards a model with six first-order transitions.
The final step consists of assessing the parameter estimates from the TVV model with
six transitions. It turns out that the speed and location parameter estimates coincide
such that the six transitions can be paired to form three second-order transitions.
These transitions form the final specification of the deterministic component of the
model.

6.3 Parameter estimation
The parameter estimates of the TVV model serve as starting-values for estimating
the TVGJR–GARCH model, which is carried out by estimation by parts; see Song et
al. (2005) and Amado and Teräsvirta (2013). The estimates can be found in Table 3.
The estimates of the GJR–GARCH model are included in the same table for
comparison. It is seen that the persistence, as measured by α̂1 + κ̂1/2 + β̂1 decreases
considerably from 0.990 to 0.968 when gt is included in the model. This has
implications for forecasting. The decrease is mainly ascribed to β1, the coefficient of
the lagged conditional variance. This is in line with previous studies; see for example
Amado and Teräsvirta (2014, 2017).

Table 3: Estimated GARCH components of the GJR–GARCH and TVGJR–GARCH
model for the WIG20 log return series, 2 January 1996 to 31 March 2015. Standard
deviation estimates in parentheses

GJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.023
(0.008)

0.046
(0.009)

0.043
(0.012)

0.927
(0.013)

0.994

TVGJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.030
(0.009)

0.039
(0.009)

0.055
(0.016)

0.901
(0.018)

0.968

The estimated deterministic component equals (standard deviation estimates in
parentheses)

ĝt = 11.643
(−)

−8.269
(0.328)

G1

(
t

T
; γ̂1, ĉ1

)
−7.543

(0.602)
G2

(
t

T
; γ̂2, ĉ2

)
+ 5.232

(0.584)
G3

(
t

T
; γ̂3, ĉ3

)
, (9)
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where the transitions are

G1

(
t

T
; γ̂1, ĉ1

)
=

(
1 + exp

{
−2.104

(0.155)

(
t

T
− 0.141

(0.016)

)2
})−1

G2

(
t

T
; γ̂2, ĉ2

)
=

(
1 + exp

{
−3.176

(0.103)

(
t

T
− 0.683

(0.006)

)2
})−1

G3

(
t

T
; γ̂3, ĉ3

)
=

(
1 + exp

{
−5.677

(0.243)
( t
T
− 0.770

(0.003)
)2
})−1

.

As already discussed, the intercept in (9) is fixed and so does not have a standard
deviation. Interestingly, in all transitions the location parameters c1 and c2 are
estimated to be equal. This means that the transitions are not very ’broad-shouldered’
but instead rather smooth. This can be seen from Figure 2. The apparent asymmetry
of the second and the third transition is due to the fact that they overlap.

Figure 2: Conditional standard deviations of WIG20 returns from the GJR–GARCH
model (grey curve) and ĝ1/2

t (black curve) from the estimated TVGJR–GARCH model
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3
4

5
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The effect of the estimated deterministic component (9) on the dependence structure
of the absolute returns is visible in Figure 3. The original autocorrelations decay very
slowly as a function of the lag. This phenomenon, present in many sufficiently long
daily return series, has prompted researchers to model these series as a long memory
process using Fractionally Integrated GARCH; see for example Baillie, Bollerslev and
Mikkelsen (1996) or Davidson (2004). The autocorrelations of rescaled or standardised
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absolute returns decay appreciably faster than the original ones. They are from the
first lag clearly lower than the original ones that are positive up until lag 250. There
is still a bump between lags 30 and 60 in the former suggesting that the deterministic
component may not have removed all long run dependence. What the deterministic
component does to the conditional variance can be seen from Figure 4. The figure
shows that rescaling removes trendlike movements in conditional standard deviations
between the years 1998 and 2003, and 2007 and 2011. Furthermore, the spikes in the
graph of conditional standard deviations from the GJR–GARCHmodel are of different
magnitude, whereas the ones from the TVGJR–GARCH model are approximately of
the same size. These standard deviations are determined up to a constant, that is,
they are relative, as opposed to absolute, entities. This is because changes in the fixed
intercept δ0 affect the level of the two curves in Figure 4.

Figure 3: First 250 autocorrelations of absolute values |εt| of the WIG20 index and
the rescaled series |εt|/ĝ1/2

t

Standardised WIG20 returns 
WIG20 returns 
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6.4 Evaluation
The estimated model is evaluated using misspecification tests discussed in Section
5. The results appear in Table 4. The test no ARCH in GARCH is an extension
of a corresponding test in Lundbergh and Teräsvirta (2002), whereas the tests of
higher-order GARCH are the ones by Bollerslev (1986) and modified for testing the
TVGJR–GARCH. The robust tests (LM Rob) are the previous tests robustified as
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Figure 4: Conditional standard deviations of WIG20 retuns from the GJR–GARCH
model (grey curve) and from the TVGJR–GARCH model (black curve)
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suggested by Wooldridge (1991), see Lundbergh and Teräsvirta (2002). Since it is well
known that the nonrobust tests are positively size-distorted even in large samples, use
of robust tests is encouraged. The results show that if we trust the robust versions the
GJR–GARCH model passes all tests (it did fail the test of gt being constant). The
TVGJR–GARCH model fails one of the tests of higher-order GARCH. This may be
surprising at first because the GJR–GARCH model passes the same test. Sometimes,
however, it becomes possible to ‘see’ a defect in an estimated model only after bigger
problems have been taken care of.

7 Spline-GARCH results
For comparison, we also present results of fitting the Spline-GARCH model to the
series. Engle and Rangel (2008) used BIC of Rissanen (1978) and Schwarz (1978) to
determine the number of (equidistant) knots in quadratic spline. The result can be
seen in Figure 5. If, instead, the number of knots is selected by AIC of Akaike (1974),
the corresponding curve in this figure follows the series more closely and bears some
resemblance to Figure 2. Both have three local maxima, whereas the curve selected
by BIC is very close to a straight line. This suggests that one might want to compute
the deterministic component using different numbers of knots beginning from a small
number quite like in sequential testing. Where to stop would be an interesting research
question.
The GARCH equations of Spline-GARCH can be found in Appendix A. As may be
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Table 4: Nonrobust and robust misspecification tests for the estimated GJR–GARCH
(upper panel) and TVGJR–GARCH (lower panel) model for the WIG20 log return
series

No ARCH-in-GARCH GARCH(1,1) GARCH(1,1) No ST–
vs. vs.

r = 1 r = 5 r = 10 GARCH(1,2) GARCH(2,1) GARCH

GJR
LM test 8.326 18.34 20.61 2.841 0.003 9.357
p-value 0.004 0.003 0.024 0.092 0.953 0.009
LM Rob test 1.588 5.135 7.287 2.352 0.002 1.152
p-value 0.208 0.400 0.698 0.125 0.968 0.562
TV–GJR
LM test 5.279 11.22 13.09 9.393 3.244 7.396
p-value 0.022 0.047 0.219 0.002 0.072 0.025
LM Rob test 1.030 7.867 10.37 7.360 0.616 0.897
p-value 0.310 0.160 0.409 0.007 0.433 0.639

Figure 5: Conditional standard deviations of WIG20 returns from the GJR–GARCH
model (grey curve), exponential quadratic spline when the number of knots is
determined by BIC (solid curve) and when it is done by AIC (dotted curve)
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expected, the GARCH equation of the AIC-based model has lower persistence than
the BIC-based one. In fact, the persistence of the latter equals 0.986 and is thus still
quite close to one. For the former, the corresponding figure equals 0.967, which is
practically the same as the one in Table 3 for the TVGJR–GARCH model.
In general, our test results indicate that the deterministic component cannot be
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neglected when modelling the WIG20 daily returns. The effect of excluding or
including this component on forecasting is studied in the next section.

8 Fitting the model to WIG20 log returns (partial
sample)

In this section we discuss modelling a more recent part of the return series from
1 April 2004 to 31 March 2015. This is done for two main reasons. First, it is
interesting to see how much ĝt changes, if it does, compared to the corresponding
part of this component in (9). Second, it may not be necessary to use all observations
when constructing a TV–GARCH model for forecasting. There is evidence of this
in Amado and Teräsvirta (2014) who modelled daily returns of the Dow-Jones index
with almost 23000 observations using the TVGJR–GARCH model. It turned out,
perhaps not surprisingly, that a model based on a much shorter subseries generated
more accurate forecasts than the model estimated from the original series. Whether
or not something similar occurs here will be investigated.
Sequential testing for the number of transitions from the previous Section suggests
two shifts, each with K = 2. The estimated GARCH equations in Table 5 have not
changed much compared to the ones in Table 3. The change in persistence when one
moves from GJR–GARCH to TVGJR–GARCH is of the same magnitude as before.
However, in the TVGJR–GARCH model the evidence of asymmetric response of the
conditional variance to shocks is now quite pronounced as κ̂1 has increased whereas
α̂1 has shrunk and is no longer significant. The deterministic component has the
following form:

ĝt = 20.689
(−)

− 4.405
(0.549)

G1

(
t

T
; γ̂1, ĉ1

)
− 14.596

(0.537)
G2

(
t

T
; γ̂2, ĉ2

)
where

G1

(
t

T
; γ̂1, ĉ1

)
=

(
1 + exp

{
−2.356

(0.207)

(
t

T
− 0.339

(0.017)

)2
})−1

G2

(
t

T
; γ̂2, ĉ2

)
=

(
1 + exp

{
−5.097

(0.188)

(
t

T
− 0.469

(0.004)

)2
})−1

.

There are now two transitions and the shape of ĝ1/2
t is depicted in Figure 6. By

comparing this figure with Figure 2 it is seen that the increase in ĝ1/2
t around 2009

is more pronounced in the former than the latter, but otherwise the two curves look
fairly similar. The small hump around 2012 in Figure 2 has, however, vanished
in Figure 6. As the counterpart of Figure 4, Figure 8 shows the same situation:
the apparent nonstationarity around 2007–2010 in conditional heteroskedasticity is
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Figure 6: Conditional standard deviations from the GJR–GARCH(1,1) model (grey
curve) and estimated ĝ

1/2
t (black curve) from the TVGJR–GARCH(1,1) model for

the WIG20 daily returns, both from 1 April 2004 to 31 March 2015
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Figure 7: First 250 autocorrelations of absolute values |εt| of the WIG20 index and
the rescaled series |εt|/ĝ1/2

t , subsample
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Figure 8: Conditional standard deviations of WIG20 retuns from the GJR–GARCH
model (grey curve) and from the TVGJR–GARCH model (black curve), for the
subperiod 1 April 2004 - 31 March 2015
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evened out after rescaling.
The autocorrelations of the absolute returns and those of εt/ĝ1/2

t appear in Figure 7.
The former autocorrelations are positive for all 250 lags. The plateau between lags
30 and 60 in rescaled absolute returns is still visible but is much weaker than in
Figure 3. The difference between the two curves is as substantial as before. To save
space, results of the misspecification tests for the models are not reported here. They
are rather similar to the ones in Table 4.
For comparison, we fitted two Spline-GARCH models to the subseries. Even here we
selected the knots using both AIC and BIC. The results can be found in Figure 9.
The spline obtained by BIC is still very parsimonious, no knots, but it now bends
more than the previous one. The main reason for this is that the period containing
the first hump visible in Figure 5 is not included in the shorter series. As before,
the spline generated by AIC follows the conditional standard deviation from GARCH
quite closely. Which one of the two choices is more appropriate when the Spline-
GARCH model is put into practical use will be discussed in the next section.
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Figure 9: Conditional standard deviations of WIG20 returns from the GJR–GARCH
model (grey curve), exponential quadratic spline when the number of knots is
determined by BIC (solid curve) and when it is done by AIC (dotted curve), for
the period 1 April 2004 - 31 March 2015
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Table 5: Estimated GARCH components of the GJR–GARCH and TVGJR–GARCH
model for the WIG20 log return series, 1 April 2004 to 31 March 2015. Standard
deviation estimates in parentheses

GJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.020
(0.007)

0.034
(0.009)

0.050
(0.016)

0.931
(0.011)

0.990

TVGJR–GARCH α0 α1 κ1 β1 α1 + κ1/2 + β1

0.029
(0.009)

0.005
(0.012)

0.088
(0.020)

0.908
(0.026)

0.957

9 Forecasting

9.1 Full sample

In this section we consider forecasting with the TVGJR–GARCH model and compare
the forecasts with corresponding outcomes from GJR–GARCH and Spline-GARCH
models. The forecasting period comprises the returns from 1 April 2015 up until 30
April 2016. In place of the unobserved volatility we use the squared daily return
which, as discussed in Patton (2011), is an unbiased volatility proxy. The measures
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of forecasting accuracy are thus formed with respect to this proxy. We also want to
find out whether the accuracy of the forecasts depends on the estimation period. This
question becomes interesting when the deterministic component of the model is not
constant. For a standard GARCH or GJR–GARCH model using a subperiod instead
of the whole series to estimate the parameters does not make much sense when the
model is correctly specified.
For the TVGJR–GARCH model the forecasts are constructed by assuming that the
value of the deterministic component does not change during the forecasting period
from what it is at the end of the estimation period. The same rule is applied to
Spline-GARCH, which means that the spline is not extrapolated into the forecasting
period. The forecasting horizon varies from one to 120 days. In Table 6 we report
the Root Mean Square Forecast Error (RMSFE) which for our volatility proxy is a
robust loss function, see Patton (2011). In the same table, however, we also include
results based on the Mean Absolute Forecast Error (MAFE) and the Median Squared
Forecast Error (MedSFE).

Table 6: Root mean squared, mean absolute and median squared forecast errors for
forecasts from various models, estimation period 2 January 1996 - 31 March 2015

GJR–GARCH TVGJR–GARCH
Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE
h = 1 1.607 1.681 2.825 0.811 1.437 2.656
h = 5 1.667 1.713 2.833 0.779 1.417 2.653
h = 10 2.021 1.787 2.872 0.840 1.433 2.679
h = 20 2.415 1.909 2.928 0.810 1.422 2.716
h = 60 3.319 2.167 3.250 0.744 1.474 2.977
h = 90 3.987 2.219 3.298 0.670 1.458 3.103
h = 120 5.006 2.278 2.570 0.650 1.353 2.261

Spline-GARCH (AIC) Spline-GARCH (BIC)
Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE
h = 1 2.549 2.706 5.215 0.629 1.133 2.039
h = 5 2.289 2.647 5.224 0.593 1.134 2.038
h = 10 2.250 2.661 5.282 0.653 1.154 2.054
h = 20 1.664 2.608 5.405 0.713 1.182 2.088
h = 60 1.127 2.764 5.998 0.700 1.228 2.267
h = 90 0.974 2.747 6.264 0.691 1.197 2.331
h = 120 0.925 2.538 4.665 0.696 1.129 1.684

The results show that Spline-GARCH (BIC) yields the most accurate forecasts by
all criteria of comparison, whereas Spline-GARCH (AIC) generates the least accurate
ones. The difference is due to the fact that the end-point of the spline in the latter
is ‘too low’ when compared to the former, see Figure 5. This has a dramatic effect
on the accuracy of the forecasts. Note that the final level of the spline cannot be
compared to the level of the deterministic component of the TVGJR–GARCH model
in Figure 2. As already discussed, the level in that model is a relative concept. What
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matters is α̂0δ0 as the change in δ0 in (5) affects the estimate of α0 in (4). Table 7
contains the values of the out-of-sample F -test (OOS-F) for the TVGJR- and Spline-
GARCH models. The benchmark is the GARCH or GJR–GARCH model. All values
indicate significance at the level 0.05. The minus sign shows that the roles of the
null and the alternative have changed: Spline-GARCH (AIC) is the null model and
produces significantly more inaccurate forecasts than GARCH. These figures agree
with the ones in Table 6.
Another way of sorting out inferior models is to construct model confidence sets
(MCS), see Hansen, Lunde and Nason (2011). The results in Table 8 show that
when the mean squared error is used for comparing the models, only Spline-GARCH
(AIC) falls outside the confidence set when the forecasting horizon is sufficiently short.
When the selection is based on MAFE, see Table 9, the distinctions are sharper, and
at short horizons Spline-GARCH (BIC) is the sole member of MCS up until h = 20.
When h ≥ 60, the TVGJR–GARCH model also belongs to MCS.

Table 7: Values of the out-of-sample F-test for the models. Benchmark: GARCH or
GJR–GARCH

Forecasting horizon
Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90 h = 120
TVGJR–GARCH 35.47 37.16 38.68 40.38 40.29 23.41 52.69
Spline-GARCH (AIC) −190.0 −187.1 −183.8 −176.4 −149.8 −131.1 −127.1
Spline-GARCH (BIC) 246.1 244.6 240.8 242.4 210.6 172.6 225.7

Table 8: The model confidence set when models are compared using the mean squared
forecast error

Horizon
Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90
GARCH 0.641* 0.500* 0.556* 0.310* 0.374* 0.881*
GJR–GARCH 0.541* 0.518* 0.458* 0.327* 0.240* 0.741*
TVGJR–GARCH 1.000* 1.000* 1.000* 1.000* 0.374* 0.780*
Spline-GARCH (BIC) 0.641* 0.518* 0.556* 0.327* 0.374* 0.879*
Spline-GARCH (AIC) 0.012 0.088 0.316* 0.446* 1.000* 1.000*

9.2 Subsample from April 2004
As already mentioned, in the light of results in Amado and Teräsvirta (2014) studying
the effect of the estimation period and thus that of the deterministic component on
forecasts should be quite interesting. To this end we forecast with models estimated
in Section 8. Results can be found in Table 10. It can be seen that the TVGJR–
GARCH model generates the most accurate forecasts. They are more accurate than
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Table 9: The model confidence set when models are compared using the mean absolute
forecast error

Horizon
Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90
GARCH 0.000 0.000 0.000 0.000 0.000 0.000
GJR–GARCH 0.000 0.000 0.000 0.000 0.000 0.000
TVGJR–GARCH 0.000 0.000 0.000 0.010 1.000* 0.408*
Spline-GARCH (BIC) 1.000* 1.000* 1.000* 1.000* 0.038 1.000*
Spline-GARCH (AIC) 0.000 0.000 0.000 0.000 0.000 0.000

the corresponding ones from the full-sample model and the most accurate of all
models. One can conclude that the estimation period matters. In this case, the
starting ’level’ for forecasting, α̂0δ0, is more favourable than in the model based on
the full sample. For Spline-GARCH (BIC) the situation is the opposite, but the
forecasts from this model are still far more accurate than those from Spline-GARCH
(AIC). The former Spline-GARCH model is now roughly at par with GJR–GARCH.
This is also seen from Table 11. The Spline-GARCH model is superior to GJR–
GARCH for h ≤ 20 but loses its edge at longer horizons. This is also obvious from
results of the OOS-F test in Table 11. Forecasts from Spline-GARCH (AIC) continue
to be inferior to the others and even less accurate than the ones from GJR–GARCH.

Table 10: Root mean squared, mean absolute and median squared forecast errors for
forecasts from various models, estimation period 1 April 2004 - 31 March 2015

GJR–GARCH TVGJR–GARCH
Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE
h = 1 1.387 1.635 2.811 0.337 0.908 1.655
h = 5 1.423 1.654 2.817 0.350 0.898 1.655
h = 10 1.682 1.703 2.850 0.357 0.905 1.673
h = 20 1.824 1.776 2.890 0.361 0.900 1.694
h = 60 2.124 1.901 3.152 0.373 0.939 1.849
h = 90 2.313 1.870 3.205 0.333 0.936 1.930
h = 120 2.550 1.821 2.338 0.336 0.871 1.401

Spline-GARCH (AIC) Spline-GARCH (BIC)
Horizon MedSFE MAFE RMSFE MedSFE MAFE RMSFE
h = 1 2.920 2.981 5.905 0.974 1.517 2.788
h = 5 2.489 2.930 5.934 0.964 1.513 2.792
h = 10 2.405 2.938 6.010 1.071 1.534 2.818
h = 20 1.793 2.895 6.167 1.046 1.551 2.871
h = 60 1.120 3.113 6.840 0.793 1.583 3.143
h = 90 0.983 3.114 7.144 0.674 1.511 3.240
h = 120 0.983 2.871 5.340 0.587 1.405 2.365
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Table 11: Values of the out-of-sample F-test for the models. Benchmark: GARCH or
GJR–GARCH

Forecasting horizon
Model h = 1 h = 5 h = 10 h = 20 h = 60 h = 90 h = 120
TVGJR–GARCH 503.0 497.1 493.2 470.0 400.7 319.6 325.7
Spline-GARCH (AIC) −208.1 −205.4 −201.8 −194.8 −165.5 −144.0 −145.4
Spline-GARCH (BIC) 4.535 4.521 4.683 4.763 0.808 −4.971 −3.669

9.3 Comparing full sample and subsample forecasts
It may be asked after seeing these forecasts is whether longer return series lead to more
accurate models and volatility forecasts than shorter series. A comparison of forecasts
from models based on these samples shows that there is no clear-cut answer to this
question. Tables 6 and 10 show that accuracy of forecasts from the TVGJR–GARCH
model increases when the model is built only on the time series starting in 2004,
whereas the situation is the opposite for the Spline-GARCH (BIC) model. When
the model is a GJR–GARCH one, there is hardly any difference in RMSFE between
forecasts from the two variants of the model. Obviously, the parameter estimates do
not change much when one moves from the subsample to the complete one, although
their precision should improve.
The accuracy of forecasts from TV–GARCH and Spline-GARCH models is very
dependent on the last value of the deterministic component because this value forms
the starting-point for forecasting. This is why there are differences in RMSFE between
the variants of the same model. This also explains why in one case estimating the
model from the subsample leads to more precise forecasts than using the whole time
series, whereas in another case the situation is the opposite. It is reassuring, however,
that both the subsample and full sample forecasts are more accurate than the ones
from the GJR–GARCH model. This suggests that using models with a multiplicative
deterministic component for forecasting is a good idea, although it may not always be
possible to tell in advance which multiplicative model and which observation period
one should use. In the present case it seems that the Spline-GARCH (AIC) gives a
deterministic component that is quite flexible. Nevertheless, and perhaps because of
this property, the final value of the deterministic component becomes too low and the
forecasts thereby less competitive when compared to other approaches.

10 Conclusions
In this paper we model daily logarithmic returns of the WIG20 index acknowledging
the fact that the series may be nonstationarity in the sense that the amplitude of
volatility clusters is not constant over time. Modelling is carried out in a systematic
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fashion, which is emphasised in the paper. The form of the model is specified first, the
parameters of the fully specified model estimated thereafter and, finally, the estimated
model is subjected to misspecification tests. This is done both using the whole sample
from the beginning of 1995 and a subsample in which the observation period starts 1
April 2004.
Forecasting performance of the TVGJR–GARCH model is compared with that of
two variants of the Spline-GARCH model. It turns out that the most accurate
forecasts of volatility are obtained using the TVGJR–GARCH model fitted to the
subperiod. The conclusion is that the length of the observation period matters, and
that, measured by the root mean squared error, models built on the longest series do
not automatically provide the best forecasts. This accords with findings reported in
Amado and Teräsvirta (2014).
A general conclusion is that when the return series to be modelled are sufficiently
long, the deterministic component in the variance cannot be ignored. It may, at
least in theory, be replaced or completed by a stochastic component, although finding
economic variables that would explain variation in daily return series does not seem
to be easy. Time used in this work is a proxy for the factors and phenomena that are
moving daily equity prices but may be remarkably difficult to quantify.
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A Estimated GARCH equations in the Spline-
GARCH model

The estimated GARCH equations of the Spline-GARCH model when the estimation
period consists of the whole sample from 2 January 1996 to 31 March 2015 (T = 4777)
are as follows. The equation of the AIC-based model equals

ĥt = 0.033
(−)

+ 0.073
(0.005)

φ2
t−1 + 0.894

(0.008)
ht−1

so the persistence, that is, α̂1 + β̂1 = 0.967. When the number of equidistant knots is
selected using BIC as in Engle and Rangel (2008), the equation is

ĥt = 0.014
(−)

+ 0.072
(0.004)

φ2
t−1 + 0.913

(0.005)
ht−1

where α̂1 + β̂1 = 0.986.
For the subperiod from 2 January 2004 to 31 March 2015 (T = 2808) the equation
for the AIC-based model is

ĥt = 0.034
(−)

+ 0.057
(0.008)

φ2
t−1 + 0.909

(0.013)
ht−1 (10)

where α̂1 + β̂1 = 0.966. For the BIC-selected splines,

ĥt = 0.010
(−)

+ 0.064
(0.007)

φ2
t−1 + 0.926

(0.008)
ht−1 (11)

where α̂1 + β̂1 = 0.990. Even here, the persistence is clearly lower in (10) than in
(11).
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