
gospodarka surowcami mineralnymi – mineral resources management

2016      Volume 32      Issue 4      Pages 91–108

DOI 10.1515/gospo-2016-0040

**  Ph.D. Eng., Exalo Drilling SA, Piła; PGNiG Warszawa, Poland 
**  Professor,  AGH University of Science and Technology, the Faculty of Drilling, Oil  and Gas, Krakow,  
    Poland; e-mail: wisniows@agh.edu.pl; stryczek@agh.edu.pl 

Daniel Janc*, Rafał Wiśniowski**, Stanisław Stryczek**

Core recovery criterion – a new optimization method 
of geological information quality in the geological conditions 

of the Grodziec Syncline Area

Introduction

Geologic-prospecting drilling is currently oriented to acquire the most abundant geolo-
gic, engineering and reservoir data. Despite the development of drilling and drilling geophy-
sics’ methods, rock samples, i.e. cores with intact structure and collected directly from the 
rock mass, are the most reliable source of information.

Although attempts to improve the techniques and technologies were made, the results are 
not fully satisfactory due to the amount and the quality of the geological information. The 
coring process was optimized with the following standard drilling criteria: minimum cost, 
maximum rate of penetration, maximum footage and minimum time of drilling (Wójtowicz 
1975). The authors proposed optimization by focusing on maximum geological information 
quality and increasing the efficiency of drilling works in the Grodziec Syncline, thereby 
gaining better quality and quantitative information about the drilled layer. The low core 
recoveries have a direct influence on the amount and the dependability of the geological 
information possible to to be obtained.
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1. Core drilling in the Grodziec Syncline area

The analyzed drilling works were conducted in South West Poland within the Grodziec 
Syncline, which is a subunit of the North-Sudetic Basin (Pietrzyński et al. 2007). They were 
targeted at a detailed recognition of copper ore deposits in the C1 category, and increasing 
the recognized resources beyond the most extreme balance wells (Kwaśny et al. (2007). 
The scope of the geologic works covered two stages within which 15 (9 + 6) wells were 
performed from the surface. The field and laboratory tests followed to establish reservoir, 
hydrogeological, geologic-engineering and gas parameters of the deposit.

The proposed optimization of the geological information quality was based on data from 
9 wells performed in 2011–2012. The project was realized with the use of rotary rigs. The 
coring was performed with standard single- or double–section core barrels (inner tube im-
mobile with respect to the core) with an adjustable safety joint (Janc et al. 2011). When 
selecting core bits, attention was paid to the lithology of the drilled rocks and the protection 
of the core. Low invasion PDC tools of a steel body and four or six blades were applied. 
Owing to the considerable lithological diversity, with the predominance of hard and compact 
strata, only a standard ring core catcher with surface weld overlay was used. The problems 
encountered during the realization of works were connected with the low recovery of cores, 
lost circulations of mud (50 to 956 m2 per well) and shorter drilling trips due to the jamming 
of the core in the core barrel.

Prior to optimizing, a representative set of data had to be prepared and verified as on this 
basis the optimized model could be construed according the assumed criterion. Therefore, 
the first decision step was working out a method for data selection and verification. 

In the analyzed problem, it was crucial to correctly determine and characterize intervals 
where core recovery problems (zones of low recovery) occur and confirm their homogeneity 
and properties which influence the coring process. 

The zones of lower core recovery were selected in intervals, which were homogeneous in 
their geomechanical and lithological parameters, as well as other properties influencing the 
coring process, where the core recovery was under 100%. They were also found in the same 
sequence of the lithological profile. Four zones of lower core recovery were discovered on 
the basis of core recovery analyses (daily drilling reports, final well reports) and lithological 
profiles from 9 wells in the Grodziec Syncline:

�� Zone A) Upper Zechstein – upper silt;
�� Zone B) Upper Zechstein – carbonate strata between shale and silt packages;
�� Zone C) Upper Zechstein – lower silt;
�� Zone D) Middle Zechstein – carbonate beds.

The smallest recovery was observed in zone B, where in 60% of cases the core was below 
the boundary value of 80%. The total recovery from this zone was 57.4%. On the whole, 
25% of drilling trip in all analyzed zones did not meet the contractual requirements.
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2. Verification of zones of lower core recovery 
with statistical classification methods

The geologic-technical analysis allowed for zones of similar lithological type, geologic 
conditions and the same sequence in the stratigraphic profile to be determined. At this stage 
it was not possible to clearly state whether the analyzed interval in the neighboring well had 
the same geomechanical properties influencing the core drilling process or not. Therefore, to 
ensure that the determined zones in particular wells were homogeneous, they were verified 
with statistical classification methods.

These methods are commonly applied in economics and medicine for predicting whether 
a given observation belongs to a predefined class. These are supervised learning methods, 
i.e. first the classifier is taught on a teaching set, and on this basis a given observation is 
ascribed one of the classes. The analysis of homogeneity of the drilled zones was conducted 
with the use of 5 methods presented below. They differ in principle, i.e. the way in which 
the classification rule is built and which are the most common in use (Kornach and Ćwik 
2005; Krzyśko et al. 2008; Stanimirov et al. 2012; Jóźwik 2013).

2.1. Quadratic discriminant analysis (QDA) method

This method belongs to Gaussian classifiers. It employs the estimation of a relation be-
tween the density and the assumed parametric model for density, i.e. the assumed known 
form of density, except for the parameters enclosed in it. The classifier takes the following 
form:

	 ( ) argmax ( )B k
k

d x xδ= � (1)

where:

	 1 1( ) ln ( ) ln
2 2k k k kx xδ µ π= − Σ − − + � (2) 

ªª Σk	 –	 covariance;
μk	 –	 probabilistic measure of vector X;
πk	 –	 probability a priori.

Function dB(x) is a quadratic function of argument x (classification function of group K). 
In this method, classes are divided by second order hypersurfaces.
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2.2. Linear discriminant analysis (LDA) method 

The LDA method is a simplified version of the QDA method. The classifier in this meth-
od has the following form:

	 ( ) argmax ( )B k
k

d x xδ= � (3)

where:

	 11 1( ) ln ( ) ' ( ) ln
2 2k k k k k kx x xδ µ µ π−= − Σ − − Σ − + � (4)

In this method, the classes are divided with hypersurfaces.

2.3. Naive Bayes classifier

This is a static classifier based on the Bayes theorem. Its principle is based on estimating 
the density of each property in each class followed by the analysis of the product of such 
density for each class. Variables of the vector of observation are assumed to be independent 
of one another. The density of probability equals p(x|K) = fK(x), whereas πK is an absolute 
a priori probability that the observation belongs to class K (K = 1, 2, ..., g). Function fk is 
a density of normal distribution. Then, through the Bayesian law, a posteriori probability 
that the observed (vector) value x belongs to class K equals:

	

1

( | )
( | )

( | )
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r
r

p x K
p K x

p x r

π

π
=

=

∑

� (5)

The Bayesian rule has its general form:

	 ( ) argmax ( )B K K K
K

d x f xπ= � (6)

The evaluation of function fk can be significantly simplified on the assumption that all 
the constituents of the observed random vector X are independent. Then:

	
1 2 1( , ,..., ) ( )p

k p kj jjf x x x f x==∏ � (7)
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This reduces the problem to the estimation p of single-dimensional functions of density 
for each of the classes K. The observed element is ascribed to class K, for which the function 
fx has the highest values.

2.4. K-Nearest Neighbor Method (KNN)

This classification method is based on a non-parametric estimation of probability distri-
butions. For an observation (test sample) to be classified, K nearest neighbors (observations) 
is determined from the learning set. Then they are included in the class, to which most of 
the determined neighbors belong. A posteriori estimator of probability that observation x 
belongs to class k is calculated as participation of observations from this class among its K 
nearest neighbors:

	 ( )( )

1

1ˆ ( | ) ( , ) ( , ) ( ),
n

K
i i

i
p k x I x x x x I y k

K
ρ ρ

=
= ≤ =∑

� (8) 

 
k = 1, …, L

ªª x(K) is K-th point of a teaching sample (as far as distance from x goes), ρ is a distance 
(the so-called measure of dissimilarity of objects). The classifier in the KNN method 
has the following form:

	 ˆ ˆ( ) argmax ( | )KNN
k

d x p k x= � (9)

 
2.5. Decision trees method

This family of statistical methods for data mining makes use of diagrams called ‚trees’. 
The construction of binary trees lies in a sequential complementary division of subsets of 
space of sample χ into two subsets, starting from the entire set χ. In each step, the division is 
aimed at obtaining the most possible homogeneous parts. The subsets which do not undergo 
further division, are final subsets which are ascribed a class label.

A ‘tree’ consists of a ‘root’ and ‘branches’ and the successive ‘nodes’ (t). A certain con-
dition imposed on a given observation is checked in each ‚node’, and on this basis one of 
the ‚branches’ is selected from where we proceed to a specific ‘node’ below. ‘Leaves’, where 
we can read the class, to which a given observation can be ascribed are located underneath. 
The classifier construed on the basis of a classification tree T has the following form:
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	 ˆ ( ) ( ) | ( )T
t T

d x ind t x t
∈

= ∈∑


� (10)

The measure of the qualifier’s quality is the coefficient of accuracy describing the per-
centage of test samples correctly qualified by the model. The fastness is also another meas-
ure of the classifier’s usability. The classifiers were validated with two methods: cross vali-
dation and one leave out methods (Janc 2014). The homogeneity of zones was verified on the 
basis of the relation: momentary rate of penetration – weight on bit – rotation, characteristic 
of a given zone (class). The classification was performed on 5 series of data constituting 
individual technological cases defined on the basis of the type of the applied tool and wear 
code according to IADC (Hughes Christensen 1996). For the sake of eliminating distortions 
resulting from the order of magnitude of the involved data, rotations were recalculated for 
[1/s], weight on bit on [kG ∙ 103] and the penetration rate to [m/h]. The following technolo- 
gical situations were analyzed:

�� S10 – tool 1, wear 0;
�� S11 – tool 1, wear 1;
�� S12 – tool 1, wear 2;
�� S13 – tool 1, wear 3;
�� A21 – tool 2, wear 1;

The classification was performed in a development environment R 3.0.2 (Rybiński 
2012) with the use of packages MASS, klaR, party, grid, zoo, sandwitch, strucchance, 
stats4 and modeltools. The list of fit coefficients of accuracy for a classifier is presented 
in Table 1. 

Relatively low values of fit coefficients in the L DA method for S12 (61.7%) and S11 
(76.86%) stem from the way in which the space has been divided into classes. Particular 
classes distinguish hypersurfaces, whereas the spatial distribution of measurement points 
indicates results obtained by the QDA method (S12 – 88.29% and S11 – 85.11%), where 
the space is divided with second order hypersurfaces. The curvature of surfaces separating 
classes more accurately determines the boundaries and encompassed most of the data. The 
best fit for the classifier is obtained with the KNN method (90.86–100%), which analyzes 
neighboring measuring points. Equally good results are obtained with the Naive Bayes clas-
sifier (82.98–94.50%) based on the estimation of density of properties. 

The level of correctly classified elements is very high and in most cases exceeds 80%. 
The analyzed data comes from industry and is burdened with a number of disturbances and 
errors; the coring process itself is complex and depends on a number of factors. For this 
reason this value can be assumed as satisfactory. The main factors influencing the height 
of the acceptability threshold are: jamming of the core (change of the character of drilling); 
accuracy of weight indicator, calibration, technical condition; kinematic characteristic of 
the rig, fluency with which parameters change; human factor, experience of the crew, way 
in which the rig is handled, data registered by the mud logging service accuracy of sensors 
used for control and measurement purposes. 
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As the percentage of elements correctly qualified by all tested classifiers is considerably 
high, one may venture a conclusion that these zones are homogeneous. The values of the fit 
coefficient of accuracy and qualitative evaluation confirm the individual character of the 
determined zones and their homogeneity of geomechanical properties having influence on 
the coring process. From among the analyzed classification methods, the best results were 
obtained for the QDA and Naive Bayer classifier methods. This choice was based on the 
qualitative evaluation of the classifier.

3. Criterion of maximum geological information quality

Obtaining maximum geologic information has priority when realizing works in the 
Grodziec Syncline. The new criterion of maximum geological information quality worked 
out at the Faculty of Drilling, Oil and Gas at AGH-UST meets both the technical and eco-
nomic criteria (Janc 2014). This results from the way in which core recoveries above 80% 
are additionally appreciated and granted. Technically, this is a quality criterion (Pająk and 
Wieczorowski 1982). It tends to maximize the geologic information, which directly depends 

Table 1.	 Fit coefficients of accuracy for a classifier.

Tabela 1.	Z estawienie współczynników dopasowania klasyfikatora

Classification method S10 S11 S12 S13 A21

LDA   89.29 76.86 61.70 92.66 81.43

Qualitative evaluation of LDA – cross validation method   86.89 76.66 60.03 92.19 79.25

Qualitative evaluation of LDA – one leave out method   89.29 76.85 60.70 92.66 81.43

QDA   89.29 88.29 85.11 93.58 89.64

Qualitative evaluation of QDA – cross validation method   81.53 87.42 80.32 91.08 86.85

Qualitative evaluation of QDA – one leave out method   89.29 88.29 85.11 93.58 89.64

Naive Bayes classifier (NB)   91.07 88.29 82.98 94.50 86.07

Qualitative evaluation of NB – cross validation method   91.07 88.03 80.95 92.17 87.01

Qualitative evaluation of NB – one leave out method   87.25 86.62 77.81 91.67 83.67

K-Nearest Neighbor (KNN) 100.00 90.86 90.96 94.50 90.36

Qualitative evaluation of KNN – cross validation method   87.82 75.21 69.84 91.61 75.83

Qualitative evaluation of KNN – one leave out method   92.86 75.29 70.08 97.22 69.89

Classification tree   91.07 91.71 73.94 94.50 90.00

Qualitative evaluation of trees – cross validation method   87.50 73.50 60.32 91.67 86.02

Qualitative evaluation of trees – one leave out method   86.68 81.63 67.00 93.44 82.75
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on the amount of core material to be analyzed. The more numerous the samples and the 
larger their scope, the higher the quality of analyses and better recognition (and documenta-
tion) of the deposit. As far as the contractor is concerned, this criterion is directly connected 
with the economic result of the undertaking. According to the contract, these are ‘turnkey’ 
wells, where works are paid on the basis of the footage. In the case of core recovery under 
the boundary value of 80% the contractor is supposed to cover the entire or part of the cost 
of such works. For this reason, the maximization of core recovery is favorable both for the 
operator who obtains fuller geologic information, and the operator, who achieves better 
economic effect of the conducted works.

Optimized core recovery for given geologic conditions is a function of many parameters: 

	 U = f(T, Z, L, P, n, Q, C, M, ρ, ..., ω)  [%]� (11)

ªª T	 –	 type of drilling core bit, [–];
Z	 –	 wear of the tool, [IADC];
L	 –	 length of the trip, [m];
P	 –	 weight on core bit, [kG];
n	 –	 rotations, [1/min];
Q	 –	 rate of pumped volume of mud, [l/min];
C	 –	 pressure of pumped mud, [atm];
M	 –	 torque, [kGm];
ρ	 –	 mud density, [g/cm3];
ω	 –	 unmeasurable factors and disturbances.

For the sake of geologic conditions, the function was determined individually for each 
zone.

4. Function of core recovery

The identification, aimed at determining a mathematical model which would describe 
a given process, is based on determining parameters, which have a significant influence 
on their interactions. This was done with the use of the correlation analysis. Unfortu-
nately, the analyses did not reveal any direct relation between the particular parameters 
of the processes and the core recovery in all technological cases. Therefore, the idea of 
controlling was based on the detection of basic factors influencing core recovery, i.e.: 
mechanical wear of the core due to jamming, erosional activity of the drilling mud and 
washing of the core, unstable operation of tools downhole (mechanical wear of the core 
due to vibrations).

Prior to building the model, general assumptions regarding the form, functionality, limi- 
tations and way of updating were made, i.e.:
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1.	 The model is based on the detection of phenomena responsible for core wearing in 
the drilling process.

2.	 Managing the process through the control of influence of major parameters of drilling 
on indices which directly depend on it. 

3.	 Functionality and simplicity of design – easy applicability and upgrading in industrial 
conditions while coring.

4.	 Universal nature.
5.	 Model under construction – with the model will be developed the growing number 

of data.
6.	 Limitation of the model results from technological and technical causes.

Taking the major factor influencing the core recovery into account, the influence of ma-
jor parameters of drilling on the directly related indices was analyzed in 7 models (Table 2). 

Table 2.	C ore recovery models

Tabela 2.	 Modele funkcji uzysku rdzenia

No Model Function Description

1. Model A
VU f
P

 =  
 

Momentary rate of penetration to weight on bit ratio as an index 
of core jamming and its wear

2. Model B
VU f

P n
 =  ⋅ 

Ratio of momentary rate of penetration and product of 
mechanical parameters of drilling as an index of core jamming 
and its wear

3. Model C
MU f
P

 =  
 

Torque to weight on bit ratio as an index of core jamming and 
its wear

4. Model D
M PU f

V
⋅ =  

 
Ratio of momentary rate of penetration and product of torque 
and weight on bit as an index of core jamming 

5. Model E ( )U f P n= ⋅ Influence of mechanical parameters of drilling on recovery

6. Model F
QU f
C

 =  
 

Ratio of pumped volume of mud and pumping pressure of mud 
pump as an index of erosional wear of the core

7. Model G
Q VU f
C P

 = ⋅ 
 

Product of models A and F as mechanical and erosional indices 
of core wearing

The form of the model was determined with the use of linear and nonlinear analysis 
methods. The selection criterion deciding about the form of the core recovery function ac-
counts for regression coefficient R2, and also a more universal aspect, i.e. high adaptability 
of the model to actual data in all the technological cases. Among the analyzed models, 
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the best fit was noted for the logarithmic model A. The function of core recovery takes the 
following general form:

	 y = a ln(x) + b� (12)

ªª where the value of function y (dependent variable – recovery U) is limited by an interval 
<0;100>, whereas the interval of arguments x (V/P ratio) depends on technical and tech-
nological limitations of the process. The core recovery function in particular technolo- 
gical cases is presented in Table 3.

Table 3.	 Equations of core recovery models (model A)

Tabela 3.	 Współczynnik modeli uzysku rdzenia ( model A)

PT Regression equation R2

A11 y = 42.089 ln(x) + 52.044 0.7217

A21 y = 108.40 ln(x) + 78.758 0.7381

B11 y = 83.565 ln(x) + 50.577 0.8318

B12 y = 80.572 ln(x) + 89.978 0.8671

B21 y = 48.858 ln(x) + 81.297 0.7623

C11 y = 24.537 ln(x) + 88.859 0.5701

D11 y = –23.30 ln(x) + 100.1 0.5966

D13 y = –27.18 ln(x) + 66.658 0.7569

Mean R2 0.7306

The obtained values of the regression coefficient are on an acceptable level and prove 
that the model has a sufficient fit to the real data. Attention should be paid to the fact that 
the stochastic model was created on the basis of a binary experiment. The analyzed data 
is averaged industrial data, usually at a narrow range of variability. The occurring noises 
and disturbances result from the accuracy of indications and the way in which the data was 
recorded by measuring devices and the subjective evaluation of wear of the tool by the crew. 
The assumption that the rock medium is homogeneous, although in reality its homogeneity 
is not on an acceptable level is equally important. The technical and trip characteristic of the 
rig sub-assemblies imposes certain limitations regarding the range of controllable param-
eters, fluency of regulation and stability in time. The human factor, experience of the crew 
and organization of work should also be taken into consideration. 

The optimization of the coring process depends on finding an extreme of the function in 
view of certain limitations. This also requires defining some detailed assumptions for the 
model functions. In the analyzed case, the following assumptions were made:
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1.	 Macroscopically homogeneous rocks.
2.	 Constant parameters of drilling.
3.	 Weight on core bit is evenly distributed on all non-deformable blades.
4.	 The tool does not wear out during the trip (short sections, strong tool).
5.	 Technical and technological limitations.

The function of core recovery U has one local extreme at point [100; W100]. The index of 
jamming is defined as:

	
3kG 10

V mW
P h
 

=  
⋅ ⋅ 

� (13)

By inserting equation (13) to (12) we obtain:

	 U = a ln(W) + b� (14)

After a simple transformation of the dependence above (14), the value of the jamming 
index equals:

	 U b
aW e
−

=
� (15)

Then the optimum value of argument W for 100% recovery is:

	
100

100 b
aoptW W e
−

= =
� (16)

ªª U		  –	 core recovery, [%];
a, b	 –	 coefficients of the model;
W		  –	 jamming coefficient, [m/kG∙103∙h];

The jamming coefficient depends on weight on core bit (P) exerted by the tool and on 
the difference of the entry friction of the core to the core barrel, on the assumption that the 
drilled formation was homogeneous. The jamming of the core (entry friction) in the bit and 
core barrel is not directly measurable in the course of drilling. The idea of controlling and 
optimizing the process of coring according to the criterion of maximum core recovery lies 
in controlling the core wear by investigating the influence of weight on bit on the momentary 
rate of penetration. If no jamming is observed, the entire weight is transferred on the core 
bit and the acquired momentary rate of penetration is on a specific level, characteristic of 
a given technological case. After jamming, part of the weight is transferred onto the rock 
material which is destroyed and washed out, and the momentary rate of penetration decreas-
es despite the fact that a constant weight is registered on the surface. In such a situation, 
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apart from the criterion of maximum geological information quality, it is also the criterion 
of the maximum momentary rate of penetration which is indirectly accounted for, and which 
has a significant influence on the financial effect of the conducted works. When applying 
optimum weight on core bit Pdop, the theoretical momentary rate of penetration for 100% 
core recovery in the model is:

	 Vopt 100% = W100 ∙ Popt  [m/h]� (17)

	 Popt = Pdop  [kG]� (18)

A list of theoretical values f optimum momentary rate of penetration at admissible weight 
on bit is presented in Table 4.

Table 4. 	L ist of optimum parameters of coring according to the maximum core recovery criterion - model A

Tabela 4.	Z estawienie wartości optymalnych parametrów procesu rdzeniowania  
	 według kryterium maksymalnego uzysku rdzenia – model A

TS Function of model
Wopt

[m/(kG∙103∙h)]
Popt

[kG∙103]
Wopt
[m/h]

W80
[m/(kG∙103∙h)]

W100
[m/(kG∙103∙h)]

A11 U = 42.089 ln(W) + 52.044 3.12 4 12.48 1.94 3.12

A21 U = 108.40 ln(W) + 78.758 1.22 4 4.88 1.01 1.22

B11 U = 83.565 ln(W) + 50.577 1.81 4 7.24 1.42 1.81

B12 U = 80.572 ln(W) + 89.978 1.13 4 4.52 0.88 1.13

B21 U = 48.858 ln(W) + 81.297 1.47 4 5.88 0.97 1.47

C11 U = 24.537 ln(W) + 88.859 1.57 4 6.28 0.7 1.57

D11 U = –23.30 ln(W) + 100.1 1.00 4 4.00 2.37 1.00

D13 U = –27.18 ln(W) + 66.658 0.29 4 1.16 0.61 0.29

Theoretical values of optimum parameters of coring are mean values. While drilling in 
industrial conditions their momentary values will vary in a certain interval of values. This 
results from the technical characteristic of the device, control and assumed homogeneity 
of the rock mass. Taking the contract conditions into consideration, the optimum value of 
the core recovery equals to 80–100%. Then the optimum value of the jamming coefficient 
belongs to an interval <W80; W100>. When the jamming factor is below the boundary values 
W80, the core recovery will be lower than agreed upon in the contract.
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5. Statistical validation of the model

The core recovery models were validated with the use of statistical tests of the mean 
jamming index employing Student’s t-distribution. It depends on analyzing the mean value 
W80–100% calculated on the basis of a depth database and comparing it with the theoretical 
index of jamming, determined from the recovery mean values in the interval <80; 100> 
determined with a mathematical model.

The analysis of the statistical tests of the mean jamming index was made for two sets, 
i.e. W80–100% ∈ <80;100> and W0–80% ∈ <0;80). Sets defined in such a manner: zero hy-
pothesis (they are equal) and an alternative hypothesis (they are different) were checked. 
The alternative hypothesis was assumed in all cases after the test was completed. The list of 
optimum intervals determined on the basis of the significance test for two expected values 
is presented in Table 5.

The test revealed that both the mean values typical of a given set and their intervals on 
the significance level of 0.05 differ. The comparison of previously determined optimum 
intervals of index W from <80;100> (Table 4) and mean value intervals from statistical tests 
(Table 5) confirms the correctness and usability of the optimization method. In all techno-
logical cases mean values are in the optimum interval or beyond its right side limit deter-
mined on the basis of the core recovery mathematical model. Moreover, the intervals overlap 
(Fig. 1) in both methods. This confirms the correctness of the optimization.

Table 5.	 Mean values of jamming index - model A

Tabela 5.	 Wartości średnie wskaźnika klinowania – model A

TS Popu 
lation

Mean 
>79.5% Interval Popu- 

lation
Mean 
< 79.5% Interval var. test t. test

Scope of 
recovery 
changes

A11 164 3.18 2.83 3.52 67   1.34 1.06 1.63 1.59e-08 2.48e-14 1-100%

A21   34 1.20 0.93 1.48 34   0.47 0.58 0.69 1.96e-06 5.61e-05 30-100%

B11   38 1.51 1.31 1.71 35   0.92 0.78 1.06 0.01587 3.71E-06 0-100%

B12   36 0.97 0.84 1.11 48   0.50 0.43 0.57 0.001574 2.36E-08 20-100%

B21   36 1.40 1.20 1.60 43   0.81 0.68 0.94 0.03257 1.97E-06 6-100%

C11 125 1.66 1.38 1.94 19   0.78 0.55 1.01 1.11E-06 1.59E-06 40-100%

D11 153 1.57 1.35 1.80 23 17.88 2.20 33.6 < 2.2e-16 0.02111 10-100%

D13   44 0.44 0.38 0.50 44   3.13 1.61 4.66 < 2.2e16 0.000461 43-100%
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6. Field test

An industrial test was performed to confirm the efficiency of the elaborated optimization 
of the coring method for the maximum core recovery criterion. A total of 9 drilling trips 
were analyzed in all lower core recovery zones. The applied tool was of type 1 and wear 1 
according to the IADC code. The depth ranges, mean parameters of the process (time base) 
and obtained results are presented in Table 6.

Table 6. 	L ist of drilling parameters and core recovery in particular zones

Tabela 6.	Z estawienie parametrów wiercenia i uzysków rdzenia w poszczególnych strefach

TS
No. 
of 
trip

Depth [m b.s.] Length 
of trip 
[m]

Recovery 
[%]

V 
[m/h]

P 
[kG∙103]

W 
[m/(kG∙103∙h)]

Recovery in model

beginning end model [%] difference [%]

A11 1 1 089.0 1 091.3 2.3 83 4.92 2.48 1.98 80.9 2.1

B11 2 1 091.3 1 095.4 4.1 0 1.86 2.82 0.66 15.8 –15.8

B11 3 1 104.0 1 106.0 2.0 85 3.47 2.42 1.43 80.7 4.3

B11 4 1 106.0 1 108.0 2.0 100 3.31 2.05 1.61 90.6 9.4

C11 5 1 115.4 1 120.0 4.6 100 4.96 1.99 2.49 100 0

C11 6 1 120.8 1 123.0 2.2 100 5.26 2.46 2.14 100 0

C11 7 1 133.0 1 138.5 5.5 100 3.57 2.5 1.43 97.6 2.4

D11 8 1 175.4 1 184.0 8.6 100 3.33 3.59 0.93 100 0

D11 9 1 184.0 1 192.6 8.6 100 2.91 3.31 0.88 100 0

Fig. 1. Graphical comparison of optimization methods (B11)

Rys. 1.  Graficzne zestawienie metod optymalizacji (B11)
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Statistical classification methods, i.e. the QDA method and the Naive Bayes classifier 
were used for identifying and evaluating homogeneity of the drilled rocks. The teaching set 
consisted of data from 9 previous wells (S11), whereas the test set consisted of data from the 
newly drilled well. The test based on ascribing measuring points classes (zones), and then 
determining the percentage of correctly classified samples. The results of the classification 
are presented in Table 7.

Table 7.	L ist of classification results

Tabela 7.	Z estawienie wyników klasyfikacji

QDA method Naive Bayes classifier method

Zone Trip A B C D [%] Zone Trip A B C D [%]

A11 1 27 1 7 0 77.1 A11 1 30 2 0 0 93.8

B11 2 21 43 11 40 37.4 B11 2 26 21 52 52 13.9

B11 3 5 18 1 0 75.0 B11 3 3 17 4 0 70.8

B11 4 9 34 2 0 75.6 B11 4 3 40 2 0 88.9

C11 5 3 0 43 0 93.5 C11 5 3 1 42 0 91.3

C11 6 2 3 21 1 80.8 C11 6 2 2 19 3 73.1

C11 7 5 10 79 2 82.3 C11 7 10 0 85 1 88.5

D11 8 0 2 3 137 96.5 D11 8 0 7 20 115 81.0

D11 9 1 16 1 160 89.9 D11 9 0 43 1 134 75.3

Table 8. 	C ore recovery models – updated after tests

Tabela 8.	 Uaktualnione na podstawie testu modele funkcji uzysku rdzenia

TS Regression equation R2

A11 y = 42.089 ln(x) + 52.044 0.7217

A11* y = 42.082 ln(x) + 52.173 0.7215

B11 y = 83.565 ln(x) + 50.577 0.8318

B11* y = 87.722 ln(x) + 49.999 0.8697

C11 y = 24.537 ln(x) + 88.859 0.5701

C11* y = 22.115 ln(x) + 88.073 0.5690

D11 y = –23.30 ln(x) + 100.1 0.5966

D11* y = –23.07 ln(x) + 99.694 0.6063

* Accounting for the field test trips.
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The next step is based on updating the core recovery functions. After introducing values 
from the tests trips, the determined core recovery models did not significantly vary from the 
original ones (Table 8). 

The obtained core recoveries are equal or close to the theoretical value determined on the 
basis of the elaborated core recovery function. The amount of correctly classified elements 
on the level of 75–86.5% (QDA) and 70.8–93.8% (Naive Bayes classifier) proves that the 
drilled layers was homogeneous as far as factors affecting coring operations is concerned. 
The only exception is trip no. 2, during which this method was not applied. The obtained test 
results prove that this technology can be applied in industrial conditions.

Conclusions

Lower core recovery in the analyzed area is mostly a result of the mechanical wearing of 
the core due to its jamming in the core barrel. The analysis of the influence of major parame-
ters of the process did not reveal their direct influence on the core recovery in all the analyz-
ed technological cases as jamming has a random and hardly predictable nature. Accordingly, 
the control of the process is based on detecting places of jamming by controlling the values 
of newly defined jamming coefficient, i.e. momentary rate of penetration to weight on core 
bit ratio.

The homogeneity of zones underwent statistical classification as far as their effect on the 
coring process is concerned. From among the 5 analyzed methods differing in their classifi-
cation rule, the best results were obtained for QDA and the Naive Bayes classifier.

The optimization of the coring process for maximum geological information quality, 
based on a mathematical model of core recovery, depended on controlling the jamming 
coefficient. For practical and contractual reasons its value should be maintained at a level 
of 80–100% of core recovery. The jamming coefficient value is determined individually for 
each technological case. This results from the fact that both geological properties, type and 
technical state of the tool affects the rate of penetration.

The validation of the mathematical core recovery model with statistical tests for the 
mean value W80–100% proved the correctness of the proposed method. Mean values and 
intervals for index W obtained during the statistical tests correspond with the optimum in-
tervals determined on the basis of the core recovery function. The test performed while 
drilling in the Grodziec Syncline confirmed the efficiency and applicability of the presented 
technology in industrial conditions. 

Optimization of the drilling process in the Grodziec Syncline is an open issue. The 
mathematical models will be improved with the growing number of data. The optimization 
is fully justified in view of the planned works in that area. 
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Kryterium uzysku rdzenia – nowa metoda optymalizacji jakości informacji 
geologicznej w warunkach geologicznych obszaru synkliny grodzieckiej

S ł owa  k l u c z owe

wiercenie, rdzeniowanie, uzysk rdzenia, optymalizacja, klasyfikacja

S t r e s z c z e n i e

Coraz większe wymogi co do jakości i ilości informacji geologicznej wymuszają ciągłe udosko-
nalanie technik i technologii ich pozyskiwania. W artykule tym autorzy przedstawili metodę opty-
malizacji procesu rdzeniowania dla nowo zdefiniowanego kryterium maksymalnego uzysku rdze-
nia, które jednocześnie jest kryterium maksymalnej jakości informacji geologicznej. Pozwala ona 
na poprawę efektywności prowadzonych prac bez konieczności inwestycji w nowy, specjalistyczny 
i drogi sprzęt. Do badania jednorodności przewiercanych stref zaadaptowane zostały powszechnie 
stosowane w medycynie i ekonomii statystyczne metody klasyfikacji. Spośród przeanalizowanych 
metod różniących się sposobem budowy reguły klasyfikacyjnej największą efektywnością wykazała 
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się metoda QDA (quadratic discriminant analysis) oraz naiwny klasyfikator bayesowski (Naive Bayes 
classifier). Zdefiniowane nowe kryterium maksymalnego uzysku rdzenia oraz opracowany matema-
tyczny model uzysku rdzenia pozwolił na zwiększenie ilości, jak i jakości uzyskanego materiału do 
analiz, w warunkach geologicznych synkliny grodzieckiej. Sterowanie procesem polegało na detek-
cji zjawisk niszczenia rdzenia, tj. erozyjnego oddziaływania płuczki wiertniczej na rdzeń, mecha-
nicznego niszczenia rdzenia na skutek klinowania się go w aparacie rdzeniowym, a także niestabil-
nej pracy narzędzia na dnie otworu. Analiza wykazała, że głównym czynnikiem wpływającym na 
zmniejszone uzyski rdzenia jest mechaniczne niszczenie na skutek klinowania. Do kontroli wartości 
uzysku rdzenia autorzy zdefiniowali i wykorzystali wskaźnik klinowania przedstawiający wpływ 
nacisku osiowego na chwilową prędkość wiercenia. Skuteczność opracowanej metodyki potwierdził 
test przeprowadzony w warunkach przemysłowych, podczas wiercenia kolejnego otworu na obszarze 
synkliny grodzieckiej.

Artykuł ten powstał na podstawie własnych doświadczeń i analiz przeprowadzonych przez autorów 
podczas realizacji prac na obszarze synkliny grodzieckiej w południowo-zachodniej części Polski. 

Core recovery criterion – new optimization method of geological information 
quality in geological conditions of the Grodziec Syncline area

Keywo r d s

drilling, coring, core recovery, optimization, classification

Ab s t r a c t

The increasing requirements for the quality and amount of geological information induce the de-
velopment of new technological solutions. The authors present the optimization of the coring method 
for a newly defined criterion of maximum geological information quality. It enables the efficiency of 
works to be improved without investing in new specialist and expensive equipment. The statistical 
classification methods commonly used in medicine and the economy were used for analyzing the 
homogeneity of the drilled rocks. The quadratic discriminant analysis (QDA) and the Naive Bayes 
classifier method turned out to be most efficient, therefore they were selected from among other me-
thods differing in the way the classification rules are built. The newly defined criterion of maximum 
geological information quality and the mathematical model of maximum core recovery allowed the 
amount and the quality of recovered rock material in the geologic conditions of the Grodziec Syncline 
to be incresed. The control of the process relied on detecting phenomena responsible for core dama-
ging, i.e. erosiveness of drilling mud, mechanical damaging due to jamming in the core barrel and 
unstable operation of the core bit downhole. The analysis revealed that the main factor influencing the 
lower recovery of cores is mechanical damaging due to jamming in the core barrel. For the sake of 
controlling the core recovery, the authors defined and used the jamming index which defines the effect 
of weight on bit on momentary rate of penetration. The efficiency of this method was proved by a test 
performed in industrial conditions while drilling a successive wellbore in the Grodziec Syncline.

This paper was written on the basis of own experience and analyses performed by the authors 
while conducting works in the Grodziec Syncline in the South West Poland.


