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Abstract. The paper presents the new optimal real-time control algorithm of the power source. The minimum of the square-instantaneous current 
was assumed as an optimal criterion, with an additional constraint on source instantaneous power. The mathematical model of a multiphase 
source was applied as a voltage-current convolution in the discrete time domain. The resulting control algorithm was the recursive digital filter 
with infinite recursion.
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– the number of phase. This means that the source model as-
sumed is a linear, time-invariant, i.e. the convolutional inner 
impedance operator. In particular, it is the discrete time con-
volution.

In the online optimal control system, the transition from the 
n ¡ 1 state to the n state takes place so as to meet the given 
quality criteria. Two alternate criteria are assumed:
–	 the maximum of instantaneous power criteria (called pn

MAX 
algorithm), i.e.:

in
Tun → MAX

where T means function transposition,
–	 the minimum of instantaneous current ABS value at a given 

instantaneous source power pn, called jinjMIN algorithm:

in
T in → MIN

in
Tun ¡ pn =  0 .

In order to solve these tasks, (1) is transformed in the form of 
recursive digital filter with infinite recursion:

	 un =  vn ¡ z0 in� (2)

1.	 Introduction

The paper attempts to solve new problems of the electrical 
source optimal real-time control. In previous papers, optimal 
solutions were achieved i.e. for instantaneous power exceed 
criterion [1, 2], for minimum energy losses [3, 4], with usage 
of the similarity principle [5], etc.

This article is a significant generalization of previous studies 
for single-phase systems [6‒8] and for three-phase systems 
[9, 10]. Those studies have been unsuccessful in the research for 
mathematical expressions for the so-called “inactive powers”, 
while in this paper, a much more efficient approach based on 
optimization methods is applied.

In this paper, the two alternative cost functions were 
assumed as the optimal criterion: the achievement of the 
maximum instantaneous power or the achievement of the 
minimum instantaneous source’s current ABS value with the 
given instantaneous source power. A mathematical model of 
multiphase power source in the discrete time domain (Fig. 1) 
was applied.

The source’s voltage-current equation in this model is:

	 un =  en ¡ 
1

m=1
∑zmin¡m� (1)

where: un = colα[un
α], en = colα[en

α], in = colα[inα] – the column 
vectors of: the terminal phase voltage, source voltage and source 
output current; α = 0, 1, …, M ¡ 1 – the line (phase) number; 
n = 0, 1, 2, … – the voltage and current sample’s number; 
zm = matα, β[zm

α, β] – the square matrix of the impulse responses 
of source’s internal impedance operator; α, β = 0, 1, …, M ¡ 1 

Fig. 1. A multiphase electrical power source
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where:

	 vn =  en ¡ 
1

m=1
∑zmin¡m.� (3)

In expressions (2) and (3) the vector of sample’s sequence {vn} 
and the matrix z0 will be treated as given values, while the 
vector {in} of sample’s sequence will be sought.

Assumed control algorithms take the following forms:
– pn

MAX algorithm:

in
Tun =  in

T(vn ¡ z0 in) =  in
Tvn ¡  in

Tz0 in =
in
Tun =  in

Tvn ¡  in
Tr0 in → MAX

or equivalently:

	 in
Tr0 in ¡  in

Tvn → MIN� (4)

where:

r0  =  1
2
(z0 + z0

T )

is positive defined, time-invariant matrix;
– jinjMIN algorithm:

in
T in → MIN

in
T(vn ¡ r0 in) ¡ pn = 0 ,

or using Lagrange’s factor:

	 in
T(1 + λr0)in ¡ λvn

T in → MIN� (5)

where 1 is the identity matrix.
The solution of both optimization tasks, at a given en and 

zn for n = 0, 1, 2, … is the in sequence as a function of vn, this 
in turn is function of in¡1, in¡2, …, i1, i0. Thus, the solutions of 
those tasks should have form of a theoretically infinite recursive 
digital filter.

2.	 The solution of the optimal tasks  
for the single phase source

For the single phase source its voltage-current equation takes 
the simpler (scalar) form:

	
un =  en ¡ 

1

m=0
∑ zmin¡m =  en ¡ 

1

m=1
∑ zmin¡m ¡ z0in =

un =  vn ¡ z0in

� (6)

where:

vn =  en ¡ 
1

m=1
∑ zmin¡m .

The pn
MAX task has the form:

	 in(vn ¡ z0in) → MAX� (7)

and the [(in)
2]

MIN
 task has the form:

	
(in)

2 → MIN
in(vn ¡ z0in) = pn

� (8)

or yet another form using Lagrange’s factor:

	 (1 + λz0)(in)
2
 ¡ vnin → MIN.� (9)

In order to solve these tasks the discrete time index is skipped 
in (7) and (8), therefore the pn

MAX takes form:

	 vi ¡ r0i2 → MAX� (10)

where r0 = z0, and the (i2)MIN takes form:

	 (1 + λr0)i2 ¡ vi → MIN.� (11)

The solving equations for (10) and (11) tasks take form:

v ¡ 2r0i =  0
thus:

i ´  id =  v
2r0

and:

(1 + λr0)i  =  1
2
λv

thus:
i ´  iopt =  Λv

where Λ is an undetermined real scalar. The obtained currents 
id and iopt will be called adjustment current and optimal cur-
rent respectively. Using these currents in the source’s balance 
condition:

r0i2 ¡ vi + p =  0

the maximum power is obtained:

pMAX =  v2

4r0
,

and the equation which allows to calculate the Λ factor takes form:

r0v2Λ2 ¡ v2Λ + p =  0 .

This quadratic equation can be formed as follows:

r0Λ2 ¡ Λ +  1
4r0

x =  0 ,

where x =  p
pMAX  is the so–called fraction of the source’s load. 

The one and only allowed solution for the quadratic equation is:

i =  iopt =  v
2r0

(1 ¡  1 ¡ x ) =  id(1 ¡  1 ¡ x ).
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The same result can be obtained using the source’s balance 
condition:

r0i2 ¡ vi + p =  0

which takes form:
r0
v

i2 ¡ i +  v
4r0

x =  0 ,

and solving it with respect to i yields:

i =  v
2r0

(1 ¡  1 ¡ x ) =  id(1 ¡  1 ¡ x ).

Thus, the following theorem of the single phase source 
has been proved: the current that delivers the given instan-
taneous power from the source has the minimum or the max-
imum instantaneous-square value.

The [(in)
2]MIN algorithm works recursively, i.e. (i0, i1, i2, …, 

in¡1) → in according to the scheme:

(in)
2 → MIN

inun = pn

and is solved by the following sequences of operations:

un =  en ¡ 
1

m=1
∑ zmin¡m ,

in
d = 

vn

2r0

where r0 = z0,

pn
MAX = 

(vn)
2

4r0
,

xn = 
pn

pn
MAX

,

	 in = 
(

in
d 1 ¡ xn 	 for	 xn < 1

in
d	 for	 xn > 1

� (12)

where n = 0, 1, 2, … is the discrete time index.
The sequence of the given instantaneous power pn is limited 

by the (12) condition. It means that the source cannot provide 
current that transfers greater power than the source’s maximum 
power pn

MAX. In such case the source is delivering the adjustment 
current in

d, which transfers the maximum power pn
MAX at the 

moment. It will be shown in an example in Section 4.

3.	 The solution of the optimal tasks  
for the multiphase source

Skipping the discrete time index n in (4), the pMAX task takes 
the form:

	 iTr0i ¡ iTv → MIN .� (13)

Doing the same with (5), the jijMIN task takes the form:

	 iT(1 + λr0)i ¡ λvT i → MIN .� (14)

These minimum tasks were considered in paper [11] and its 
solving equations are:

	 r0 id =  1
2

v� (15)

for the pMAX task, and:

	 (1 + λr0)iλ = λr0 id� (16)

for the jijMIN task. Solving (15) and (16) the multiphase vector 
of adjustment current is obtained:

id =  1
2

r0
–1v

and the λ – based current vectors:

	 iλ =  1
2

(λ–11 + r0)
–1v .� (17)

Simultaneously the source’s power balance condition is met:

iT(v ¡ r0i) ¡  p =  0

which allows to calculate the maximum power:

pMAX =  1
4

vTr0
–1v .

The Lagrange’s factor λ in (17) can be calculated from the 
so–called power equation:

F(λ) =  P .
where

F(λ) =  (iλ)
T
(v ¡ r0iλ)

is the so–called source’s energy function. That function can be 
approximated by expression [11]:

F(λ) =  2 + λr
(1 + λr)2 λrpMAX,

where

r  =  vTv
vTr0

–1v

is the so-called source normative resistance. Solving the energy 
equation by using the approximation function, the Lagrange’s 
factor is obtained:

λ¤
–1 =  r 1 ¡ x

1 ¡  1 ¡ x
,

where x =  p
pMAX  is fraction of the source’s load. An instance 

of the optimal current is defined by (17) which now takes the 
form:
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iopt =  1
2

(λ¤
–11 + r0)

–1v .

Introducing again the discrete time index causes appropriate 
values to take the sense of the instantaneous values. In this way, 
the sequential algorithm for determining the current’s instanta-
neous-value vector is obtained:

(in¡1, in¡2, in¡3, …) →  in,

which operates as follows:
–	 the instantaneous value of vn is calculated:

	 vn =  en ¡ 
1

m=1
∑zmin¡m ,� (18)

–	 then the maximum instantaneous power:

pn
MAX =  1

4
vn

T r0
–1vn ,

–	 next the instantaneous fraction of the source’s load:

xn = 
pn

pn
MAX

,

–	 next the source’s normative-instantaneous resistance:

rn  = 
vn

T vn

vn
T r0

–1vn

–	 next the instantaneous Lagrange’s factor:

λn
–1 = 

5 

 

 

 n
n MAX

n

px
p

 ,  

– next the source’s normative-instantaneous resistance: 

 
1

0

T
n n

n T
n n

r



v v

v r v
,  

– next the instantaneous Lagrange’s factor: 

 1

1
for 1

1 1
0 for 1

n
n n

n n

n

x
r x

x
x



 


   
 

,  

– and finally the instantaneous optimal current: 

   11
0

1
2

opt
n n n

  i 1 r v .  

4. Examples for the single phase source 

 Two similar examples are used for the single phase 
source in the discrete time domain. In both of them the 
source’s internal impedance was assumed as follows: 

    1
1

s f z
L Lf

Z s R sL R X X z 




     ,  

where: 4R  , 2LX fL   (so-called digital reactance); 
from which the internal impedance sequence is obtained: 

      ; ;0;0; 6, 2,0,0,n L Lz R X X     ,  

thus: 0 6z r  , 1 2z   . 
Also, in both cases, the constant sequence of the 
instantaneous power is assumed: 

    200,200,200,np  .  

According to the internal impedance operator, voltage nv  
will take the form: 

 1 1n n nv e z i   .  

In Example 1 the source’s non-sinusoidal voltage 
sequence is assumed as follows (Fig. 2): 

  
80,90,100,90,80, 80, 90, 100,

90, 80,80,90,100,90,80, 80,ne
   

     
.  

Fig. 2. The sequence of the source’s voltage (Example 1). 

 
The optimal online control algorithm begins with sample 

0n  : 

 0 0 1 1 0 80v e z i e    ,  

 0
0 6,666667

2
d vi

r
  ,  

 
 2

0
0 266,666667

4
MAX v

p
r

  ,  

 0
0

0

0,75MAX

px
p

  ,  

  0 0 01 1 3,333333di i x    ,  

then sample 1n  : 

 1 1 1 0 96,666667v e z i   ,  

 1
1 8,055556

2
d vi

r
  ,  

 
 2

1
1 389,351852

4
MAX v

p
r

  ,  

 1
1

1

0,513674MAX

px
p

  ,  

  1 1 11 1 2,437848di i x    ,  

and so on. The optimal current  2 MIN
i  is shown in Fig. 3. 

 

Fig. 3. The sequence of the optimal current (Example 1). 

rn
1 ¡ xn

1 ¡  1 ¡ xn
	 for	 xn < 1

0 	 for	 xn > 1
,

–	 and finally the instantaneous optimal current:

iopt =  1
2

(λn
–11 + r0)

–1vn .

4.	 Examples for the single phase source

Two similar examples are used for the single phase source in 
the discrete time domain. In both of them the source’s internal 
impedance was assumed as follows:

Z(s) =  R + sL
s = f (1 ¡ z)

4 f  = 1/τ
R + XL ¡ XLz ,

where: R = 4, XL = fL = 2 (so-called digital reactance); from 
which the internal impedance sequence is obtained:

{zn} =  {R + XL; –XL; 0; 0; …} =  {6, –2, 0, 0, …},

thus: z0 = r = 6, z1 = –2.

Also, in both cases, the constant sequence of the instanta-
neous power is assumed:

{ pn} ={200, 200, 200, …}.

According to the internal impedance operator, voltage vn will 
take the form:

vn =  en ¡ z1in¡1.

In Example 1 the source’s non-sinusoidal voltage sequence 
is assumed as follows (Fig. 2):

{en} = 
(

80, 90, 100, 90, 80, –80, –90, –100, 
–90, –80, 80, 90, 100, 90, 80, –80, …

)
.

The optimal online control algorithm begins with sample n = 0:

v0 =  e0 ¡ z1i–1 =  e0 =  80,

i0
d = 

v0

2r
 =  6,666667,

p0
MAX = 

(v0)
2

4r
 =  266,666667,

x0 = 
p0

p0
MAX

 =  0,75,

i0 =  i0
d(1 ¡  1 ¡ x0) =  3,333333,

then sample n = 1:

v1 =  e1 ¡ z1i0 =  96,666667,

i1
d = 

v1

2r
 =  8,055556,

p1
MAX = 

(v1)
2

4r
 =  389,351852,

x1 = 
p1

p1
MAX

 =  0,513674,

i1 =  i1
d(1 ¡  1 ¡ x1) =  2,437848,

Fig. 2. The sequence of the source’s voltage (Example 1)

{en}

n

100
80
60
40
20

0
–20
–40
–60
–80

–100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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and so on. The optimal current (i2)
MIN is shown in Fig. 3.

In this example, all samples of current are optimal, which means 
that in each sample the required power pn is smaller than the 
maximum power pn

MAX.
In Example 2, the source’s voltage sequence is assumed as 

follows (Fig. 4):

{en} = 
(

40, 80, 100, 50, 10, –40, –80, –100,

–50, –10, 40, 80, 100, 50, 10, …

)
.

Fig. 3. The sequence of the optimal current (Example 1)

{in}

n

The optimal online control algorithm for n = 0:

v0 =  e0 ¡ z1i–1 =  e0 =  40,

i0
d = 

v0

2r
 =  3,333333,

p0
MAX = 

(v0)
2

4r
 =  66,666667,

x0 = 
p0

p0
MAX

 =  3,

i0 =  i0
d =  3,333333,

and for n = 1:

v1 =  e1 ¡ z1i0 =  86,666667,

i1
d = 

v1

2r
 =  7,222222,

p1
MAX = 

(v1)
2

4r
 =  312,962963,

Fig. 4. The sequence of the source’s voltage (Example 2)

{en}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

100
80
60
40
20

0
–20
–40
–60
–80

–100

n

Fig. 5. The sequence of the optimal current (Example 2)

{in}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

6,0

4,0

2,0

0,0

–2,0

–4,0

–6,0

n

4,0
3,0

1,0
2,0

0,0
–1,0

–3,0
–2,0

–4,0

x1 = 
p1

p1
MAX

 =  0,639053,

i1 =  i1
d(1 ¡  1 ¡ x1) =  2,883195,

and so on. The optimal current (i2)
MIN is shown in Fig. 5.

In sample n = 0 it can be seen that the source’s maximum 
power is lower than required p0, therefore the optimal current 
is limited to the adjustment current (delivering the maximum 
power from the source) (12).

5.	 Conclusion

A new current control algorithm for the real-voltage source was 
formulated in the paper. The discrete time convolution volt-
age-current model with the internal impedance operator was 
used. First, the single-phase model was considered, then the 
multiphase one. The optimal source’s current control brings to 
searching such a current signal as to provide both its minimum 
square value all the time and the given instantaneous power 
value. The control algorithm is recursive, i.e. the actual sam-
ples are obtained from the preceding ones. For the single-phase 
source, the problem of seeking current signal that provides the 
given instantaneous power has the unequivocal solution and 
thus, the obtained current signal has minimum square value all 
the time. The multiphase source works in a different way. The 
vector space of currents which deliver the given instantaneous 
power have infinite dimension and only one of them has the 
minimum RMS value.

It may be concluded that the obtained optimal current–con-
trol algorithm is a recursive digital filter with infinite recursion. 
However, in practice the infinite recursion can be approximately 
replaced by a finite one. Due to the stability of inner impedance 
operator, it can be assumed that

zm =  0

(the zero matrix) for m > M > 0. Then the recursion (18) takes 
the finite form:

vn =  en ¡ 
1

m=1
∑zmin¡m.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
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