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Abstract 

Detection of leakages in pipelines is a matter of continuous research because of the basic importance for

a waterworks system is finding the point of the pipeline where a leak is located and − in some cases − a nature 

of the leak. There are specific difficulties in finding leaks by using spectral analysis techniques like FFT (Fast 

Fourier Transform), STFT (Short Term Fourier Transform), etc. These difficulties arise especially in complicated 

pipeline configurations, e.g. a zigzag one. This research focuses on the results of a new algorithm based on FFT 

and comparing them with a developed STFT technique. Even if other techniques are used, they are costly and 

difficult to be managed. Moreover, a constraint in the leak detection is the pipeline diameter because it influences 
accuracy of the adopted algorithm. FFT and STFT are not fully adequate for complex configurations dealt with in 

this paper, since they produce ill-posed problems with an increasing uncertainty. Therefore, an improved Tikhonov 

technique has been implemented to reinforce FFT and STFT for complex configurations of pipelines. Hence, the 

proposed algorithm overcomes the aforementioned difficulties due to applying a linear algebraic approach. 
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1. Introduction 
 

Spectral analysis techniques have stimulated great interest in the fields of measurements and 
sensing systems. They are simple to apply and belong to software techniques based on 

computations as opposed  to the hardware ones based on dedicated instrumentation. In this 
paper, we implement FFT and STFT algorithms, which is an obvious but not trivial approach 

when applied to a zigzag hydraulic circuit representing a complicated case-study since, in many 
cases, we do not refer to this kind of configuration but it is possible to find it in industrial 
applications. Leak detection in pipelines and waterworks has an economic impact on a budget 

of public and private company managing such services. Quality of water is associated with 
environment protection because of possible intrusion of pollution in pipelines and diminishing 

of water quality with pollution of aquifers. Leaks are considered as small pressure 
discontinuities in the original pressure trace and increase the damping of the overall pressure 
signal [1]. Such partial reflections divert energy away from the main waveform and increase 

the decay rate of the transient signal. The behaviour of this pressure trace is, therefore, 
an indication of leaks within the system and can be used as a means of leak detection. To be 

practical, some  examples can be given; those that use: (i) inverse methods to determine 
parameters in transient models by comparison with observed data (inverse transient analysis), 
(ii) transient damping-free-vibrational analysis, and also (iii) methods that use the time 

of arrival and magnitude of leak-reflected signals in order to determine leak location. The 
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subsequent pressure response due to leakage is measured and analysed to derive useful system 

information. The above approach is generally known as system response extraction and forms 
the main aspects of well-established methodologies. They are used to extract dynamic responses 
[2] of complex mechanical and electrical systems. Diverse spectral techniques, more robust 

than STFT and FFT have been implemented. Among them, we recall FDM (Filter 
Diagonalization Method), DSD (Decimated Signal Diagonalization) and DPA (Decimated 

Padé Approximant). FDM is a robust technique capable of avoiding the influence of noise for 
huge signals to be processed [3, 4]. DSD is still robust but fast and more accurate than FDM 
for a portion of signals to be treated [5] while DPA is a specific case of processing able to 

implement fast approximation with a powerful quickness [6]. All three techniques are suitable 
to convert nonlinearities into linear items, exploiting the linear algebra. 

For small transient signals, the impact of nonlinearity in pipeline systems is negligible and, 
for these cases, a pipeline can be considered as a linear system. Whereas resonance frequencies 
reinforce and transmit input signals, other frequencies are absorbed within the system [7]. 

In this respect, pipeline systems are similar to frequency filters, the characteristics of which are 
determined by system properties such as boundary conditions, friction, and wave speed. Using 

the convolution theorem regarding the Fourier Transform, it is possible to define an inverse 

signal in respect to convolution. Suppose that we have a signal g and we would like to find a 

signal (if it exists) 
1

g
−

 with the property that 
1

*g g δ
−

= , in which “ * ” is intended as a cross 

product. The transform of a δ  function (Kronecker in discrete time and Dirac in continuous 

time) is just a constant 1. 
 
 

 

Fig. 1. Hydraulic and acquisition architectures of a pipeline hung on the lab wall. 
 

The created hydraulic system uses a special zigzag pipeline simulating an experimental and 
complex waterworks 120 meters long and with a diameter of 1 inch. It is made of copper coated 

with a plastic film. It contains 11 water taps located on the pipeline and 3 magnetic sensors. 
A dedicated electronic architecture has been implemented for acquiring and processing signals 
produced by the magnetic sensors. A scheme of the architecture is shown in Fig. 1, whereas its 

photo − in Fig. 2. The system is hung on a vertical wall of the laboratory of Measurement and 
Instrumentation of the Department of Innovation Engineering – University of Salento, Italy. 

The fundamental interest, as announced before, is in trying to use the STFT and FFT techniques, 
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which − even if not robust for the purpose of the research can be employed thanks to some 

improvements, e.g. a further  demonstrated ad hoc solution to ill-posed problems using an L-
curve approach. 

The experimental activities have been carried out starting with the regulation of water taps 

(see Fig. 3) to understand the effects on the water trends within the pipeline. A reservoir shown 
in Fig. 2 serves for storing approximately 100 litres of water used for filling the pipeline. 

 

 

Fig. 2. A photo of the experimental system hung on a lab wall. 
 

Actually, the pipeline has two parts, the first being an old circuit constructed with 6 water 
taps and one magnetic transducer. To make it more complex, a second part was added including 

5 new water taps (Fig. 3), and it was superimposed to the first part. This is a stressing 
configuration, very complex for experimental activities. Both previous and new portions have 

a certain influence on leak position recovery as will be seen in the results’ section. 

 

 

Fig. 3. A zoomed view of all water taps simulating leaks. 
 

Even so we have experimented with other techniques on the same hydraulic circuit, we report 
the calibration that leads to a correlation between peak and opening/closing manoeuvers 
of water taps. That is an essential procedure on the proviso that the right peak should be found. 

The valve or water tap status and its duration enable to determine the trend at a certain pressure 
produced by the pump. Pressure fluctuations are studied for any water tap as shown in Fig. 4, 

in order to understand the eventual clutter pressure. For the cases under test, the pump delivers 
water at the same pressure in order to simulate a real waterworks. That is carried out thanks to a 
specially implemented electronic control. 
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Fig. 4. Trials for calibrating the system and for detecting leaks by opening and closing a water tap. 

 

 

2. STFT approach 

 

The STFT represents a sort of compromise between the time- and frequency-based views 
of a signal. It provides some information about both when and at what frequencies a signal 

event occurs. However, we can only obtain this information with a limited precision and such 
a precision is determined by the size of the window. As described in Section 1, vibrations are 

created during leak, and using an electronic instrument or a proper sensing device it is possible 

to convert them in sounds or – equivalently − in the sum of sinusoids. So, the spectral responses 
are characterized by spectrograms that are produced by a procedure known as the Short-Time 

Fourier Transform (STFT). The STFT divides the entire signal into a series of successive short-
time segments, called records (or frames). Each record is used as an input to the Discrete 

Fourier Transform (DFT), generating a series of spectra (one for each record). 

Let ( ( ))
t Z

X t
∈

 be a digital signal. We review here the conditions for perfect reconstruction 

of the signal through STFT and inverse STFT [8]. Let N  be a window length, R a window shift, 
W an analysis window function and S a synthesis window function. We assume that W and S 

are zero outside an interval 0 ≤ t ≤ N−1. Also, we assume that the window length N is an integer 
multiple of the shift R and we note Q = N/R. The STFT for frame m is defined as the DFT of the 

windowed short-time signal W(t − mR) X(t) (with the phase origin at the start of the frame, 

t = mR). The inverse STFT procedure consists in Fourier-inverting of each frame of the STFT 
spectrogram, multiplying each obtained (periodic) short-time signal by a synthesis window and 

summing together all the windowed short-time signals. In a particular frame  mR ≤  t ≤ mR+N−1, 
which leads to a reconstructed signal Y(t) given by: 
 

                                          
1

1

1

1

( ) ( ) ( ) ( )

( ( ) ) ( ( ) ) ( )

( ( ) ) ( ( ) ) ( ) ,

Q

q

Q

q

Y t S t mR W t mR X t

S t m m q R W t m q R X t

S t m m q R W t m q R X t

−

=

−

=

= − −

+ − − − −

+ − + − +

∑

∑

                                      (1) 

 

where the three terms on the right-hand side are respectively a contribution of the inverse 
transforms of frame m, overlapping frames on the left and overlapping frames on the right. As 
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the contributions of frames with an index difference larger than Q do not overlap, by equating 

Y(t) = X(t) for all t, we obtain as in [9] the following necessary condition for perfect 
reconstruction: 

                                                         
1

0

1 ( ) ( ).
Q

q

W t qR S t qR
−

=

= − −∑                                                          (2) 

 
3. Implemented FFT and STFT algorithms for spectral analysis 

 

With | )⋅  we denote a representation of vectors in a vector space H; given two vectors 

| ),| )a b H∈ the notation ( | )⋅ ⋅  indicates a complex symmetric inner product such as 

( | ) ( | )a b b a= . During computation of this product, we only carried out transposition but not 

the complex conjugate. For example, given the following vectors: | ) 1
T

a j j = −  
and 

| ) 2 1
T

b j =   
 we have: 

                                     
2

( | ) ( | ) 1 2 1 1 .
1 1

j j
a b b a j j j j

j

   
      = = − = = − −          −      

                      (3) 

We identify a linear operator on the vector  space H with a superscript ^ , e.g. ˆ,̂U Ω , etc. To 

indicate the application of an operator to a vector, we denote ˆ| ) | )b a= Ω . An operator is 

defined diagonalisable if it is itself  a set of eigenvalues  
k
ω  and eigenvectors  | )

k
ω  such as : 

                                                         ˆ | ) | )
k k k
ω ω ωΩ = ,                                                      (4) 

where the eigenvectors are orthonormalized in respect to the complex symmetric inner product: 

                                                          ( | )
k k kk

ω ω δ
′ ′
= .                                                          (5) 

When the eigenvectors | )
k
ω constitute  a complete basis, for the operator identity it is: 

                                                          ˆ | )( |
k k

k

I ω ω=∑ .                                                            (6) 

That implies that we can write Ω̂  by means of its spectral representation: 

                                                          ˆ | )( |
k k k

k

ω ω ωΩ=∑ .                                                       (7)     

A spectral representation is useful when it is necessary to obtain information from a spectral 

function ˆ( )f Ω  of operator Ω̂  for which eigenvalues and eigenvectors are known: 

                                                           ˆ( ) ( ) | )( |
k k k

k

f f ω ω ωΩ =∑ .                                                           (8) 

The function ˆ( )f Ω is also an operator, with eigenvalues ( )
k

f ω and eigenvectors | )
k
ω . 

In terms of quantum mechanics, since we deal with vibrations within the pipelines, if Ω̂  

identifies an operator which is linear, hamiltonian and symmetric, with eigenvalues  
k
ω  and 

eigenvectors | )
k
ω , it will be of great importance to use the associated temporal evolution 

operator: 
ˆˆ .
j t

U e
− Ω

=  In fact, if | 0)  is the system initial state, a state | )t  at a moment t  is given 

by: 

                                                                ˆ| ) ( ) | 0)t U t= .                                                          (9) 

The time-dependent autocorrelation functionis then given by: 
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ˆˆ( ) (0 | ) (0 | ( ) | 0) (0 | | 0)j t

t t U t eξ − Ω
= = = .                              (10) 

According to (8),the spectral representation Û  becomes: 

                                               ˆˆ ˆ( ) ( ) | )( |kit it

k k

k

U t f e e
ω

ω ω
− Ω −

= Ω = =∑ .                                (11) 

To show how the algorithm works, it is necessary to modify the FFT algorithm by defining 

a complex one-dimensional signal in the time domain, )(
nn
tCc = , defined in a set of equidistant 

time intervals 1,...,1,0, −== Nnnt
n

τ  as the sum of  damped sinusoids: 

                                                 

(2 )

1 1

k k k

K K
in in f i

n k k

k k

c d e d e
τω τ π γ− − −

= =

= =∑ ∑                                                 (12) 

with a total of 2K unknowns, that are K complex amplitudes 
s

d and K complex frequencies 

kkk
if γπω −= 2  that also include damping. Although (4) is nonlinear, its solution can be 

obtained with linear algebraic methods. The proposed FFT [12] associates an autocorrelation 

function, in an appropriate dynamic time system described by a complex Hamiltonian operator 

Ω̂  with complex eigenvalues { }
k
ω , with a signal 

n
c  to be transformed in the form of (8): 

                                                             
( )

00
ΦΦ=

Ω− τin

n
ec .                                                            (13) 

In this way, the problem can be reduced to diagonalization of the Hamiltonian operator Ω̂  

or, similarly, the evolution operator )exp(ˆ Ω−= τiU .  

A complex inner symmetric product operation is used in (13), namely ( ) )( abba =

 
without a 

complex conjugation, and 
0
Φ is the initial state. Again, the symbol (.|.) denotes a complex 

symmetric inner product. Assuming we have a set of orthonormal eigenvectors { }
k

Y  that 

diagonalize the evolution operator, we can clarify it as: 

                                                    
∑ ∑ −==

k k

kkkkkk
YYiYYuU ())exp()(ˆ

τω
                                             (14) 

and substituting (14) in (13), remembering to let: 

                                                         
2

000
)())(( Φ=Φ=

kkkk
YYYd ψ .                                                  (15) 

The computed eigenvalues determine the positions of spectrum lines and their widths while 
the eigenvectors define their amplitudes and phases. Let us adopt a simple set created from 

Krylov vectors [11], generated by the evolution operator: 
00

)ˆexp( ΦΩ−=Φ=Φ τinU
n

n

⌢

. 

According to (7), it gives: 

                                                        11
)()ˆ(

+++
=ΦΦ=ΦΦ

nmmnmn
cU ,                                                  (16) 

but since the set is not orthonormal, and we define a subspace of Krylov  vectors generated by 

vectors of Q, i.e. { }| 0),| 1), ,| 1)Q M= −… , the overlap matrix should be computed as 

follows: 

                                              10000
)ˆ()ˆ()(

++

+

=ΦΦ=ΦΦ=ΦΦ
nm

nmmn

mn
cUUU

⌢

.                                (17) 

Therefore, it is strictly related to the values of measured signal. Then the following notation 
could be used: U0 is a representation of the (M+1) x (M+1) overlap matrix, similarly U1 is for 
ˆ .U  To signalize the formulation of (12), one must solve the generalized problem of eigenvalues, 

i.e.:  

                                                                  
kkk

u BUBU
01

= ,                                                             (18) 
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in which )exp( τω
kk

inu −= gives lines of spectrum and their widths, whereas eigenvectors Bk 

give amplitudes and phases.  The matrix Bk is derived from the below considerations. Let us  

assume that the generic eigenvector | )
k
ω can be expressed as a linear combination of elements 

of Q. We define: 

                              1 ,ˆ ˆ| 0) | 1) | 1) | 0) | 0) | 0)M M M
M U U

−   = − = ∈      
V … … ℂ ,                   (19) 

as a matrix having the vectors of base Q as its columns, and:  

                                                                 
,0

,1 ,1

, 1

k

k M

k

k M

B

B

B
−

 
 
 
 

= ∈ 
 
 
  

B ℂ

,                                                           (20) 

as a vector of appropriate  coefficients related to the eigenvectors | )
k
ω . We can write:  

                                              
,0

,1

, 1

| 0) | 1) | 1)| )

k

k

k k

k M

B

B

M

B

ω

−

 
 
 
 

 −= =     
 
 
  

VB…
⋮

.                                           (21) 

By substituting (21) in the implicit form of (4) the following is obtained: 

                                                                 ˆ
k k k

U u=VB VB .                                                             (22) 

By further implicit considerations, pre-multiplying both members by  T
V , we obtain: 

                                                             ˆT T

k k k
U u=V VB V VB .                                                  (23) 

That leads to (18) which is the generalized eigenvalues problem, where 
k

u  are eigenvalues 

and 
k

B  eigenvectors. After solving the problem, having calculated 
k

u and 
k

B , the frequencies 

k
ω are determined by using the following formula: 

                                                            1 1
( ) ( )k

j

k k
u e

τω

ω

τ τ

−

= − = −∡ ∡ ,                                            (24) 

where τ  is a sampling time and a symbol ∡  applied to a complex number delivers its phase, 

i.e. j
e

ϑ
ϑ=∡ . To determine the amplitudes, we employ: 

                                                                     2(0 | )
k k

d ω= ,                                                           (25) 

or, since  | )
k k
ω = VB , after pre-multiplying both members by the vector row (0 |, the previous 

equation can be also expressed as:  

                                                                (0 | ) (0 |
k k

ω = VB .                                                      (26) 

Further on, we obtain:  

                                                   (0 | ) (0 | | 0) | 1) | 1)
k k

Mω
 = −  

B…
.                                        (27) 

In the aforementioned considerations we have assumed 
1 0 ,
,

M M
∈U U ℂ  symmetric. Based 

on the previous explanations, now the algorithms should be clear. The software interpreting the 
algorithm, i.e. FFT or STFT, starts with a specific icon where the operator must include 

essential parameters to start with the acquisition according to (12). The icon is presented in 
Fig. 5, along with STFT processing.  The  following parameters are set: type of window 
(rectangular), sampling rate, window length, step and padding. Flowcharts of FFT and STFT 

algorithms are shown in Fig. 6. 
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Fig. 5. The set parameters (left) and processed signal according to STFT (right). 

 
 

                   
 

Fig. 6. Flowcharts of the implemented FFT (on the left) and STFT (on the right) algorithms for leak detection. 

 

However, as it will be seen in the results’ section, due to intrinsic limitations of FFT and 
much more those of STFT, we do not obtain better results than we do with FDM, DSD and 

PDA. That is related to uncertainty values obtained (see 18) with the use of eigenvalues and 
eigenvectors that are greater than those obtained with other robust techniques. To overcome 
this key disadvantage, we have implemented, taking inspiration from the Tikhonov 
regularization method [12], a dedicated algorithm based on an L-curve approach [13]. 

Let us consider a matrix A in the following linear equation: 

                                                                    b Ax w= + ,                                                                     (28) 
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where: b is a vector of observation; A is a matrix that describes distortion caused by the system 

under test; x is an unknown object of interest and w is a random vector that represents additional 
noise. We state that this discrete problem is ill-posed if the following conditions are met:  
1. Single values of A gradually decline to zero. 

2. The ratio of the greatest single value and the smallest (not null) one is great. 
The first condition indicates that in the vicinity there are no problems with a matrix of good-

posed coefficients and a well determined numerical rank. The second criterion implies that the 
matrix is ill-posed,  i.e. the solution is sensitive to perturbations. In many cases it happens that 
matrix A is ill-posed and the main difficulty in ill-posed issues is that they are essentially 

undetermined because of small single values of A. In the effort to stabilize the problem, adding 
further information to the desired solution is required: that is the regularization method. It 

typically requires that a norm 2 of the solution must be small. It is also possible to include an 
estimation of the solution x0 in the constraint. The constraint is:  

                                                 
0

min ( ) ( ) ( )x with x L x xΩ Ω = − .                                              (29) 

The matrix L can be: 
a) Typically, an identity matrix In; 

b) A discrete approximation P × N of the derivation operator (n-p) i-th. 
We define a regularized solution xq that can minimize the following weighted one of the 

combination of the residual norm and constraint: 

                                                  }{ 2 22

0
min

q
x

x Ax b q Lx x= − + − ,                                        (30) 

in which q > 0 is a regularization parameter: 

− for a great q (a great quantity of regularization) a solution agrees with a small norm at the  
cost of a great residual norm; 

− a small q (a small quantity of regularization) has the opposite effect.  
Equation 13 can be generalized  in the following way: 

                                                     argmin ( , ) ( ).
q

x

x b x q x= Φ + Ψ                                                  (31) 

A graphical tool more convenient for analysis of discrete ill-posed problems is the so-called 

L-curve, that means a plot of norm 
q

Lx  of a regularized solution in respect to the residual 

norm .

q
Ax b−  In this way, the L-curve clearly demonstrates a compromise between the 

minimization of both quantities. When q is too great (over-regularization), the curve is 
essentially a horizontal line. Vice versa, when q is too small (under-regularization), the curve 

is mainly a vertical line according to Fig. 7 (on the left); q displays a characteristic shape of  L. 
The transition between these two regions, over and under regularization, corresponds to the 

angle of L-curve, and its relative value of q at this angle (called L-corner) is proposed as the 
optimum value for q. A flowchart on the right of Fig. 7 shows the algorithm we have 
implemented to overcome the limitations of using FFT and STFT we recalled before. 

The algorithm also includes a block of SVD (Single Value Decomposition) [14]. 
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Fig. 7. An L-curve for improving the Tikhonov regularization (left) and a flowchart  

of the proposed algorithm (right). 

 

4. Results and discussion  

 
Before obtaining the values of amplitude, we have performed  5 cycles of tests per water tap, 

i.e. 5 tests for detecting the j-th leak with j = 1,....,11; an average of all 5 acquired waveforms 

is as follows: 

                                                     

5

,

1

1
( ) ( )

5
j i j

i

p t p t
=

= ∑ .                                                   (32) 

In this way, the obtained signal preserves significant characteristics while the noise is 
included in the measurements pi,j(t). The explanation of this technical attitude depends upon  

the fact according to which: 

                                                      , , ,

( ) ( ) ( )
i j i j i j
p t p t n t= + ,                                            (33) 

with ,

( )
i j

p t
as a true value of pressure and noise of measurement ni,j(t). The quantity  evaluated 

in t = t* can be modelled, when i varies, as an aleatory variable with zero average. By 

considering  the 5 variables  ni,j(t∗) i = 1, … , 5 ,   we obtain:
 

                                                 

5
'' ''

, ,

1

1
[ ( )] ( ) 0

5
i j i j

i

E n t n t

=

= ∑ ≃ .                                      (34) 

The above procedure is repeated for each water tap (valve). At the conclusion of 

measurements, we have 11 waveforms , 1,...,11j =  , each one describing the behaviour 

of the system for a given condition of leakage. 

 

( )jp t
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Fig. 8. Different leaks recovered by FFT after single opening of 11 water taps. 
 
 

       

Fig. 9. Different leaks recovered by STFT after single opening of 11 water taps. 

 
Now, we can comment on the results of the previous procedures by applying the algorithms 

of Fig. 6 that bring the waveforms of Fig. 8 and Fig. 9 for FFT and STFT, respectively. We can 
see the intrinsic behaviour of both algorithms in the same conditions. Given for instance 1.08 
Hz, as we should expect, FFT displays the major peak greater than that of STFT; the same takes 

place for all useful frequencies. As stated before, we encounter the ill-posed problems that 
mostly influence the determination of leak locations. The results of Fig. 8 and Fig. 9 must be 

further treated since the positions of eigenvalues can be located on a circle of radius 1 as 
depicted in Fig. 10. So our goal is to overcome the ill-posed issue by implementing the 

algorithm from Fig. 7. 
However, it is necessary to notice  that the uncertainty is obtained using a specific method 

for this scope. The data recovered after acquisitions are used for the determination of 

uncertainty by means of the least mean squares/linear regression. So we should start with the 
calculation of coefficients of a regression straight line:  

                                                                  
y ax b= + ,                                                     (35) 

so that a distance between points is minimal. In (35), we denote xi expressed in metres, and  it 

represents the distance at which we encounter the leak i, with  i = 1,…..,11, measured  from the 
pressure transducer, whilst yi is the peak height  within the spectrum of Figs. 8 and 9. To retrieve 

constants of (35), the following formulae are used: 
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Fig. 10. Locations of eigenvalues before (on the left), and after (on the right) the L-curve implementation. 

 

in which a and b are from (35),  Δ is a deviation, and σy is an uncertainty of amplitude; an 
uncertainty of distance  σx is given by the variable x value obtained by reversing (35), i.e. 

y b
x

a

−

= , and  calculating  the uncertainty as: 
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x y y
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.                                     (37)  

 

        

           Fig. 11. Interpolation based on the FFT signal             Fig. 12 Interpolation based on the STFT signal  

            of points with peak heights at f =1 Hz taking            of points with peak heights at  f = 0.25 Hz taking  

                         into account the leak position.                                      into account the leak position. 

 

The application of  linear regression either FFT or STFT is displayed in Fig. 11 and Fig. 12, 

at least for the first portion of leaks; LS stands for the least squares method. The plots interpolate 
the experimental points in a sense of least squares. The final results are shown in Table 1 for 

FFT and STFT, respectively. For each technique, we present a double result. The first result is 
related to the use of an L-curve that leads to all eigenvalues located on the edge of the circle. 
The second, instead, reports the implementation of the algorithm without an L-curve. As a 

matter of fact, an L-curve gives a great opportunity to reduce the uncertainty. The uncertainty 
demonstrates the position of leak in respect to the sensor location. It is intuitive to understand 

that as we move farther from the transducer, the detection of leak location becomes less precise 
and the uncertainty of it increases.  

 

2

2

1 1

N N

i i

i i

N x x

= =

 ∆ = −   
∑ ∑

2

1

1
( )

N

y i i

i

y b ax
N

σ

=

= − −∑



 

Metrol. Meas. Syst., Vol. 24 (2017), No. 4, pp. 631–644. 

 

 

Table 1.  The summarized results of FFT and STFT algorithms. 

The improved algorithms are related to eigenvalues located on a circle. 
 

Water tap Technique Eigenvalues position Uncertainty 

R1 : R6 FFT On circle ±5.20 m 

R1 : R6 FFT Not fully on circle ±11.52 m 
R1 : R6 STFT On circle ±7.92 m 
R1 : R6 STFT Not fully on circle ±12.40 m 

  R7 : R 11 FFT On circle ±5.22 m 
  R7 : R 11 FFT Not fully on circle ±6.90 m 
  R7 : R 11 STFT On circle ±2.60 m 
  R7 : R 11 STFT Not fully on circle ±3.42 m 

 
Certainly, the above results are “worse” in respect with those attained by means of DSD and 

FDM as reported in references. However, for normal but not complicated waterworks, where 
we  do not  generally deal with sudden pressure variations and  huge piezo-metric heights, the 

proposed approach is reliable. For these configurations, the approach is not time-consuming 
and can offer similar and comparable results.  

 

5. Conclusions 

 

We have presented an enhancement of FFT and STFT techniques for leak detection by 
applying the L-curve approach in accordance with the Tikhonov technique. The Tikhonov 

regularization is much less numerically expensive than other regularization techniques (as 
SVD) and reaches its aim of removing the singularity in the denominator, because the new 
matrix is a Hermitian and positive definite one.  FFT is, by definition, the golden standard 

method of spectral analysis. But, for complex architectures, it displays limitations as well as 
STFT does.  Table I shows comparison of the two algorithms; the improvements are noticed 

with the implementation of a regularization technique based on an enhanced Tikhonov 
technique. In general, the FFT algorithm offers better results than the STFT  one; but in some 
circumstances, for specific conditions, STFT can display better results in comparison with FFT. 

In general, the method of FFT does not provide simple global results for Fourier representations 
of the input.  Such generality and simplicity are usually possible only for linear systems, as for 

the experimental zig-zag plant of this paper.  General results can be obtained for memoryless 
nonlinearities operating on sinusoidal inputs. This result is not as important as the 
corresponding result for linear systems because sinusoids are not fundamental building blocks 

of nonlinear  systems, in contrary to the linear ones. This research shows [15] that it is possible 
to estimate the detection of leaks with good accuracy for zigzag pipelines that have a diameter 

of less than 20 cm, and we can arrive to around 1 inch as it is done in this paper. These results 
open opportunities for implementing the algorithm for pipelines used to constitute e.g. industrial 
heat exchangers, or to improve reliability of normal pipelines [16]. 
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