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Abstract

In economics we often face a system which intrinsically imposes a structure
of hierarchy of its components, i.e., in modeling trade accounts related to
foreign exchange or in optimization of regional air protection policy. A
problem of reconciliation of forecasts obtained on different levels of hierarchy
has been addressed in the statistical and econometric literature many times and
concerns bringing together forecasts obtained independently at different levels
of hierarchy. This paper deals with this issue with regard to a hierarchical
functional time series. We present and critically discuss a state of art
and indicate opportunities of an application of these methods to a certain
environment protection problem. We critically compare the best predictor
known from the literature with our own original proposal. Within the paper
we study a macromodel describing the day and night air pollution in Silesia
region divided into five subregions.
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1 Introduction
A variety of economic systems consists of a certain class of subsystems, which form a
fixed hierarchical structure, i.e.:

1. A country considered with respect to monthly Gross National Product with a
splitting into regions and subregions

2. A national balance of trade with a splitting into branches and subbranches of
industry, services and agriculture

3. Weekly total inflows and outflows of current accounts for a certain group of
clients (priority, individual, corporate clients, or gender, or demographic groups)
considered in 5-min consecutive intervals

4. A turnover of a company with regard to product lines and/or client target groups

5. Social and health care insurance costs divided into age and place of living
segments

6. Social inequalities of households with regard to education level, religious faith,
political choice or ethnicity

7. Social and health costs associated with environment pollution for a certain
region divided into subregions

Both from a theoretical as well as from practical point of view it is especially important
to find a reliable method of modeling and forecasting a time evolution of a system
similar to the above systems exhibiting a hierarchical structure. The method should
be computationally tractable.
The issue is very closely tied with the reconciliation of forecasts - a problem known
from the econometric literature (see Shlifer and Wolff 1979, Kohn 1982, Weale 1988,
Kahn 1998, and Fliedner 2001).
It is often observed that forecasts prepared for lower levels of hierarchy do not sum
to forecasts prepared for upper levels and the top level of the system. That fact may
be caused for example by an application of different measurement methodologies,
different precision for different levels.
In this paper we focus our attention on the problem of forecasting a hierarchic system
describing the day and night air pollution in Silesia region in Poland. The region is
divided into five subregions.
The day and night air pollution is treated as a realization of a functional random
variable. Hence we consider a forecasting of a hierarchical functional time series
(HFTS). A predictor possessing good statistical properties in this case is directly
connected with an opportunity of designing cost-effective pro-ecological regional
politics, which optimize social welfare being a function of the day and night air
pollution. It is worth stressing, that while using functional time series (FTS)
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framework instead of well known one-dimensional time series setup, we forecast whole
day and night periods instead of predicting hour after hour. Note also, that using FTS
one can easily model and predict non-equally spaced time series, which may cause
fundamental problems for analysts using classical ARIMA, SARIMA methodology
(see Kosiorowski 2016, and Górecki et al. 2016). Our paper critically discusses the
best proposals known from the literature (see Shang and Hyndman 2017) and compare
them with our proposals.
The rest of the paper is organized as follows. Section 2 discusses the concept of
hierarchical time series. Section 3 discusses the concept of hierarchical functional
time series. Section 4 discusses the methods of HFTS forecasting. Section 5 contains
the empirical study – an example of a macromodel for the day and night air pollution
in Silesia region.

2 Hierarchical time series
Hierarchical time series (HTS) is a time series, where some fixed, often natural,
hierarchy is imposed. In other words, HTS can be considered as a time series, where
at each time we have insight to the values for any single variable at any level in the
structure with a fixed hierarchy. In Figure 1 an example visualization of hierarchical
time series at moment n is depicted. In the Figure 1, the observation made on the top
level is divided into two sublevels or level−1 levels, and the observation made on the
level− 1 is divided into two level− 2 levels, but the division might be quite different,
and the only constraint is, that any level could be divided into finitely many number
of levels and the total number of observations is finite. Obviously, one can compute a
forecast for all series at all hierarchy levels independently, but the forecast at the lower
level do not sum to the forecast at the upper level. Hence, no reconciliation is made.
In the hierarchical setup the forecasting might be done in the following manners. The
forecast is made on the bottom level of the hierarchy. Subsequently, the aggregation
of the obtained forecast, basing on some historical data, is made on the upper level
of the hierarchy. This procedure is repeated upwards the hierarchy, until we get a
forecast on the top level. The method is called the bottom-up method. Conversely
we proceed in the top-down method, where the forecast is made on the top level.
The disaggregation is then made, so that we obtain a forecast on the lower levels
of the hierarchy. The methods are often mixed, as we obviously, for some reasons,
might be interested in the forecast on some intermediate level of the hierarchy. Then
the forecast is aggregated upward the hierarchy, and disaggregated downward the
hierarchy. The methods do not take into account the correlation structure of the
hierarchy. Prediction intervals for the forecasts are undefined as well. The more
detailed discussion and references the interested reader may find in Shlifer and Wolff
(1979), Kohn (1982), Weale (1988), Kahn (1998), and Fliedner (2001).
In their paper Hyndman et al. (2011) proposed a novel optimal combination forecast
method for HTS. Their proposal is based on independently forecasting all series at
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all levels of the hierarchy and then using a regression model to obtain a reconciliated
forecast. The forecasts obtained with their method add across the fixed hierarchy.
It is also mean-unbiased and under some reasonable assumptions has minimum
variance among linear combination of independent forecasts. They represent the fixed
hierarchical structure in the matrix form. This approach allows for the correlations
between the series at each level of the hierarchy. However, they mention that
some computational problems may occur. They are connected to the inverse of
relatively large, sparse matrices and solution of sparse linear least squares problem.
Nevertheless, Hyndman et al. (2011) approach enables to obtain a reconciliated
forecast for a considered phenomenon reconciliated with individual forecasts obtained
on different levels of hierarchy.

Figure 1: An example visualization of hierarchical time series'
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3 Functional hierarchical time series
Functional hierarchical time series is a series which consists of functional data, i.e. we
consider a hierarchical dataset of functions instead of real numbers or vectors in Rm.
The functional data methods are described in monographies of Ferraty and Vieu
(2006), Ramsay et al. (2009), and Horváth and Kokoszka (2012). Some statistical
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tests have been recently developed for the functional framework as well (e.g.
Kosiorowski et al. 2017a).
Note that the methods developed for the uni- or multivariate HTS and described in
Section 2 cannot be directly applied in HFTS setup. Many theoretical problems arise
here, but note, that even the order of functions cannot be measured as easily as in
the univariate case. The naïve forecast is not convincing as well, because it does not
take into account a time dependency. The pointwise average can be easily calculated,
but we usually do not know the true distribution on the L2[0, T ] space, from which
our data come from, so we cannot straightly assume that the functional expected
value exists, which makes the approach unconvincing as well. For the same reason
the pointwise moving average seems out of the question. In their paper Shang and
Hyndman (2017) proposed their method of HFTS forecasting.
Their approach originates from their previous study (Hyndman et al. 2011), described
in Section 2, which takes into account the whole hierarchical structure of the data. The
reconciliated forecast for a fixed hierarchical structure with L levels takes a following
shape

X̂n+1(t) = F (x̂leveltop(t), x̂level11(t), . . . , x̂level1i1 (t), . . . , x̂levelL1(t), . . . , x̂levelLiL (t)),

where x̂levelkik (t) denotes an ik forecast obtained for the functional time series at level
k and F denotes a certain generalized least squares estimator. The HFTS structure
at day n is described by a matrix equation

Xn = Snbn, (1)

where vector Xn = (xleveltop , xlevel11 , . . . , xlevel1i1 , . . . , xlevelL1 , . . . , xlevelLiL ), that is,
it is containing all series at all levels of hierarchy, bn is a vector representing the series
at the lowest level of the fixed hierarchy, and Sn is a finite matrix that shows the
connection between the vectors Xn and bn.
The forecast is made then, that is:

X̂n+1 = Sn+1βn+1 + εn+1,

where X̂n+1 is a matrix of forecasts made for all series at all levels of the fixed
hierarchy, βn+1 = E[bn+1|X1, . . . , Xn] is an unknown multivariate expected value of
a forecast distribution for the most disaggregated series and εn+1 represents the errors
of the reconciliation.
Note that the level forecasts are obtained using non-robust method, which maps
functional time series into one dimensional series of functional component scores (for
details see Kosiorowski 2014). Components βn+1 are estimated in the study by Shang
and Hyndman (2017) with the generalized least squares method, i.e.

β̂n+1 =
(
ST

n+1V
−1Sn+1

)−1
ST

n+1V
−1X̂n+1,
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where a diagonal matrix V estimates variances of series forecasts. The final forecast
stems from the equation

X̃n+1 = Sn+1β̂n+1.

Shang and Hyndman (2017) method has some important advantages and
disadvantages. The Shang and Hyndman (2017) forecasts are aggregate consistent
– they satisfy an aggregation constrains and are mean-unbiased. However, the
method is very computationally demanding and sophisticated due to the sparse
linear least squares problem and necessity of computing generalized inverses of large
and sparse matrices (see 1). The method may be therefore robustified (for details
see Kosiorowski et al. 2017b).
Note that Shang and Hyndman’s (2017) approach is equipped with an outright
internal mechanism of forecasts reconciliation. Our proposal – which is described
further – the reconciliation of forecasts is a byproduct of a fact that modified
band depth (MBD, see López-Pintado and Romo 2007, 2009) is nontransitive.
Shang and Hyndman (2017) reduce the problem of functional data forecasting to
functional principal component regression: functions are represented in an empirical
principal components base, then they use Hyndman’s functional regression basing
on one-dimensional stationary time series modeling (see Kosiorowski 2014) and the
authors assume that residual functions are approximately stationary (we do not
make the restriction).
The last analyzed approach comes from the paper Kosiorowski et al. (2017c). The
authors presented double functional median method and compared their method
with Shang and Hyndman’s (2017) method as a reference approach.
Modified band depth (MBD, see López-Pintado and Romo 2007, 2009) of
curve x with respect to functional sample XN (a sample of N functions, i.e.,
XN = {xi(t), i = 1, 2, . . . , N} and t ∈ [0, T ]), estimates the curves’ frequency of
being in the center. Note, that Zuo and Serfling (2000) formulated general conception
of statistical depth function and Nieto-Reyes and Battey (2016) have proved that a
depth for functional data is correctly defined.
Nevertheless, we have a sample of N functions x1, . . . , xN .
Firstly we need to define sets of the following form
A(x;xi1 , xi2) = {t ∈ [0, T ] : minr=i1,i2 xr(t) ≤ x(t) ≤ maxr=i1,i2 xr(t)}.
Consequently, MBD can be defined, a functional depth, which takes into account a
proportion of “time”, when x is in the band made with two functions, i.e.

MBD(x|XN ) = 2
N(N − 1)

∑
1≤i1<i2≤N

λ(A(x;xi1 , xi2))
λ([0, T ]) ,

where λ is a Lebesgue measure.
Subsequently, the nested regions for the chosen functional depth can be constructed,
that is, consider MBD(x|XN ) ≥ α. The median with respect to the considered
functional depth is the most central observation. We define a sample median as

MEDMBD(XN ) = arg maxi=1,...,NMBD(xi|XN ).
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If more than one function achieves the depth maximum value, the median is defined
as the average of the curves maximizing depth. Then we use a moving functional
median:

x̂n+1 = MEDMBD(Wn,k),

where Wn,k is a moving window of a length k with an end in a moment n, that is,
Wn,k = {xn−k+1, . . . , xn}. Double functional median method can be described in the
following steps:

1. We calculate the moving functional median related to the MBD or
another functional depth for each unit at the lowest level of hierarchy,
i.e., MEDMBD(Wn,k). In empirical example analyzed in Section 5 for
each town and at moment n, we compute a functional median from a
moving window of length 10 with respect to the functional depth MBD:
x̂town

n+1 = MEDMBD{xtown
n , xtown

n−1 , . . . , x
town
n−9 }.

2. We calculate for the lowest but one level of hierarchy, a functional median from
the medians calculated in the first step.

3. We repeat the second step until we calculate the functional median for the top
level of the hierarchy.

In our empirical example, the second step is the last one, and finally, we obtain a
forecast for n = 10, . . . , 181 :

x̂n+1 = MEDMBD{x̂town1
n+1 , . . . , x̂town5

n+1 }.

Hierarchical structure of the data is taken into account in the process of computing
functional median of lower level functional medians, as translation of a single
functional observation into neighbouring unit alters the outcome (for details see
Kosiorowski et al. 2017c).

4 A critical overview of HFTS approaches
In a general case, an uncertainty evaluation of the HFTS forecast is an open issue. Due
to insufficient theoretical background for conducting a precise statistical inference, in
our approach we decided to expand ideas indicated by López-Pintado et al. (2010).
Shang and Hyndman (2017) has obtained a representation of functions in the L2

space with a Fourier basis. The Fourier basis is adjusted to the functional data they
consider, because the data they analyzed were expected to be periodical. Afterwards
they transformed functional time series into a family of one-dimensional principal
component scores series. Then a maximum entropy bootstrap methodology proposed
by Vinod and de Lacalle (2009) and implemented in meboot R package, which is
appropriate for time series setting, has been used. Although this simplification of the
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problem seems to be attractive, it divests an analyst of the richness of behaviors a
functional time series in comparison to one dimensional time series. We recommend
using functional boxplots and adjusted functional boxplots (one can focus on sizes of
boxes and α−central regions), which realizes an idea of bootstrap for functional time
series for the rough evaluation of the forecast uncertainty (for details see López-
Pintado et al. 2010 and Sun and Genton 2011). It does not make much sense
to consider point-wise properties of the considered predictors. We usually do not
know the true distribution on the L2[0, T ] space, from which our data come from.
Thus even the existence of the functional expected value (mean) cannot be assumed.
Hence, we concentrate our attention on the median-unbiasedness. Let us remind,
that an estimate of a one-dimensional parameter is median-unbiased if, for fixed
parameter value, the median of the distribution of the estimate is at the parameter
value, which simply means that the estimate underestimates just as often as it
overestimates (Brown 1947). The classical median-unbiasedness properties have been
studied previously (e.g. Pfanzagl 1970, 1979). In the functional setting, we choose
the proper functional depth and thus we obtain the median induced by the chosen
depth. The functional medians induced by popular depth exist for very wide class
of processes (in contrary to the functional mean existence). We conclude, that the
functional median obtained with respect to the chosen functional depth is intrinsically
a median-unbiased estimator. Moreover, the double median method is not only
median-unbiased, but also consistent (for details see Gijbels and Nagy 2015, Nagy
et al. 2016 and Kosiorowski et al. 2017c).
Shang and Hyndman (2017) method depends on quite effective but non-robust one-
dimensional time series methodology applied to series of principal component scores.
It depends also on nonrobust dispersion matrix estimator. The matrix is a kind of
a design matrix used to obtain a proper forecasts reconciliation. The robustness of
double functional median method to outliers does not heavily depend on the type
of functional outliers. It is surprising, because we have expected that it should
be different for the functional shape outliers, functional amplitude outliers, and for
functional outliers with respect to the covariance structure (e.g. see Arribas-Gil
and Romo 2014 and Tarabelloni 2017). After conducting several simulations (see
Kosiorowski et al. 2017c) the authors have come to the conclusion, that the double
median method is more robust. Shang and Hyndman (2017) state the opposite in
their paper, but note, that they considered a Fraiman-Muniz depth, while we have
considered MBD, that looks like better designed for the considered empirical example.
For a fixed α, a volume of the α−central region may be treated as a dispersion
measure (see Liu et al. 1999), and thus comparing functional boxplots is a relevant
way to compare “effectiveness” of the considered methods (see Figures 2, 3, 5, 7). A
comparison of functional time series predictor “effectiveness” may be also conducted
in terms of speeds of expansion of α−central regions treated as functions of α (scale
curve, see López-Pintado et al. 2010). This approach is not only nonparametric but
it is a moment-free data-analytic method. It imitates the multivariate case and seems
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to be the best solution in the functional case as well, because assumptions on the
data-generating process are hard to be stated precisely. Remember, that there is no
Lebesgue measure analogue in the L2[0, T ] space.
The double median method of forecasting HFTS is faster than Shang and Hyndman
(2017) method; moreover, it is less computationally and memory intensive. Precisely,
to compare a computational complexity of both methods, we have considered
empirical functional time series related to day and night air pollution monitoring
in the selected towns. The monitoring was conducted for 181 days. In other words, in
the beginning, we considered dataset consisting of six matrices, each of dimension
181 × 24. For comparing two forecasting methods, we have considered forecasts
obtained basing on moving window of length 10 observations. A time of calculation of
the forecasts using Shang and Hyndman (2017) method was ca 13 min 10 sec, whereas
using the proposed double median method was ca 2 min 30 sec (we used DepthProc
R package). In both cases, we used the same software and hardware environment
(WIN8, Intel Core I7 Mobile, 16 GB RAM). Note that Shang and Hyndman (2017)
and Hyndman et al. (2011) indicated the inconveniences of their methods, which are
related to an application of the generalized least squares applied to big and sparse
design matrices. They stated some methods to bypass the inconveniences, but the
remedies are insufficient in big data analysis.

5 Empirical study: The day and night PM 10 air
pollution in Silesia region

Air pollution consist of different substances, i.a. sulphur dioxide, nitrogen dioxide,
ozone, carbon monoxide, benzene, particulate matter PM2,5 and particulate matter
PM10 - all particles of a diameter 10 micrometers or less. Air pollution has a huge
negative impact on people’s health.
Air pollution monitoring is conducted in Silesian Province in Poland. Measurement
is done at a certain number of stations placed in the Region. The organisation
responsible for the monitoring is Wojewódzki Inspektorat Ochrony Środowiska
(WIOŚ, Regional Inspectorate of Environmental Protection) in Katowice. The
institution possesses 28 measurement stations. We analyze data coming from 5 out
of that 28 stations in order to present our method, but the number of stations does
not limit our method.
Decision-maker who has at his disposal measurement from certain number of stations
is interested in aggregation of the data. Note, that the easiest aggregate is an
arithmetic mean or a moving arithmetic mean of measurements done in all the
stations. The two aggregates are often used in practice by the local government.
However, simplicity seems to be the only advantage of that method (see Section 3
and the paper Kosiorowski et al. 2017c). Main goal of the paper is to find the
aggregate, to the best fit of the regional policy.
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5.1 Empirical dataset under study description

Dataset from WIOŚ website http://powietrze.katowice.wios.gov.pl has been
analyzed to illustrate our method.
We have analyzed PM10 concentration in the air for five measurement stations:
Gliwice (Gli) with a population of 182,155, Katowice (Kat) with a population of
304,063, Dąbrowa-Górnicza (Dab) with a population of 121,902, Bielsko-Biała (Bie)
with a population of 172,407 and Częstochowa (Cze) with a population of 227,184
(population data come from 2015).
First three towns are part of “Upper Silesian Urban Area” (its population is about 3
million). Bielsko-Biała and Częstochowa are the largest towns of Silesian Region that
are not part of the “Upper Silesian Urban Area”. Data comes from the period of 181
days from 1 September 2016 to 28 February 2017. We obtain forecasts for each town,
but we are rather interested to obtain a forecast for the whole Silesian Region, and we
shall keep in mind that emission of pollution and weather conditions (i.e. landform
and windrose) are very different in each town. Moreover, some of that factors, i.e.
wind, are time variant, so we should treat the observations as functions and treat the
trajectories as functional data objects.
It is cumbersome in air pollution context to decide how to compute air pollution on the
whole Silesian Region level, as obviously only data from certain stations are available.
We decided to compute an aggregate representing air pollution in the Silesian Region
to be a weighted average of pollution in each town, where weights are proportional to
the town population. This approach is compatible with our assumption that social
cost associated with air pollution is linearly proportional to town population. The
assumption has been applied in double functional median method and in Shang and
Hyndman (2017) method.
Figure 2 presents the raw data of 181 curves for the analyzed five stations, which show
the PM10 concentration in the atmosphere in µg/m3 on vertical axis. Above there is
a functional boxplot for all curves (181× 5 = 905 curves) computed with MBD.
Figure 3 presents PM10 concentration in the air forecast in µg/m3 calculated with
moving functional average (moving window equals 10) for five considered stations.
Above there is a functional boxplot for the average of all averages for five stations
computed every day. The moving average seems to be the easiest rational method of
forecasting, which is used by the decision-maker.
Figure 4 presents PM10 concentration in the air double functional median forecast
in µg/m3 calculated with moving functional median (moving window equals 10) for
five stations. Above the forecast for the Silesia region calculated with double moving
functional median. The median was calculated with the use of MBD.
Hyndman and Shang (2017), in order to estimate prediction uncertainty, have used
maximal entropy bootstrap for time series method proposed by Vinod and de Lacalle
(2009), because their method is basing on representation of functional time series as
a family of one-dimensional time series of functional principal component scores.
In case of the double functional median method, in order to estimate prediction
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Figure 5: Five boxplots for the average sum of the differences between the observed
curves and the curves forecasted with the double functional median method. Above
a functional boxplot for the forecasts for Silesia region obtained with the double
functional median method
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uncertainty we have used volumes of α−central regions (see functional boxplots)
implemented in R-packages fda (Ramsay et al. 2009) and DepthProc (Kosiorowski
and Zawadzki 2017). We have also compared quality of our forecast with the forecast
of Shang and Hyndman (2017) through the comparison of sum of the differences
between the observed curves and of the forecasted curves. We have also compared
median absolute deviation (MAD) of the integrated differences between the observed
curves and of the forecasted curves. Table 1 contains a MAD comparison of our
forecasts with Shang and Hyndman’s (2017). The functional boxplots can be also
used to compare the two methods. Figure 5 presents five functional boxplots for the
average sum of the differences between the observed curves and the curves forecasted
with the double functional median method. Above there is a functional boxplot for
the forecasts for Silesia region obtained with the double functional median method
(calculated with MBD).
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Figure 6 presents PM10 concentration in the air forecast in µg/m3 calculated with
Shang and Hyndman (2017) method (moving window equals 10) for five stations and
for the Silesia region. Figure 7 presents five boxplots for the average sum of the
differences between the observed curves and the curves forecasted with Shang and
Hyndman (2017) method. Above a functional boxplot for the forecasts for Silesia
region obtained with the Shang and Hyndman (2017) method. Our method seems to

Figure 7: Five boxplots for the average sum of the differences between the observed
curves and the curves forecasted with Shang and Hyndman (2017) method. Above
a functional boxplot for the forecasts for Silesia region obtained with the Shang and
Hyndman (2017) method
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be more robust for functional outliers. Compare MAD of the integrated differences
between the observed curves and of the curves forecasted with both methods (see
Table 1). Compare also boxplots with respect to sizes of the boxes and positions
of the medians (see Figures 5 and 7). This result is not very surprising, as Shang
and Hyndman (2017) make forecasts basing on nonrobust generalized least squares
method.
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Table 1: Estimators quality comparison – MAD calculated for the five towns

Predictor Biel Cze Dab Gli Kat

Shang&Hyndman 1699.59 1447.81 1699.59 881.25 891.19
Our forecasts 265.81 377.35 265.81 526.79 328.63

5.2 Maximization of social welfare
Generally speaking, it is known that air pollution has a negative impact on human
health, however a form of this impact may take many different and very complex
forms. Dangerous substances may interact one with another. A nature of impact
may depend on age group and time of the day and night.
Our main aim is to maximize a “summarized” utility of a local community over a
certain period, that symbolically may be written as (for details see Fleurbaey and
Maniquet 2011) :

UT otal =
365∑
i=1

∫
[000,2400]

Ui (WP M10(t), CP M10reduc(t))dt, (2)

where i is a number of a day, WP M10 denotes social welfare related to PM10 emission
reduction (positive and negative external effects valued in a fixed currency) and CP M10
denotes a cost of the PM10 emission reduction valued in the fixed currency.
We assume that

WP M10 = F (Airqual, ENVpolit, INFqual, POPparam),

and
CP M10 = G(Cfixed, Cvar, Cpolitical, P redqual).

It means that welfare related to PM10 is a function of an air quality (valued basing on
evidenced costs of hospitalization due to lung diseases), medical expenses related to
allergies (Airqual), an user-friendliness of the local environment (ENVpolit), a quality
of the local information system providing information on air quality and health threats
(INFqual) and finally socio-demographic parameters of the community (POPparam).
The cost related to the PM10 reduction relates to fixed costs including investments in
new technologies (Cfixed), variable costs involving effects tied with changes of weather
causing lower or higher demand on heating energy (Cvar), political cost related to a
transformation of popular heating systems basing for example on coal into “clean”
systems basing for example on nuclear energy, and costs related to quality of forecasting
of air pollution (Predqual).
In this paper we focus our attention on the last quantity measuring quality of
forecasting of air pollution in the selected region.
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In our opinion it is reasonable to assume that the welfare associated with the pollution
in considered town or region is linearly proportional to its population.

6 Conclusions
In the paper we have critically discussed an application of a model for hierarchical
functional time series to studies of the day and night air pollution in Silesia region in
Poland. We have focused our attention on optimal estimation issues of the model. In
this context we have compared the double functional median estimator with the best
estimator known from the literature. We have assumed that an aggregate welfare of
people living in the Silesia region is a function of among others a quality of the model
estimation.
Our considerations clearly show usefulnesses of the HFTS methodology in a context
of a local community welfare optimization. Shang and Hyndman (2017) approach
provides elegant tools for HFTS modeling and forecasting in case of a relatively
rich hierarchical structure and functional data without outliers. It is worth noticing,
that the double functional median HFTS predictor performs very well in comparison
to Shang and Hyndman (2017) predictor especially in terms of its computational
complexity and robustness to functional outliers.
In our current research we concentrate on the optimization issues related to specific
forms of the formula (2) defining the welfare of a certain local community.

Acknowledgements
The authors would like to thank two anonymous referees for their valuable suggestions
and helpful comments.
JPR and DM’s research has been partially supported by the AGH UST local grant no.
11.11.420.004 and DK’s research by the grant awarded to the Faculty of Management
of CUE for preserving scientific resources for 2017 and 2018.

References
[1] Arribas-Gil A., Romo J. (2014), Shape outlier detection and visualization for

functional data: the outliergram, Biostatistics 15(4), 603–619.

[2] Brown G.W., (1947), On Small-Sample Estimation, Annals of Mathematical
Statistics 18(4), 582–585.

[3] Ferraty F., and Vieu P. (2006), Nonparametric Functional Data Analysis: Theory
and Practice, Springer.

D. Kosiorowski et al.
CEJEME 10: 53-73 (2018)

70



Forecasting of a Hierarchical Functional Time Series . . .

[4] Fleurbaey M., Maniquet F. (2011), A Theory of Fairness and Social Welfare,
Cambridge University Press.

[5] Fliedner G. (2001), Hierarchical forecasting: issues and use guidelines, Industrial
Management and Data Systems 101(1), 5–12.

[6] Gijbels I., Nagy S. (2015), Consistency of non-integrated depths for functional
data, Journal of Multivariate Analysis 140, 259–282.

[7] Górecki T., Krzyśko M.K., Waszak Ł., Wołyński W. (2016), Selected statistical
methods of data analysis for multivariate functional data, Statistical Papers,
DOI10.1007/s00362-016-0757-8.

[8] Horváth L., Kokoszka P. (2012), Inference for Functional Data with Applications,
Springer, New York.

[9] Hyndman R.J., Ahmed R.A., Athanasopoulos G., Shang H.L. (2011), Optimal
combination forecasts for hierarchical time series, Computational Statistics &
Data Analysis 55(9), 2579–2589.

[10] Kahn K.B. (1998), Revisiting top-down versus bottom-up forecasting, The
Journal of Business Forecasting Methods & Systems 17(2), 14–19.

[11] Kohn R. (1982), When is an aggregate of a time series efficiently forecast by its
past, Journal of Econometrics 18(3), 337–349.

[12] Kosiorowski D. (2014), Functional regression in short-term prediction of economic
time series, Statistics in Transition – new series 15(4), 611–626.

[13] Kosiorowski D. (2016), Dilemmas of robust analysis of economic data streams,
Journal of Mathematical Sciences 1(2), 59–72.

[14] Kosiorowski D., Zawadzki Z. (2017), DepthProc: An R Package for
Robust Exploration of Multidimensional Economic Phenomena, available at:
arXiv:1408.4542v9.

[15] Kosiorowski D., Rydlewski J.P., Snarska M. (2017a), Detecting a structural
change in functional time series using local Wilcoxon statistic, Statistical Papers,
DOI 10.1007/s00362-017-0891-y.

[16] Kosiorowski D., Mielczarek D., Rydlewski J.P., Snarska M. (2017b), Generalized
exponential smoothing in prediction of hierarchical time series, available at:
arXiv:1612.02195v2.

[17] Kosiorowski D., Mielczarek D., Rydlewski J. P. (2017c), Double functional
median in robust prediction of hierarchical functional time series – an
application to forecasting of the Internet service users behaviour, available at:
arXiv:1710.02669v1.

71 D. Kosiorowski et al.
CEJEME 10: 53-73 (2018)



Daniel Kosiorowski, Dominik Mielczarek, Jerzy P. Rydlewski

[18] Kosiorowski D., Rydlewski J.P., Zawadzki Z. (2017d), Functional outliers
detection by the example of air quality monitoring, Statistical Review (in Polish,
forthcoming).

[19] Liu R., Parelius J.M., Singh K. (1999), Multivariate analysis by data depth:
descriptive statistics, graphics and inference (with discussion), Annals of
Statistics 27, 783–858.

[20] López-Pintado S., Romo J. (2007), Depth-based inference for functional data,
Computational Statistics & Data Analysis 51(10), 4957–4968.

[21] López-Pintado S., Romo J. (2009), On the concept of depth for functional data,
Journal of the American Statistical Association 104, 718–734.

[22] López-Pintado S., Romo J., Torrente A. (2010), Robust depth-based tools for
the analysis of gene expression data, Biostatistics 11(2), 254–264.

[23] Nagy S., Gijbels I., Omelka M., Hlubinka D. (2016), Integrated depth for
functional data: Statistical properties and consistency, ESIAM Probability and
Statistics 20, 95–130.

[24] Nieto-Reyes A., Battey H. (2016), A Topologically Valid Definition of Depth for
Functional Data, Statistical Science 31(1), 61–79.

[25] Pfanzagl J. (1970), On the Asymptotic Efficiency of Median Unbiased Estimates,
The Annals of Mathematical Statistics 41(5), 1500–1509.

[26] Pfanzagl J. (1979), On optimal median unbiased estimators in the presence of
nuisance parameters, The Annals of Statistics 7(1), 187–193.

[27] Ramsay J.O., Hooker G., Graves S. (2009), Functional Data Analysis with R and
Matlab, Springer.

[28] Shang H.L., Hyndman R.J. (2017), Grouped functional time series forecasting:
an application to age-specific mortality rates, Journal of Computational and
Graphical Statistics 26(2), 330–343.

[29] Shlifer E., Wolff R.W. (1979), Aggregation and proration in forecasting,
Management Science 25(6), 594–603.

[30] Sun Y., Genton M.G. (2011), Functional Boxplots, Journal of Computational
and Graphical Statistics 20(2), 316–334.

[31] Tarabelloni N. (2017), Robust Statistical Methods in Functional Data Analysis,
Doctoral thesis and R package roahd, Politecnico di Milano.

[32] Vinod H.D., Lopez de Lacalle J. (2009), Maximum entropy bootstrap for time
series: the meboot R package, Journal of Statistical Software 29(5), 1–19.

D. Kosiorowski et al.
CEJEME 10: 53-73 (2018)

72



Forecasting of a Hierarchical Functional Time Series . . .

[33] Weale M. (1988), The reconciliation of values, volumes and prices in the national
accounts, Journal of the Royal Statistical Society A 151(1), 211–221.

[34] Zuo Y., Serfling R. (2000), General notions of statistical depth function, Annals
of Statistics 28(2), 461–482.

[35] http://powietrze.katowice.wios.gov.pl (access date: 24th March 2017).
WIOŚ underlines that the data is gathered automatically and might be unverified

73 D. Kosiorowski et al.
CEJEME 10: 53-73 (2018)

http://powietrze.katowice.wios.gov.pl

	Introduction
	Hierarchical time series
	Functional hierarchical time series
	A critical overview of HFTS approaches
	Empirical study: The day and night PM 10 air pollution in Silesia region
	Empirical dataset under study description
	Maximization of social welfare

	Conclusions

