
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
Vol. 57, No. 2, 2009

On job models in power management problems

R. RÓŻYCKI and J. WĘGLARZ∗

Institute of Computing Science, Poznan University of Technology, 2 Piotrowo St., 60-965 Poznań, Poland

Abstract. In the paper a model of job processing is presented where processing speed is related to the amount of power allotted to this job
at a moment. Basic time-optimal results are showed assuming that energy is treated as a scarce doubly-constrained resource in a computer
system. The proposed approach is applicable to the practical power management problems appearing in modern portable device systems.

Key words: power management, job model, scheduling problem, continuous resource, doubly-constrained resource.

Dedicated to Professor Wiesław Woliński
on the occasion of his eightieth birthday

1. Introduction

In the past few years the idea of green computing, seen as an
efficient utilization of computer resources, achieves a growing
interest. Since during the computing, energy is consumed as
a main resource, appropriate power management is a basic
technique for applying the green computing principles. Power
management can also improve computing efficiency. As it is
well known, the efficiency of computing a set of programs
in a given computer system may be evaluated using various
measures such as, for example, completion time or flow time.
In general, there are two ways to improve computing efficien-
cy by a proper power management. In the first one, a given
performance measure is going to be improved assuming the
given level of available energy, whereas in the second, the en-
ergy consumption is reduced supposing that the given value
of a performance measure is maintained. The first problem,
known as a laptop problem [1], is typical for portable electron-
ic devices driven by electric energy accumulated in batteries
with limited capacity. In the second problem (so-called server
problem) the goal is to minimize the energy consumption in
order, for example, to reduce the overall computing cost.

One of the research direction towards advanced power
management is the use of variable speed processors. A vari-
able speed processor (VSP) [2] is able to adjust its clock
period at each cycle. For example, modern operating systems
utilizing Intel’s Speedstep or Foxton as well as AMD’s Power-
Now technologies are able to control the speed of processors
to prolong the battery life or to improve computing efficiency.
Therefore, an operating system of a computer can decide not
only which job to perform at the moment but also at what
processing rate this job has to be executed in order to mini-
mize the given criterion.

The overall performance enhancement of a computer sys-
tem and/or energy savings are possible because the relation
between the processor speed and the electrical power used to
process a job is nonlinear. This relation may be formalized
by using different models of job processing. The power vs.
processing speed model has been used up to now commonly.
Various scheduling problems were formulated basing on the

assumption that the resource (energy) consumption depends
on the processing rate of a processor. Except for the total en-
ergy in the server versions of a scheduling problem, a number
of optimization criterions are taken into account in the laptop
form of a problem. These are, for example, schedule length,
mean flow time or maximum lateness [3–5]. It is worth noting
that power as a temporal usage of energy is usually assumed
to be available with no limits. This means that energy is treat-
ed in fact as a nonrenewable resource only. Some exact and
heuristic algorithms were proposed to solve both the deter-
ministic and non-deterministic cases under this assumption.
(see [4, 6] as surveys).

On the other hand, in the deterministic scheduling theo-
ry models of jobs in which job processing time (in general)
depends on the allocated resources are quite popular. Among
wide variability of such models one can distinguish two main
classes. In the first class, amounts of resources allotted to
a job determine its processing time directly. The second class
contains models where processing rate of a job is related to
the allocation of resources to this job. The models from the
second class allow to consider the situations in which re-
source allocation may change during the execution of a job.
In both classes of models various categories of resources may
be considered. If the processing time (or processing rate) is
defined on a finite set of possible number of resource units,
then the model has a discrete nature. In the case of power
management, natural are models with continuously-divisible
resources (continuous resource in short) which may be allot-
ted to jobs in amounts that are arbitrary within given intervals.
For such resources, the model relating job processing speed
to the resource amount allotted to this job at time t, is the
most general one. In this paper we show that this model may
be profitably applied in the case of scheduling problems in
which power (in general – energy) consumed by a processor
depends on the processing rate of a job.

Although we assume that job processing rate is related to
the amount of the allotted power, it is still possible to involve
other types or even categories of resources in the problem.
These additional resources, required by jobs in predefined

∗e-mail: Jan.Weglarz@cs.put.poznan.pl

147

DOI: 10.2478/v10175-010-0115-2



R. Różycki and J. Węglarz

amounts, do not influence on the processing time of a job. As
a consequence the problem may be stated as a deterministic
scheduling problem where jobs competing for power and other
types of resources may be processed with various speeds.

In this paper we consider a set of identical parallel ma-
chines as an additional discrete resource. It is justified by the
fact that multicore processors become available even in the
portable electronic devices. The microprocessor cores (seen
as parallel machines) share the common source of the pow-
er to process the set of jobs. Thus, it is good example of
the problem where optimal scheduling policy may improve
energy savings and/or overall system performance.

In the next section we compare two main models of job
processing. In Sec. 3 the considered problem is formulated.
The Sec. 4 describes basic time optimal results for the case
where power is the only limited resource. In Sec. 5 more
general case with energy as a doubly constrained resource is
considered. The paper is completed with some final remarks
in Sec. 6.

2. Comparison of job processing models

Let us start with the model commonly used in the litera-
ture (e.g. [4, 6]) concerning the power management in mi-
croprocessor systems. The model is based on the assump-
tion that the power consumed during job processing depends
on the processing speed. If we represent a power usage of
a processor as a non-decreasing function of its speed, then it
is practically justified to assume that this function is strictly
convex. It means that in order to minimize the total energy
consumption it is advisable to execute jobs as slowly as pos-
sible. The following form of the function is used to express
the relation between processing speed s of a processor, and
a power p consumed during job processing:

p(s) = sα (α > 1). (1)

We will call function p(·) a power usage function. In par-
ticular, for a microprocessor based on CMOS technology α
is assumed to be equal to 3.

Moreover, it is assumed that job i is characterized by the
parameter wi (wi > 0, i = 1, 2, ..., n). wi represents the size
of a job and may be measured as a particular number of CPU
cycles needed by job i to be processed. Of course, processing
time of job i depends on its size wi and on the processing
speed of a processor executing this job. A job i is accom-
plished at completion time Ci if the following equation is
fulfilled:

Ci
∫

0

s(t)dt = wi.

During the execution of job i the energy amount Ei given
by the formula

Ei =

Ci
∫

0

p(s(t))dt,

is consumed.

It is worth noticing that in model (1) the processing speed
of a processor is treated as a decision variable and it deter-
mines the temporal usage of energy – power. An argument
of the function in model (1) is not limited, i.e. s ∈ [0,∞).
As a, consequence, the resulting power usage is theoretically
unlimited too. It is worth stressing that an amount of power di-
rectly determines the temperature of a microprocessor (nearly
all energy consumed by a processor is released as heat). Thus,
no limits for power usage may lead to a processor overheat-
ing and, in consequence, to a serious damage of a computer
system.

Let us pass to the model in which power allotted to a job
at a time determines a temporal rate of the job execution.
As a consequence, instead of power usage functions we will
use in the model so-called processing speed functions (speed
function in short). Formally the model is expressed as follows:

ẋi(t) =
dxi(t)

dt
= si(pi(t)),

xi(0) = 0, xi(Ci) = wi,

(2)

where xi(t) – state of job i at time t, si(·) – increasing (pos-
itive), continuous speed function of job i, si(0) = 0, pi(t) –
an amount of power allotted to job i at time t, wi – size of
job i, Ci – completion time (unknown a priori) of job i.

The value of xi(t) is an objective measure of work re-
lated to the processing of job i. This can be, for example,
the number of CPU cycles already processed for performing
a program.

Let us compare models (1) and (2) shortly. The mod-
el (1) suffers from the lack of generality. Particular type of
power usage function is used in this model. Although, such
simplification is justified for a class of contemporary micro-
processor technologies (e.g. the cubic function is assumed for
the aforementioned CMOS technology), future technologies
and microcomputer architectures may require another type of
functions. As a consequence, model (1) should be generalized
in order to allow an analysis of properties of optimal solutions
for the much broader class of power usage functions.

The assumptions imposed on a speed function in model
(2) are less restrictive. The speed function si(·) must be in-
creasing and continuous only. Thus, in model (2) it is possible
to consider any type of practically justified processing speed
functions.

Moreover, model (1) assumes that the power usage func-
tion is the same for all jobs and jobs differ in sizes only, where-
as speed function in model (2) depends on a job. However, it
is well known (see e.g. [2]) that power consumption per-cycle
may differ for various instructions executed by a processor,
and thus different functions for different types of jobs should
be considered. Notice that such functions may be estimated
empirically for many popular algorithms. If we assume dif-
ferent speed functions for jobs, the size wi of job i may be
represented simply by an amount of data (e.g. size of a table
or a file) to be processed. It is easy to observe that model (2)
is equivalent to model (1) if the functions

si(·) = s(·) = p−1(·) = p
1/α
i , i = 1, 2, ..., n, α > 1.

148 Bull. Pol. Ac.: Tech. 57(2) 2009



On job models in power management problems

3. Problem formulation

Consider a set of n independent, non-preemptive jobs and m
parallel identical machines. All jobs are ready to be processed
at the same moment. Each job requires for its processing a ma-
chine and an amount of an energy. Each job is performed by at
most one machine at a time and a machine is able to process
at most one job at a time. The processing rate of a job de-
pends on the amount of the electrical power pi(t) allotted to
job i at a time t and this relation is expressed by (2). As
a consequence, we consider the problem, where the process-
ing rate of a job may change during its execution. Job i is
characterized by the processing speed function si(·) and the
size wi. Both power and energy are limited and available in
amounts P and E, respectively.

This formulation allows to model the practical situation,
where a set of independent programs has to be executed on
a multiprocessor portable device with processors driven by
the common energy source – a battery of limited capacity. To
prevent the computer system from overheating a power usage
limit is established. The size of a program can be measured
as a required number of CPU cycles. We will assume that
processing rate function of job i in model (2) is increasing
and strictly concave. Such an assumption is justified to ex-
press the real relation between the temporal power usage and
the processing rate in contemporary microprocessor systems.

The objective is to find a vector function p(t) = [p1(t),
p2(t),...,pn(t)], pi(t) ≥ 0, i = 1, 2, ..., n which, under the
constraints imposed, minimizes the schedule length T . Op-
timal values of p(t) and T will be denoted by p∗(t) and
T ∗ respectively. Knowing p∗(t) we are able to calculate the
energy consumption for job i by integrating p∗i (t) up to the
completion time Ci.

4. Scheduling under a power constraint only

It is obvious, that the problem of overheating involve both
the computer systems driven by battery with limited capaci-
ty, as well as those ones with permanent source of electricity
(connected to the outlet). The simplest way to restrict the un-
controlled growth of temperature is to set up the power usage
limit for a computer system. In such a case, model (2), with
additional assumption on an available power, is a good starting
point for analysis of time-optimal properties of schedules.

Let us treat now an energy as a renewable resource. It
means that available total energy is unlimited (E = ∞) and
the only scarce resource is power. We will denote by T∞ the
minimum schedule length for E = ∞.

Then, the following constraint has to be fulfilled in the
feasible schedule at every moment:

n
∑

i=1

pi(t) ≤ P (3)

For concave processing speed functions and n ≤ m the
following result holds [7]:

Corollary 1

The optimal power allocation for strictly concave process-
ing speed functions has the following form:

p∗i (t) = p∗i = s−1

i (wi/T∞), i = 1, ..., n, t ∈< 0, T∞ >, (4)

where T∞ is the positive root of the equation
n

∑

i=1

s−1

i (wi/T ) = P . (5)

From Corollary 1, one can see that in the optimal sched-
ule jobs are performed in parallel using the constant power
amount given in (4). Moreover, the optimal vector of pow-
er allocation p∗ calculated using (4) guarantees that jobs are
finished at the same moment.

In general, minimal T∞ can be found from (5) numeri-
cally. Nevertheless, in some important practical cases, where
the functions si(·) = cip

1/αi

i , ci > 0, αi ∈ {2, 3, 4},
i = 1, 2, . . . , n, the solution of Eq. (5) can be found ana-
lytically.

The general methodology (e.g. for n > m) for solving the
problems with discrete and continuous renewable resources is
presented in [8]. The proposed methodology is general enough
to cover the cases with concave and convex processing speed
functions.

5. Scheduling under power and energy

constraints

If we consider portable electronic devices, both a total energy
consumption and power used for a job processing may not
be neglected. It is obvious that the energy has to be treated
as a doubly constrained resource, where both: usage at every
moment (i.e. power) and total consumption (i.e. energy) are
constrained.

Let us denote by F (T ) the total energy consumption as
a function of schedule length T :

F (T ) =
n

∑

i=1

T
∫

0

pi(t)dt. (6)

Of course, F (T ) is determined for T ≥ T∞, and for
T∞ < T < ∞ we can always find P1 < P from (3).

If we assume that the energy is a doubly-constrained re-
source, then both: power usage limit P and energy consump-
tion limit E are known in advance. A schedule is feasible
if, together with (3), the following inequality holds at every
time t:

n
∑

i=1

T
∫

0

pi(t)dt ≤ E. (7)

5.1. The case n ≤ m. Let us start with the assumption that
the number of jobs is not greater than the number of machines
(m ≥ n). Since the machines are identical and all jobs may
be performed in parallel, the problem, as we will see, has
pure continuous nature (the assignment of jobs to particular
machines may be neglected).

It is proved [7] that for strictly concave si(·), p∗(t) exists
if and only if

lim
T→∞

T

n
∑

i=1

s−1

i (wi/T ) < E.

Bull. Pol. Ac.: Tech. 57(2) 2009 149



R. Różycki and J. Węglarz

It is worth stressing that this condition is fulfilled for
a large class of functions(including power functions) even for
E = 0.

Moreover, for strictly concave si(·), all the jobs are per-
formed in parallel, the power allocation to jobs is constant,
and the completion time Ci of all jobs is the same Ci = T ∗

(i = 1, 2, ..., n).

Corollary 2

The optimal power allocation for strictly concave process-
ing rate functions has the form of

p∗i (t) = p∗i = s−1

i (wi/T ∗), i = 1, ..., n, t ∈< 0, T ∗ >, (8)

where T ∗ is the positive root of the equation

T

n
∑

i=1

s−1

i (wi/T ) = E (9)

if
n
∑

i=1

s−1

i (wi/T ) ≤ P

or can be calculated using (4) otherwise.
In the first case the active constraint is from the side of

E, not P . It means that (8) is the optimal solution to the
problem since it does not exceed the power level P . It may
happen however that that the amount of P is a critical con-
straint for the given instance of the problem. In this case, the
minimum schedule length is equal to T∞. The positive roots
of (5) and (9) are unique because of the monotonicity of si(·).

Moreover, basing on [7] we may formulate the following
results.

Observation 1

The minimum level of energy which ensures the mini-
mum schedule length for a given level of power P is Emin =
F (T∞) = P · T∞, where T∞ is the positive root of (5).

Observation 2

The minimum level of power Pmin which ensures min-
imum schedule length for a given energy level E, may be
found from:

Pmin =
n

∑

i=1

s−1

i (wi/T ∗),

where T ∗ is calculated as a positive root of (9).
Now let us comment the above results from the view point

of finding optimal solutions. To find the schedule of the mini-
mum length it is better to start with Eq. (9), since it is usually
of simpler form than (5). For example for

si(·) = cip
1/αi

i , ci > 0, αi ∈ {2, 3, 4, 5},

it is analytically solvable because it is an algebraic equation of
an order lower by 1 than in the case of (5). If we fail, i.e. if P
has been exceeded, we have to solve (5), but the information
obtained by solving (9) is valuable anyway.

The presented results are valid for the case of preemptive
or non-preemptive jobs, since the ability of preemption of any
job does not improve the schedule length.

5.2. The case n > m. Let us pass now to the general case of
n > m. Basing on the results for the strictly concave process-
ing speed functions and n ≤ m presented in Subsec. 5.1, it
is easy to see that as much as possible jobs should be per-
formed in parallel in an optimal schedule. This means that
last m jobs have to be completed at the same moment in the
optimal schedule. Thus any potential solution of the prob-
lem (any potentially optimal schedule) can be divided into
r ≤ n−m + 1 intervals of length Tk, k = 1, 2, ..., r defined
by the completion times of consecutive jobs. Of course, no
machine is idle until the completion of the last m jobs. Let
Zk, k = 1, 2, . . . , r denote the m-combination of jobs corre-
sponding to the k-th interval. Thus a feasible sequence S of
m-combinations Zk, k = 1, 2, . . . , r is associated with each
such potentially optimal schedule (Fig. 1). By Ki we will de-
note the set of indices of Zk’s such that job i ∈ Zk. Moreover,
denote by Ek the energy consumption related to Zk.

Fig. 1. An example of a potentially optimal schedule and related
feasible sequence S={1,2,4},{1,3,4},{1,3,5}

It is worth noticing that for each m-combination Zk,
k = 1, 2, . . . , r, an optimal allocation of the continuous re-
source among machines depends on the amounts wik of each
wi assigned to this m-combination (so-called demand division

– Fig. 2.) and is constant in time [8].

Fig. 2. An example of demand division

As a consequence, for a given feasible sequence S, an op-
timal continuous resource allocation can be found by solving
the following non-linear mathematical programming problem:
Minimize:

T =

r
∑

k=1

Tk

(

{wik}i∈Zk
, Ek

)

. (10)

150 Bull. Pol. Ac.: Tech. 57(2) 2009



On job models in power management problems

Subject to:
r

∑

k=1

Ek ≤ E, (11)

∑

k∈Ki

wik = wi i = 1, 2, ..., n, (12)

wik ≥ 0, Tk ≥ 0, i = 1, 2, ..., n; k ∈ Ki, (13)

where Tk are calculated as functions of {wik} for i ∈ Zk and
Ek using Corollary 2, and (12) guarantee that all jobs will be
processed.

Corollary 3

The minimum energy level which ensures the minimum
schedule length for a given feasible sequence S and power
level P is equal to:

Emin =

r
∑

k=1

T ∗

k

∑

i∈Zk

s−1

i (w∗

ik/T ∗

k )

where T ∗

k , w∗

ik , k = 1, 2, ..., p, i ∈ Zk are the optimal values
for a given S obtained by solving problem (10), (12), (13) in
which values of Tk are calculated for the level of power P
from the equations:

∑

i∈Zk

s−1

i (wik/Tk) = P , k = 1, 2, ..., r.

Corollary 4

The minimum level of power which ensures the minimum
schedule length for a given feasible sequence S and energy
level E has the form:

Pmin = max
k

{

∑

i∈Zk

s−1

i (w∗

ik/T ∗

k )

}

,

where T ∗

k , w∗

ik, k = 1, 2, ..., r, i ∈ Zk are the optimal values
for a given S obtained by solving problem (10), (11), (12)
and (13) in which “=” should be put in (11), and T ∗

k are
calculated from the equations:

Tk ·
∑

i∈Zk

s−1

i (wik/Tk) = Ek, k = 1, 2, ..., r.

Note that the optimization problem described in Corol-
lary 4 is usually easier to solve than the problem described in
Corollary 3 and also easier than the problem (10)–(13). Thus,
it is reasonable to start by solving the problem described in
Corollary 4. If, in the optimal solution of this problem, we
obtain a power amount for each Zk not greater than P , it
means that it is the optimal energy allocation for a given fea-
sible sequence S. In the opposite case, when power for each
Zk is not less than P , we have to solve the problem described
in Corollary 3 to find the optimal solution for a given S.
Lastly, when the power is greater than P for some Zk and
less than P for the others, we are forced to solve for S the
problem (10)–(13).

As a consequence, in order to solve the considered prob-
lem it is sufficient to find a feasible sequence which corre-
sponds to the minimal length schedule. Unfortunately, no ef-
fective method of constructing such an optimal sequence is

yet known. Instead of this, one can utilize some properties
of optimal solutions to construct a set of potentially optimal
sequences (POS set) and then to solve the problem of energy
allocation optimally for all the sequences from this set. Of
course, it is necessary to ensure that at least one feasible se-
quence in POS corresponds to the optimal schedule. Notice,
that the size of POS is crucial in the above approach. For the
considered scheduling problem the size of POS grows expo-
nentially with the number of jobs. Thus it is justified to apply
metaheuristics as a tool for searching for an optimal solu-
tion. Unfortunately, the described procedure of optimal ener-
gy allocation for given S makes the overall process very time
consuming. As an opposite approach a constructive heuristics
may be taken into account as an efficient tool for generat-
ing reasonably good feasible sequences. In this case a single
schedule is built basing on a particular scheduling policy and
values of parameters for the problem instance.

6. Final remarks

In this paper we demonstrated usefulness of the model job
processing speed vs. power for the power management in sys-
tems driven by a common limited power source (e.g. portable
electronic devices). It is worth stressing that treating energy
as a doubly constrained resource is an important direction for
further research in power management, since it is more rel-
evant to real-world situations. The approach presented here
describes some properties of time-optimal schedules and out-
lines ways of finding optimal or suboptimal solutions for the
considered problem. For some important cases analytical so-
lutions can be obtained.

Acknowledgements. The research was partially supported by
a grant from the State Committee for Scientific Research,
Poland.

REFERENCES

[1] D.P. Bunde, “Power-aware scheduling for makespan and flow”,
Proc. Eighteenth Annual ACM symposium on Parallelism in

Algorithms and Architectures, 190–196 (2006).
[2] F.R. Boyer, H.G. Epassa, and Y. Savaria, “Embedded power-

aware cycle by cycle variable speed processor, computers and
digital techniques”, IEE Proc. 153 (4), 283–290 (2006).

[3] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weight-
ed flow time”, ACM/SIAM Symposium on Discrete Algorithms

(SODA), 805–813 (2007).
[4] S. Irani and K. Pruhs, “Algorithmic problems in power man-

agement”, ACM SIGACT News, 36 (2), 63–76 (2005).
[5] K. Pruhs, R. van Stee, and P. Uthaisombut, “Speed scaling

of tasks with precedence constraints”, Proc. WAOA, 307–319
(2005).

[6] N. Bansal, T. Kimbrel, and K. Pruhs, “Dynamic speed scaling
to manage energy and temperature”, Lecture Notes in Comput-

er Science 3404, 460–471 (2005).
[7] J. Węglarz, “Project scheduling with continuously-divisible

doubly constrained resources”, Management Science 27 (9),
1040–1053 (1981).

[8] J. Józefowska and J. Węglarz, “On a methodology for discrete-
continuous scheduling problems”, Eur. J. Operational Re-

search 107 (2), 338–353 (1998).

Bull. Pol. Ac.: Tech. 57(2) 2009 151


