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Abstract. In the paper, new hybrid (numerical-analytical) methods to calculate the J-integral, the CTOD, and the load line displacement are 
presented. The proposed solutions are based on FEM calculations which were done for SEN(B) specimens dominated by plane strain condition. 
The paper includes the verification of the existing limit load solution for SEN(B) specimen with proposal of the new analytical formulae, which 
were used for building hybrid equations for determining three selected fracture mechanics parameters.
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1.	 Introduction

One of the basic approaches used in fracture mechanics is the 
Hutchinson, Rice, and Rosengren (HRR) solution first de-
scribed in 1968 [1, 2]. For years this solution has been used 
to deal with elastic-plastic fracture mechanics problems which 
require determining the distribution of stresses around the crack 
tip, assessing fracture toughness or establishing the fracture 
criteria [3–7]. It is important to note that the solution has been 
modified many a time to provide new descriptions of stress 
fields [3]. The solution is not a perfect formula because it does 
not take account of the distribution of stresses, crack length, 
element (specimen) width, or thickness and type of external 
load (including the method of loading) [3]. Numerous attempts 
have been made to use the HRR formula [1, 2] to solve real en-
gineering problems, as described in various papers and reports 
[8]. An important example is a document published in 1981, 
commonly known as the EPRI procedures [3, 9].

This well-prepared document provides the theoretical 
foundations of elastic-plastic fracture mechanics, as well as 
recommendations on how to use the knowledge of this disci-
pline to solve practical engineering problems [3]. The EPRI 
procedures [9], which are based on a number of papers not 
to be described here, contain many practical suggestions on 
how to use fracture mechanics and how to determine the limit 
load for elements containing cracks. They also provide hybrid 
formulae to calculate the J-integral, the crack tip opening dis-
placement (CTOD) denoted as δ, and the displacement of the 
point of application of the force vLL [3]. It is important to note 
that when the recommendations given in the EPRI procedures 
[9] are followed, it is no longer necessary to conduct numerical 
calculations, which require developing an appropriate model 
complying with the applicable rules [3, 4, 10–12]. Since the 
EPRI procedures can be used to determine the value of the 
J-integral [9], they can be a practical engineering solution to 
analyse the strength of a structure with a crack, because the 
J-integral is considered to be a pulling force of the crack and 

Nomenclature

	 α	 –	 material constant in the RO law
	 δ	 –	 crack tip opening displacement [mm]
	 σ0	 –	 yield strength [MPa]
	 ε0	 –	 strain corresponding to the yield strength (ε0 = σ0/E)
	 ν	 –	 Poisson’s ratio
	 2D	 –	 two dimensional
	 3D	 –	 three dimensional
	 a	 –	 crack length [mm]
	 a/W	 –	 relative crack length
	 B	 –	 specimen thickness [mm]
	 b	 –	 uncracked ligament of the specimen, b = W-a [mm]
	 CTOD	 –	 crack tip opening displacement
	 E	 –	 Young’s modulus [MPa]
	 EPRI	 –	 Electric Power Research Institute
	 FE	 –	 finite element
	 FEM	 –	 finite element method
	 h1, h2, h3	 –	� functions, which are tabled according to the relative 

crack length a/W and the exponent n in the R-O law
	 HMH	 –	 Huber-Misses-Hencky
	 HRR	 –	 Hutchinson-Rice-Rosengren
	 J	 –	 J-integral [kN/m]
	 n	 –	 exponent in the Ramberg-Osgood (RO) law
	 P	 –	 external load [kN]
	 P0	 –	 limit load [kN]
	 RO	 –	 Ramberg-Osgood
	 SEN(B)	 –	 single edge notched specimen in bending
	 vLL	 –	� load line displacement (displacement of the point of 

application of the force) [mm]
	 W –	specimen width [mm]
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to control the distribution of stresses near the crack tip in elas-
tic-plastic materials [3–4, 13].

To use the EPRI procedures [9], an engineer needs to know 
the geometry of the structure containing a crack and the mate-
rial characteristics. They need to determine whether the plane 
strain or plane stress conditions are predominant and define the 
external load. The recommendations given in the EPRI proce-
dures [9] refer to basic structural elements, i.e. plates, beams, 
or cracked cylinders. According to the SINTAP and FITNET 
procedures [13–15], all these structural elements can be used to 
idealise complex structures with a crack, in order to determine 
their fracture toughness and strength [3].

An interesting example is a single-edge notched specimen 
subjected to three-point bending SEN(B) (Fig. 1), tested for 
fracture toughness under plan strain conditions, according to 
the recommendations given in the standards [16–17]. When the 
recommendations [16–17] are followed and certain conditions 
are satisfied, the value of the J-integral for SEN(B) type speci-
mens under predominant plane strain conditions can be treated 
as the material constant (denoted as JIC – elastic-plastic fracture 
toughness [16–17] ), and when converted into the critical value 
of the stress intensity factor KIC, it can be used at the design 
stage according to the recommendations included in the proce-
dures [14–15] and the Eurocodes [3, 18].

For the SEN(B) specimen, the authors of the EPRI proce-
dures [9] propose the following set of hybrid formulae, which 
can be used in engineering for elastic-plastic analysis [3]:

J = Jel + Jpl = Jel + α ¢ σ0 ¢ ε0 ¢ b ¢ h1(a/W, n) ¢ (P/P0)
n+1,� (1)

δ = δel + δpl = δel + α ¢ ε0 ¢ a ¢ h2(a/W, n) ¢ (P/P0)
n,� (2)

vLL = vLL_el + vLL_ pl =  
vLL = vLL_el + α ¢ ε0 ¢ a ¢ h3(a/W, n) ¢ (P/P0)

n,� (3)

where J is the J-integral, δ is the crack tip opening displace-
ment, vLL is the load line displacement, α is the material con-
stant in the RO material, σ0 is the yield stress, ε0 is the strain 
corresponding to yield stress (ε0 = σ0/E), and E is the Young 
modulus. In equations (1–3), subscripts “el” and “pl” denote 
the “elastic part” and “plastic part” of the parameter, respec-
tively. As shown in the EPRI procedures [2], the functions h1, 
h2, and h3 are tabulated according to the relative crack length 
a/W and the exponent n in the RO law. In these formulae, the 
external load P is normalised by the limit load P0, which can 
be determined as [3]:

	 P0 = 0.728 ¢ σ0 ¢ b2/(2W),� (4)

where b is the length of the uncracked ligament calculated as 
b = W ¡ a. The limit load should be interpreted as a state in 
which the whole uncracked ligament is plasticised. This sug-
gests that the effective stresses calculated according to the HMH 
hypothesis are equal to or greater than the yield strength [3].

From formulae (1–3) it is clear that the basic assumption 
of the EPRI procedures [2] is to divide the parameters of elas-
tic-plastic fracture mechanics into elastic (Jel, δel, vLL_el) and 
plastic (Jpl, δpl, vLL_pl) parts. For the SEN(B) specimen, the 
elastic parts of the fracture parameters can be calculated as in 
[9] or as in Tada’s handbook [19].

Formulae (1–3) seem simple to apply, but, as shown in 
[8], the results obtained with a finite element method (FEM) 
differ considerably from the data obtained according to the 
recommendations of the EPRI [3, 9]. The same is observed 
for formulae used to determine the limit loads for other ge-
ometries, as described, for example, in [3, 20]. Therefore, this 
paper proposes a new hybrid approach to calculate selected 
parameters of elastic-plastic fracture mechanics. The method 
is based on numerical and analytical calculations conducted 
by the author [3].

Fig. 1. Single-edge notched specimen subjected to three-point bending SEN(B) [3–4, 8–9]

P

W

a

S = 4W

L

B

a



525Bull.  Pol.  Ac.:  Tech.  65(4)  2017

Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain

Many scientific papers present discussion about the deter-
mination of CTOD, J-integral, or about the relationship be-
tween those parameters. In 1998, Shi et al. [21] were trying to 
determine the J-CTOD relationship for welded central cracked 
plates under tension. In 2012, Zhu and Joyce [22] verified many 
methods for determining the fracture toughness, including in 
their analysis the influence of the constrains [13]. Ruggieri 
and Paredes [23, 24] discussed the J-CTOD relationships for 
homogenous and welded single-edge notched plates under 
tension condition (SEN(T)). Based on numerical calculations, 
Ruggieri and Paredes [23, 24] proposed new empirical formulas 
for determining the J-integral and CTOD. A similar analysis 
for clamped SEN(T) specimens was presented in [25] – the 
authors proposed new formulas for calculating the J-integral 
and CTOD, which were based on three-dimensional numerical 
analysis. The influence of the geometrical constraints on CTOD 
was presented in [26], where the authors tried to summarize 
the relationships between CTOD and another elastic-plastic 
fracture parameters. All analyses presented in [26] were sum-
marized using simple mathematical formulas. In 2014, Tagawa 
et al. [27], based on EPRI procedures [9], Shih concept [34], 
and numerical calculations for SEN(B) specimens, proposed 
equations similar to EPRI solutions, which may be used to de-
termine the CTOD as a function of the external load. In [27], 
the authors presented empirical auxiliary equations, which are 
based on selected numerical results. The influence of the size 
of SEN(B) specimen on CTOD was discussed in [28]. In 2015, 
Sarzosa et al. [29] performed the analysis of the J-CTOD rela-
tionship for three-dimensional SEN(T) plates for both stationary 
and growing cracks. Also in 2015, Wang et al. [30] proposed 
empirical equations to calculate the J-integral and CTOD. In 
2016, Antunes et al. [31] proposed the relationship between 
CTOD and external load for growing cracks under increasing 
fatigue loads.

As we can see, the J-CTOD relationship or dependence of 
the J-integral and CTOD of external load still lead to the forma-
tion of new scientific papers. This topic is still current, and the 
author of this paper will present a somewhat different approach 
to determining the J-integral or CTOD as a function of external 
load, which is an extension of results shown in [3].

2.	 Details of numerical calculations

The numerical calculations were performed using ADINA 
SYSTEM 8.8 [3, 32, 33]. The FE analysis involved verifying 
the limit loads for SEN(B) specimens with predominant plane 
strain conditions and solving elastic-plastic problems, for cal-
culating the elastic-plastic fracture mechanics parameters [3]. 
A model of an elastic-perfectly plastic material was employed 
in the FE analysis to calculate the limit loads. In the calcula-
tions, the values of Young’s modulus and Poisson’s ratio and the 
four values of the yield strength were assumed to be constant 
(E = 206GPa, ν = 0.3, and σ0 = {315, 500, 1000, 1500} MPa, 
respectively) [3]. Four groups of materials differing in strength 
were considered. However, for calculating the elastic-plastic 
fracture mechanics parameters, the FE analysis was performed 

using a homogeneous isotropic model of an elastic-plastic ma-
terial with the HMH plasticity condition, described by the fol-
lowing relationship [3]:

	 ε
ε0

 = 

3 
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The calculations were conducted assuming that the 
constant was =1 and that the four values of the exponent 
in the RO law were n={3.36, 5, 10, 20} [3]. That gave a 
combination of 16 stress-strain curves, which can be 
classified according to the mechanical properties of ferritic 
steels, general-purpose structural steels and materials 
exhibiting strong and weak strain hardening [3].  

The calculations verifying the limit loads and the 
calculations in the elastic-plastic region were performed 
using the same FE model of the SEN(B) specimen. The 
numerical model was based on the recommendations 
provided in Refs. [4, 10-12], [3]. The existing axis of 
symmetry was used to model only half of the specimen. A 
contact problem was solved to represent the real behaviour 
of the specimen [3].  

a) 

 

b) 

 
 

c) 

 

Fig. 2. Numerical model of the SEN(B) specimen under study: a) full model of the half of the SEN(B) specimen used in numerical analysis; b) larger 
fragment of the SEN(B) specimen – area near crack tip; c) the crack tip and the FE mesh in close proximity of the crack tip. (based on [3]) 

The crack tip of the SEN(B) specimen was modelled as 
a quarter of an arc with the radius rw ranging 1÷5 m [3]. 
This means that, in extreme cases, the radius of the crack 
tip was 40000 and 8000 smaller than the specimen width W 
[3]. The crack tip was divided into 12 elements. The density 
of the elements closer to the edges was higher; depending 

on the model, the edge elements were 5÷20 times smaller 
than the largest elements located in the central part of the 
arc [3]. The size of the radius of the arc was conditioned by 
the level of the external load as well as the crack length. 
For each specimen, the area near the crack tip with a radius 
of about 1.0÷5.0 mm was divided into 36÷50 FEs, the 
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The calculations were conducted assuming that the constant 
was α = 1 and that the four values of the exponent in the RO 
law were n = {3.36, 5, 10, 20} [3]. That gave a combination 
of 16 stress-strain curves, which can be classified according 
to the mechanical properties of ferritic steels, general-purpose 
structural steels, and materials exhibiting strong and weak strain 
hardening [3].

The calculations verifying the limit loads and the calcula-
tions in the elastic-plastic region were performed using the same 
FE model of the SEN(B) specimen. The numerical model was 
based on the recommendations provided in [3, 4, 10–12]. The 
existing axis of symmetry was used to model only half of the 
specimen. A contact problem was solved to represent the real 
behaviour of the specimen [3].

The crack tip of the SEN(B) specimen was modelled as 
a quarter of an arc with the radius rw ranging 1÷5 µm [3]. This 
means that, in extreme cases, the radius of the crack tip was 
40000 and 8000 times smaller than the specimen width W [3]. 
The crack tip was divided into 12 elements. The density of 
the elements closer to the edges was higher; depending on the 
model, the edge elements were 5÷20 times smaller than the 
largest elements located in the central part of the arc [3]. The 
size of the radius of the arc was conditioned by the level of the 
external load, as well as the crack length. For each specimen, 
the area near the crack tip with a radius of about 1.0÷5.0 mm 
was divided into 36÷50 FEs, the smallest of which, located 
closest to the crack tip, was 20÷50 times smaller than the ele-
ment located furthest from the crack tip [3]. This means that, in 
extreme cases, the smallest element, located very close to the 
crack tip, constituted about 1/3024 or 1/10202 of the specimen 
width W, while the largest element modelling the area near the 
crack accounted for about 1/151 or 1/240 of the specimen width 
[3]. The parameters of the numerical model were strictly depen-
dent on the crack length, material characteristics, and external 
load [3]. The analysis was conducted assuming small strains and 
small displacements [4] at the dominance of plane strain state. 
The FE model was developed using nine-node FEs of the 2-D 
SOLID plane strain type (mixed-order interpolation scheme) 
with nine integration points [3]. The total number of FEs used 
in the model was 6029÷6308, exceeding the number of nodes, 
which ranged 24625÷25743 [3].

In the numerical analysis, it was assumed that the width 
of the SEN(B) specimen was constant (W = 40 mm), the dis-
tance between the supports was S = 4£W = 160 mm, the total 
length was L = 176 mm, and the four relative crack lengths 
were a/W = {0.05, 0.20, 0.50, 0.70} [3]. It should be noted that 
the verification of the limit loads involved using 16 specimens, 
differing in the yield strength and the relative crack length. In 
the elastic-plastic analysis, however, 64 specimens were used. 
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That required different definitions of the material and different 
crack lengths. Fig. 2 shows a numerical model of the SEN(B) 
specimen used in the FE calculations.

The elastic-plastic analysis was based on the plots showing 
the displacement of the point of application of the force vLL, 
the J-integral, and the CTOD versus the external load P, nor-
malised by the limit load P0 [3]. The J-integral was determined 

using the virtual shift method [32, 33] based on the concept of 
a virtual crack growth, to calculate the virtual change in energy 
[3, 32, 33]. The analysis used eight integration contours lying 
in the area comprised of all the finite elements. The radius of 
the finite elements located around the crack tip had a length of 
{10, 15, 20, 25, 30, 35, 40, 45} FEs. Each integration contour 
was generated in accordance with the recommendations given 
in [4, 10–12]. It is important to note that the values of the J-in-
tegral obtained from the eight integration contours were similar. 
The CTOD was determined after the elastic-plastic FE calcula-
tions were completed using the concept proposed by Shih [34], 
illustrated in Fig. 3 [3].

3.	 Results of numerical calculations

3.1. Limit loads and their approximation. In the numerical 
analysis, the limit loads P0 were determined by estimating the 
size and shape of the plastic zone increasing with external load 
and by analysing the diagrams showing the relationship between 
the force P and the displacement of the point of application of 
the force vLL. The limit load P0 was assumed to be equal to the 
external load P causing full plasticity of the uncracked liga-
ment. The value of the load generally indicates the beginning 
of the saturation region in the P = f(vLL) curves. The numerical 

Fig. 2. Numerical model of the SEN(B) specimen under study: a) full model of the half of the SEN(B) specimen used in numerical analysis; b) 
larger fragment of the SEN(B) specimen – area near crack tip; c) the crack tip and the FE mesh in close proximity of the crack tip [3]
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values of the limit loads and the percentage difference between 
the numerical solution and the formula recommended by the 
EPRI [9] – equation (5) – are provided in Table 1. Presented in 
the Table 1 numerical results were confirmed using the “twice 
elastic slope method”, which may be used to determining the 
limit load base on the diagrams presenting external load versus 
load line displacement.

The analysis of the results concerning the values of the 
limit load leads to the following conclusions [3]. The longer the 
crack, the lower the value of the limit load [3]. The higher the 
yield strength, the proportionally greater the value of the limit 
load [3]. The numerical results are represented graphically in 
Fig. 4. The relationship between the limit load P0 and the yield 
strength σ0 is linear [3]. However, from Fig. 4 it is evident that 
for the relationship between P0 and the relative crack length 
a/W, the linearity decreases with an increase in the crack length 
[3]. This phenomenon is likely to be affected by an increase in 
the size of the plastic zone at the interface between the specimen 
and the loading roller [3]. Similar observations were reported in 
[35, 36], which are concerned with the analysis of elastic-plastic 
stress fields.

As can be seen, the numerically calculated values of P0 are 
only slightly different from those determined according to for-
mula (5) [9]. For specimens with very short cracks, the values 
are up to 4% greater. However, as the crack length increases, 

the difference between the FEM results and those obtained with 
formula (5) becomes greater (up to 6%). It should be men-
tioned that the numerically calculated values are smaller than 
the values determined by means of formula (5) in accordance 
with the EPRI procedures [9].

The numerical results were then approximated. The algo-
rithm presented in the EPRI procedures was used to write the 
formula for estimating the limit load P0 for the SEN(B) speci-
mens with predominant plane strain conditions [3]:

	 P0 = B ¢ σ0 ¢ f(a/W ),� (6)

where the function f(a/W) is given by:

	
f(a/W ) = 0.01064 ¢ (a/W )3 ¡ 0.00032 ¢ (a/W )2 +  
f(a/W ) ¡ 0.02299 ¢ (a/W ) + 0.01398, � (7)

with R2 = 0.99963 [3], or by: 

	 f(a/W ) = [0.11958 ¡ 0.11642 ¢ (a/W )]2,� (7a)

with R2 = 0.9991. The use of equation (6) requires knowledge 
of the relative crack length a/W, the yield strength σ0 expressed 
in [MPa], and thickness B expressed in [m] [3]. The results of 
the limit load will be expressed in [MN] [3].

The alternative formula for calculating the limit load may 
be the empirical equation (8), describing the dependence 
P0 = f(a/W, σ0) in the following form:

	
P0 = A1 + A2 ¢ σ0 + A3 ¢ (a/W ) + A4 ¢ (σ0)

2 +  
P0 + A5 ¢ (a/W )2 + A6 ¢ σ0 ¢ (a/W ),

� (8)

where the approximation coefficients are: A1 = 681, A2 = 13.28, 
A3 = –7235, A4 = 0.00017, A5 = 10005, and A6 = –18.20 for 
R2 = 0.998.

3.2. Analysis of the parameters of elastic-plastic fracture 
mechanics and their approximation. The parameters of elas-
tic-plastic fracture mechanics discussed in this paper are the 
J-integral, the CTOD, denoted as δ (which can be used to de-
termine the actual fracture toughness KIC in accordance with the 
FITNET procedures [13–15], where the J-integral is addition-

Table 1 
Numerical values of the limit loads P0 and the percentage difference between the numerical solution and formula (5)

σ0 [MPa] σ0/E
P0_FEM [MN] (P0_FEM ¡ P0_EPRI)/P0_FEM ¢100%

a/W = 0.05 a/W = 0.20 a/W = 0.50 a/W = 0.70 a/W = 0.05 a/W = 0.02 a/W = 0.50 a/W = 0.70

315 0.000153 3.983 2.952 1.172 0.432 3.922% –0.553% –2.209% –4.522%

500 0.000243 6.357 4.713 1.854 0.686 3.346% –1.150% –1.809% –4.549%

1000 0.000485 12.915 9.436 3.727 1.378 1.742% –1.251% –2.331% –4.877%

1500 0.000728 19.553 14.358 5.667 2.094 0.805% –2.650% –3.657% –6.142%

5 

As can be seen, the numerically calculated values of P0 
are only slightly different from those determined according 
to formula (5) [9]. For specimens with very short cracks, 
the values are up to 4% greater. However, as the crack 
length increases, the difference between the FEM results 
and those obtained with formula (5) becomes greater (up to 
6%). It should be mentioned that the numerically calculated 
values are smaller than the values determined by means of 
formula (5) in accordance with the EPRI procedures [9]. 

The numerical results were then approximated. The 
algorithm presented in the EPRI procedures was used to 
write  the  formula for  estimating  the limit load P0 for the 

 
Fig. 4. Limit load P0 versus relative crack length a/W for the SEN(B) 
specimens with predominant plane strain conditions. 
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where the function f(a/W) is given by: 
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with R2=0.99963 [3], or  
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with R2=0.9991. The use of Eq. (6) requires knowledge of 
the relative crack length a/W, the yield strength 0 
expressed in [MPa] and the thickness B expressed in [m] 
[3]. The result of the limit load will be expressed in [MN] 
[3].  

The alternative formula for calculating the limit load, 
may be empirical Eq. (8), describing the dependence 
P0=f(a/W,0) in the following form: 
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where approximation coefficients are: A1=681, A2=13.28, 
A3=-7235, A4=0.00017, A5=10005, A6=-18.20 for 
R2=0.998. 

 

3.2 Analysis of the parameters of elastic-plastic 
fracture mechanics and their approximation. 

The parameters of elastic-plastic fracture mechanics 
discussed in this paper are the J-integral, the CTOD, 
denoted as  (which can be used to determine the actual 
fracture toughness KIC in accordance with the FITNET 
procedures [13-15], where the J-integral is additionally a 
parameter controlling the stress field near the crack tip [4-
5]) and the displacement of the point of application of the 
force vLL [3]. The objective of the analysis was to determine 
the relationships between these parameters and the material 
characteristics (expressed by the strain hardening exponent 
n and the yield strength 0) and the geometry of the SEN(B) 
specimens, expressed by the relative crack length a/W (Fig. 
5) [3]. 

The natural conclusion is that each of the three 
parameters increases with an increase in the external load 
(in the plots, normalised by the limit load P0), while the rate 
of changes is conditioned by the material characteristics 
and the relative crack length [3]. The shorter the crack 
length, the higher the values of the J-integral, the CTOD  
and the displacement of the point of application of the force 
vLL, with the values of the external load being constant (Fig. 
5) [3]. Another finding is that the smaller the degree of 
material strain hardening (the higher the value of the 
exponent n in the RO law), the higher the values of the 
parameters of elastic-plastic fracture mechanics, with the 
values of the external load being constant (Figs. 5a and 5f) 
[3]. An increase in the material strength (expressed by the 
yield strength 0) is accompanied also by an increase in the 
value of the J-integral, the CTOD and the displacement of 
the point of application of the force vLL, with the values of 
the external load being constant (Figs. 5d-e) [3].  

The full graphical representation of the numerical 
results obtained in the FE elastic-plastic analysis comprises 
192 curves [3]. As it is impossible to include them all either 
in this or any other journal paper,  the numerical data (i.e. 
the values of the J-integral, the CTOD and the displacement 
of the point of application of the force vLL as a function of 
the normalised external load P/P0) was approximated. 

In this way, a catalogue of hybrid – combined analytical 
and numerical – solutions can be created to determine these 
parameters with no need for FE calculations, as suggested 
by the authors of the EPRI procedures [9], [3]. They applied 
an analytical and hybrid method to determine the 
parameters of elastic-plastic fracture mechanics, which 
involved estimating the parameters separately, as elastic 
and plastic (formulae (2-8)) [9]. The J-integral is 
determined experimentally in a similar way, i.e. separately 
as an elastic parameter and a plastic parameter, using the 
method based on changes in compliance in accordance with 
the ASTM standards [17]. In this study, the solution was 
simplified; the parameters of elastic-plastic fracture 
mechanics (the J-integral, the CTOD and the displacement 
of the point of application of the force vLL) were not 
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ally a parameter controlling the stress field near the crack tip 
[4, 5]) and the displacement of the point of application of the 
force vLL [3]. The objective of the analysis was to determine the 
relationships between these parameters and the material charac-
teristics (expressed by the strain hardening exponent n and the 
yield strength σ0) and the geometry of the SEN(B) specimens, 
expressed by the relative crack length a/W (Fig. 5) [3].

The natural conclusion is that each of the three parameters 
increases with an increase in the external load (in the plots, 
normalised by the limit load P0), while the rate of changes 
is conditioned by the material characteristics and the relative 
crack length [3]. The shorter the crack length, the higher the 
values of the J-integral, the CTOD δ, and the displacement of 
the point of application of the force vLL, with the values of the 
external load being constant (Fig. 5) [3]. Another finding is that 
the smaller the degree of material strain hardening (the higher 
the value of the exponent n in the RO law), the higher the 
values of the parameters of elastic-plastic fracture mechanics, 
with the values of the external load being constant (Figs. 5a 
and 5f) [3]. An increase in the material strength (expressed by 
the yield strength σ0) is accompanied also by an increase in the 
value of the J-integral, CTOD, and displacement of the point 
of application of the force vLL, with the values of the external 
load being constant (Figs. 5d, 5e) [3].

The full graphical representation of the numerical results 
obtained in the FE elastic-plastic analysis is comprised of 192 
curves [3]. As it is impossible to include them all either in this 
or any other journal paper, the numerical data (i.e. the values 
of the J-integral, the CTOD, and the displacement of the point 
of application of the force vLL as a function of the normalised 
external load P/P0) was approximated.

In this way, a catalogue of hybrid – combined analytical 
and numerical – solutions can be created to determine these 
parameters with no need for FE calculations, as suggested by 
the authors of the EPRI procedures [3, 9]. They applied an 
analytical and hybrid method to determine the parameters of 
elastic-plastic fracture mechanics, which involved estimating 
the parameters, separately as elastic and plastic (formulae (2–8)) 
[9]. The J-integral is determined experimentally in a similar 
way, i.e. separately as an elastic parameter and a plastic param-
eter, using a method based on changes in compliance with the 
ASTM standards [17]. In this study, the solution was simplified: 
the parameters of elastic-plastic fracture mechanics (the J-inte-
gral, the CTOD and the displacement of the point of application 
of the force vLL) were not calculated separately as elastic param-
eters and plastic parameters. When the J-integral is determined 
in accordance with the Polish standard [16], using the single 
specimen method and the compliance calibration method, it is 

Fig. 5. The influence of: a) the exponent n in the RO law and d) the yield strength σ0 on the J-integral determined numerically; b) the relative 
crack length a/W and e) the yield strength σ0 on the CTOD, denoted as δ, determined numerically; c) the relative crack length a/W and f) the 

yield strength σ0 [3] on the load line displacement vLL; as the function of the external load P normalized by limit load P0
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calculated separately as elastic parameters and plastic 
parameters. When the J-integral is determined in 
accordance with the Polish standard [16] using the single 
specimen method and the compliance calibration method, 
it is not necessary to perform separate calculations for the 
elastic and plastic parts. It can thus be suggested that the J-
integral, the CTOD and the load line displacemnet vLL 
should be determined as follows [3]: 
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where P0 is the limit load calculated numerically for the 
purpose of this paper (Table 1, or formulae (6-7), while the 
functions h1

*, h2
* and h3

* are dependent on the strain 
hardening exponent n and the relative crack length a/W [3]. 

a) 

 

b) 

 

c) 

 
d) 

 

e) 

 

f) 

 
Fig. 5. The influence of: the exponent n in the RO law on the (a) and the yield strength 0 (d), on the J-integral determined numerically; the relative 
crack length a/W (b) and the yield strength 0 (e) on the CTOD denoted as  determined numerically;  the relative crack length a/W (c) and  the yield 
strength 0 (f) [3] on the load line displacement vLL; as the function of the external load P normalized by limit load P0. 

The analysis of the results reveals that the values of the 
functions h1

*, h2
* and h3

* are strongly dependent on the 
degree of material strain hardening expressed by the value 
of the strain hardening exponent n, the relative crack length 
a/W, and also the value of the external load P/P0 (Figs. 6b-
c); however, when the limit load P0 is exceeded, the 
functions h1

*, h2
* and h3

* decrease towards the saturation 
region and reach almost a constant value (Fig. 6) [3]. The 
analytical and numerical method provided in the EPRI 
procedures [9], using the values of the J-integral, the 
CTOD and the displacement of the point of application of 
the force, is based on constant values of the functions h1, h2 
and h3 [9], which are independent of the external load [3]. 
Earlier studies by the author described in Ref. [8] indicate 
that the values of the functions h1, h2 and h3 change with a 
change in the external load [3]. 

It is interesting that the functions h1
*, h2

* and h3
* are 

independent of the yield strength (Figs. 6). The values of 
the functions h1

*, h2
* and h3

* decrease with an increase in 
the external load P/P0 until they reach the value of 
saturation with the external load being P/P01.0 (Fig. 6) 
[3]. All the three functions increase with an increase in the 
crack length (for example, Fig. 6b). When the strain 
hardening exponent n affects the value of the functions h1

*, 
h2

* and h3
*, each of them needs to be considered separately. 

Initially, the value of the function h1
* increases with a 

decrease in the material strain hardening. However, after 
the external load is exceeded (P/P0=1.0), a slight shift in 
the  relationship is observed. For P/P0>1.0, the value of the 
function h1

* rises slightly with an increase in the material 
strain hardening. The value of the function h2

* rises over 
the whole range of external loads with a decrease in the 
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degree of the material strain hardening (an increase in the 
exponent n). However, when the limit load is exceeded, the 
differences between the curves h2

*=f(P/P0) for the 
subsequent values of the strain hardening exponent are 
relatively small. The value of the function h3

* increases 
with increasing strain hardening exponent n, while the 

differences between the curves h3
*=f(P/P0) for the 

subsequent values of the strain hardening exponent n 
increase with increasing external load (Fig. 6c). These 
conclusions were drawn in the analysis of additional charts 
not presented in the paper.  

a) 

 

b) 

 

c) 

 
Fig. 6. Functions h1

*, h2
* and h3

* versus external load for the SEN(B) specimens, dependent on the material characteristics and the relative crack length 
– selected trajectories: a) h3

* versus P/P0 for different yield strength 0; b) h1
* versus P/P0 for different relative crack length a/W;; c) h3

* versus P/P0 for 
different strain hardening exponent n. 

The results obtained in this study can be applied to solve 
real engineering problems, but  representing them 
graphically may be troublesome. For this reason it was 
essential to approximate the curves showing the relationship 
between the functions h1

*, h2
* and h3

* and the external load 
P/P0. As the functions h1

*, h2
* and h3

* are not affected by the 
yield strength and the functions change with increasing ratio 
P/P0, the functions h1

*, h2
* and h3

* were described using the 
following approximation equations [3]: 
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where with the approximation coefficients a1..j1, a2..h2 and 
a3..j3 being dependent on the strain hardening exponent n 
and the relative crack length a/W. Selected values of the 
approximation coefficients are shown in Tables 2-4. In the 
near future, the author intends to develop an computer 
application to assess the values of the functions h1

*, h2
* and 

h3
*, and, in consequence, the values of the J-integral, the 

CTOD and the displacement of the point of application of 
the force vLL, by introducing appropriate material 
characteristics and specimen geometry [3]. Currently, the 
best solution to take advantage of the proposed 
approximation, is to prepare a spreadsheet using the 
Microsoft Excel program. 

Table 2 
Approximation coefficients a1..j1 required to calculate the values of the 

function h1
* according to formula (12) – selected results. 

a/W=0.05 
n 3.36 5 10 20 
a1 36.6 103.4 450.7 1345.2 

b1 402.4 595.5 1178.6 2215.7 

c1 2391.0 5637.9 19530.9 45703.4 

d1 7660.2 12618.3 29702.7 55644.0 

e1 11627.7 16936.5 27154.6 902.2 

f1 10503.5 9511.1 8302.8 -25251.3 

g1 -1788.1 -14005.0 -54569.9 -83780.2 

h1 -6893.3 -14939.4 -46211.9 -63271.8 

i1 -56.7 2943.3 19245.7 43918.1 

j1 1188.0 4018.9 18704.3 38626.3 

R2 0.9999 0.9999 0.9999 0.9999 

 
A comprehensive list of the coefficients of the 

approximation, may be obtained by direct contact with the 
author of the paper, in the form of a text file, the Microsoft 
Excel file or in the form of proprietary computer application 
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not necessary to perform separate calculations for the elastic 
and plastic parts. Therefore, it can be suggested that the J-in-
tegral, the CTOD and the load line displacement vLL should be 
determined as follows [3]:

	 J = α ¢ σ0 ¢ ε0 ¢ b ¢ (P/P0)
n+1 ¢ [h1

¤(a/W, n)]n+1,� (9)

	 δ = α ¢ ε0 ¢ b ¢ (P/P0)
n ¢ [h2

¤(a/W, n)]n,� (10)

	 vLL = α ¢ ε0 ¢ b ¢ (P/P0)
n ¢ [h3

¤(a/W, n)]n,� (11)

where P0 is the limit load, calculated numerically for the purpose 
of this paper (Table 1, or formulae (6–7)), while the functions 
h1

*, h2
*, and h3

* are dependent on the strain hardening exponent 
n and the relative crack length a/W [3].

The analysis of the results reveals that the values of the 
functions h1

*, h2
*, and h3

* are strongly dependent on the degree 
of material strain hardening expressed by the value of the strain 
hardening exponent n, the relative crack length a/W, and also 
the value of the external load P/P0 (Figs. 6b, 6c). However, 
when the limit load P0 is exceeded, the functions h1

*, h2
*, and 

h3
* decrease towards the saturation region and reach almost 

a constant value (Fig. 6) [3]. The analytical and numerical 
method provided in the EPRI procedures [9], using the values 
of the J-integral, the CTOD, and the displacement of the point 
of application of the force, is based on constant values of the 
functions h1

*, h2
*, and h3

* [9], which are independent of the ex-
ternal load [3]. Earlier studies by the author, described in [8], 
indicate that the values of the functions h1

*, h2
*, and h3

* change 
with a change in the external load [3].

It is interesting that the functions h1
*, h2

*, and h3
* are indepen-

dent of the yield strength (Fig. 6). The values of the functions 
h1

*, h2
*, and h3

* decrease with an increase in the external load P/P0  
until they reach the value of saturation with the external load 
being P/P0 ¸ 1.0 (Fig. 6) [3]. All three functions increase with 

an increase in the crack length (for example, Fig. 6b). When the 
strain hardening exponent n affects the value of the functions 
h1

*, h2
*, and h3

* each of them needs to be considered separately. 
Initially, the value of the function h1

* increases with a decrease 
in the material strain hardening. However, after the external load 
is exceeded (P/P0 = 1.0), a slight shift in the relationship is ob-
served. For P/P0 > 1.0, the value of the function h1

* rises slightly 
with an increase in the material strain hardening. The value of 
the function h2

* rises over the whole range of external loads 
with a decrease in the degree of the material strain hardening 
(an increase in the exponent n). However, when the limit load 
is exceeded, the differences between the curves h2

* = f (P/P0)  
for the subsequent values of the strain hardening exponent are 
relatively small. The value of the function h3

* increases with an 
increasing strain hardening exponent n, while the differences 
between the curves h3

* = f (P/P0) for the subsequent values of 
the strain hardening exponent n increase with an increasing 
external load (Fig. 6c). These conclusions were drawn in the 
analysis of additional charts, not presented in the paper.

The results obtained in this study can be applied to solve 
real engineering problems, but representing them graphically 
may be troublesome. For this reason, it was essential to approx-
imate the curves showing the relationship between the functions 
h1

*, h2
*, and h3

* and the external load P/P0. Since the functions 
h1

*, h2
*, and h3

* are not affected by the yield strength and the 
functions change with increasing ratio P/P0, the functions h1

*, 
h2

*, and h3
* were described using the following approximation 

equations [3]:

	 h1
*(a/W, n) = FI(P/P0)/FII(P/P0),� (12)

	
h2

*(a/W, n) = a2 + b2 ¢ (P/P0)
–1 + c2 ¢ (P/P0)

–2 +  
+ d2 ¢ (P/P0)
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	 h3
*(a/W, n) = FIII(P/P0)/FIV(P/P0),� (14)

Fig. 6. Functions h1
*, h2

*, and h3
* versus external load for the SEN(B) specimens, dependent on the material characteristics and the relative 

crack length – selected trajectories: a) h3
* versus P/P0 for different yield strength σ0; b) h1

* versus P/P0 for different relative crack length a/W; 
c) h3

* versus P/P0 for different strain hardening exponent n

a) b) c)
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wherein

	
FI(P/P0) = a1 + c1 ¢ (P/P0) + e1 ¢ (P/P0)

2 +  
FI(P/P0) + g1 ¢ (P/P0)

3 + i1 ¢ (P/P0)
4, � (12a)

	
FII(P/P0) = 1 + b1 ¢ (P/P0) + d1 ¢ (P/P0)

2 +  
FII(P/P0) + f1 ¢ (P/P0)

3 + h1 ¢ (P/P0)
4 + j1 ¢ (P/P0)

5,
� (12b)

	
FIII(P/P0) = a3 + c3 ¢ (P/P0) + e3 ¢ (P/P0)

2 +  
FIII(P/P0) + g3 ¢ (P/P0)

3 + i3 ¢ (P/P0)
4, � (14a)

	
FIV(P/P0) = 1 + b3 ¢ (P/P0) + d3 ¢ (P/P0)

2 +  
FIV(P/P0) + f3 ¢ (P/P0)

3 + h3 ¢ (P/P0)
4 + j3 ¢ (P/P0)

5, � (14b)

where the approximation coefficients a1..  j1, a2 .. h2, and a3 ..  j3 
are dependent on the strain hardening exponent n and the rel-
ative crack length a/W. Selected values of the approximation 
coefficients are shown in Tables 2–4. In the near future, the 
author intends to develop a computer application to assess the 
values of the functions h1

*, h2
*, and h3

*, and, in consequence, 
the values of the J-integral, the CTOD, and the displacement 
of the point of application of the force vLL, by introducing ap-
propriate material characteristics and specimen geometry [3]. 
Currently, the best solution to take advantage of the proposed 
approximation, is to prepare a spreadsheet using the Microsoft 
Excel program.

Table 2 
Approximation coefficients a1..  j1 required to calculate the values of 

the function h1
* according to formula (12) – selected results

a/W = 0.05

n 3.36 5 10 20

a1 36.6 103.4 450.7 1345.2

b1 402.4 595.5 1178.6 2215.7

c1 2391.0 5637.9 19530.9 45703.4

d1 7660.2 12618.3 29702.7 55644.0

e1 11627.7 16936.5 27154.6 902.2

f1 10503.5 9511.1 8302.8 –25251.3

g1 –1788.1 –14005.0 –54569.9 –83780.2

h1 –6893.3 –14939.4 –46211.9 –63271.8

i1 –56.7 2943.3 19245.7 43918.1

j1 1188.0 4018.9 18704.3 38626.3

R2 0.9999 0.9999 0.9999 0.9999

A comprehensive list of the coefficients of the approxima-
tion may be obtained by directly contacting the author of the 
paper, in the form of a text file, a Microsoft Excel file, or in 

the form of a proprietary computer application that allows for 
the set parameters of material and geometry to calculate the 
J-integral, the CTOD, and the load line displacement vLL.

4.	 Conclusions

This paper has discussed the influence of the material character-
istics and the relative crack length on three fracture mechanics 
parameters: the J-integral, the CTOD, and the displacement of 
the point of application of the force vLL, calculated for selected 
elastic-plastic material configurations [3]. The study conducted 
for standard SEN(B) type specimens with predominant plane 

Table 3 
Approximation coefficients a2 .. h2 required to calculate the values of 

the function h2
* according to formula (13) – selected results

a/W = 0.20

n 3.36 5 10 20

a2 0.72389 0.5562 0.3655 0.2009

b2 0.0187 0.4236 0.6916 0.8490

c2 0.0570 -0.0062 –0.0098 –0.0079

d2 –0.0048 0.0006 0.0007 0.0005

e2 0.0002 –1.95E-05 –1.97E-05 –1.37E-05

f2 –3.70E-06 2.35E-07 2.25E-07 1.53E-07

g2 3.42E-08 –9.56E-10 –8.90E-10 –5.99E-10

h2 –1.18E-10 0 0 0

R2 0,9877 0,9946 0,9988 0,9997

Table 4 
Approximation coefficients a3 ..  j3 required to calculate the values of 

the function h3
* according to formula (14) – selected results

a/W = 0.70

n 3.36 5 10 20

a3 392.3 767.2 1946.2 4554.4

b3 770.5 1215.8 2443.6 5113.8

c3 23634.8 40523.3 81875.6 181512.8

d3 20201.7 36129.6 75971.5 174782.3

e3 80790.5 96364.5 79167.2 90964.1

f3 19980.5 29544.3 22628.9 28725.1

g3 –63902.8 –127424.3 –233763.9 –524785.9

h3 –22531.5 –58573.7 –146892.3 –410901.5

i3 17418.6 39848.6 99415.6 268953.3

j3 6024.7 19411.1 67052.7 220480.0

R2 1.0000 1.0000 1.0000 1.0000
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Proposal of the hybrid solution to determining the selected fracture parameters for SEN(B) specimens dominated by plane strain

strain conditions involved a numerical (FE) analysis of the pa-
rameters and verification of the existing solutions recommended 
in the EPRI procedures [9] to determine the limit loads [3]. New 
analytical formulae based on FE calculations were proposed [3]. 
The results can be used to create a catalogue of combined ana-
lytical and numerical solutions to determine the J-integral, the 
CTOD, and the displacement of the point of application of the 
force vLL in relation to the external load, the material character-
istics, and the relative crack length for SEN(B) specimens with 
predominant plane strain conditions [3]. The hybrid formulae 
(9–14) and the new formula to determine the limit load P0 (equa-
tions (6‒7) or (8)) can be applied to solve engineering problems 
in the area of the strength of structures containing cracks [3].

The presented new hybrid formulas allow to estimate se-
lected parameters of the elastic-plastic fracture mechanics with 
more or less accuracy in relation to the actual experimental 
data. Using the proposed hybrid solutions, engineers should be 
aware that the set values of the J-integral, CTOD of the load 
line displacement true for the case of a stationary crack, and the 
possible use of these solutions for the case of growing cracks, 
should be subject to discussion and broad considerations.

The presented paper may be treated as a supplement of 
the author’s earlier papers [3, 8], which discussed the hybrid 
method for determining the fracture mechanics parameters. The 
proposed new relationships for calculating the limit loads com-
plete the broad consideration of fracture mechanics in this field, 
however, they do not exhaust the subject, as shown in [20].
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