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Abstract. The paper presents difficulties connected with fuzzy and interval division. If operations such as fuzzy addition, subtraction and mul-
tiplication provide as a result one compact, multidimensional granule, then a result of the fuzzy division can consists of few separated granules. 
Such results are more difficult to use in next calculations. The paper shows that the number of solution granules can be higher than 2 and that 
in certain problems division does not occur explicitly. In certain problems, separation of particular solution granules can be considerable. The 
paper also shows how to realize the fuzzy division when its denominator contains zero. Most types of fuzzy arithmetics forbid such operation. 
However, the paper shows that it is possible. Multidimensional fuzzy RDM arithmetic and horizontal membership functions which facilitate 
detecting of solution granules are also described. The considered problems are visualized by examples.
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larity phenomenon occurs always when the uncertain divisor 
contains zero. If the divisor does not contain zero, then the 
division result always consists of a single granule. Examination 
of the problem has shown that if the multi-granularity occurs 
then the result usually consists of 2 granules, which is intui-
tively understandable. However, the division result can some-
times consist of more granules, e.g. of 4. The next surprising 
observation is that the distance between component granules, 
which intuitively should be infinitely small, can sometimes be 
quite considerable.

The multi-granularity of division result has been observed 
thanks to the application of a new type of fuzzy arithmetic 
that was called multidimensional fuzzy RDM arithmetic 
(MD-F-RDM arithmetic). In papers on other existing types 
of fuzzy arithmetic, the multi-granularity phenomenon has 
not been investigated because of a simple reason: the division 
by the fuzzy divisor containing zero is not allowed. More-
over, mathematical properties of these arithmetic types do 
not allow for such analysis. MD-F-RDM, which is shortly 
presented in Section 2, allows for this kind of division.

The paper is organized as follows: Section 1 describes new, 
horizontal membership functions (MFs) that are the basis of 
MD-F-RDM arithmetic. Other fuzzy arithmetic types use con-
ventional, vertical MFs. Horizontal MFs considerably facili-
tate fuzzy calculations. A characteristic feature of MD-F-RDM 
arithmetic is that its calculation result is not a typical fuzzy 
set, but a multidimensional fuzzy solution set (MDFS-set). 
Such a set has properties of a complete, algebraic solution 
set and gives MD-F-RDM arithmetic properties which other 
fuzzy arithmetic types do not have. These properties are men-
tioned in Section 3. An additional property that has not been 
described in this section is the restoration property, owing 
to which MD-F-RDM arithmetic is able to satisfy the for-
ward-backward calculation test. In Section 4, various exam-
ples of multi-granularity have been described. Among them, 

1.	 Introduction

Fuzzy arithmetic (FA) [1–7] is an extension of the interval arith-
metic (IA) [4, 8]. It extends a calculation domain from standard 
intervals to fuzzy intervals or fuzzy numbers. Both kinds of 
arithmetic are very important for the uncertainty theory [9], 
granular computing [4], grey systems [10] and computing with 
words [11, 12]. IA and FA are necessary for solving linear and 
nonlinear systems of equations with uncertain coefficients [4]. 
Such systems describe real economic, engineering, medical, en-
vironmental protection (and many other) problems [13–16]. FA 
is a basis for intuitionistic fuzzy arithmetic [17, 18]. It is also ap-
plied in rough-set problems to increase the solution quality [19].

FA meets with considerable interest of scientists and has 
been developed for many years. Numerous FA methods have 
been elaborated, e.g. L-R fuzzy arithmetic [20, 21], FA based 
on discretized fuzzy numbers and on the extension principle of 
Zadeh [22], FA using decomposed fuzzy membership functions 
(standard IA with α-cuts) [22], advanced FA based on transfor-
mation method [23], constrained FA [22] etc. An overview of 
FA methods can be found in [3]. Some of FA methods allow to 
find a solution of simpler problems analytically, but more com-
plicated ones must be solved numerically. All the time, we ob-
serve the emergence of new FA methods, so the question arises: 
what is the reason of such situation? Are existing methods not 
sufficiently effective?

The motivation of this paper is to present a phenomenon 
which can occur during the division of fuzzy numbers, intervals 
and other granular models of uncertain data. This phenomenon 
consists in a multi-granular division result and it does not occur 
in a division of conventional crisp numbers. The multi-granu-
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examples of multi-granularity greater than 2. Observation of 
the multi-granularity was possible thanks to MD-F-RDM arith-
metic, which uses in calculations not only borders of intervals 
but also their insides. In Section 4, a real problem in which the 
multi-granularity can occur is also presented. It is the known 
system-balance problem of Leontief in which an economic 
country-system is described by a set of linear equation. Since 
at least a part of system parameters is uncertain, its determi-
nant is also uncertain and can contain zero. Hence, the fuzzy 
solution set can be multi-granular.

Further on, a short description of the best known and fre-
quently used standard fuzzy arithmetic [24] based on standard 
interval arithmetic [8] will be presented.

Uncertain values can be modelled in various ways. A very 
popular form is an interval [8]. Its definition is as follows: 
closed interval denoted by [a, b] is the set of real numbers 
given by (1).
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by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
canonical form:

A(x) =



















fL(x) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
fR for x ∈ (c,d] ,
0 otherwise,

(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.

A(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-

Fig. 1. Trapezoidal membership function

ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =
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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.
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[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
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A convenient way of expressing any fuzzy interval A is the
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where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.
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Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
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der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
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ear functions we obtain a special type of fuzzy intervals called
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common ways of defining the extended operations are based on
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principle of fuzzy set theory [20].
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where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
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Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
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decreases accuracy of achieved results. Vertical MFs also in-
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
canonical form:

A(x) =



















fL(x) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
fR for x ∈ (c,d] ,
0 otherwise,

(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.

A(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-

Fig. 1. Trapezoidal membership function

ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

, then 
this special fuzzy interval is called a fuzzy number. A conve-
nient way of expressing any fuzzy interval A is the canonical 
form:

	

A. Piegat, M. Pluciński
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whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
canonical form:

A(x) =
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fL(x) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
fR for x ∈ (c,d] ,
0 otherwise,

(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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

(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
canonical form:
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fR for x ∈ (c,d] ,
0 otherwise,

(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =








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
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



(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
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A(x) =



















fL(x) for x ∈ [a,b) ,
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where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =
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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
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fR for x ∈ (c,d] ,
0 otherwise,
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where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕ b1,a2 ⊕ b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):
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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
canonical form:
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(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =
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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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fuzzy solution set can be multi-granular.
Further on, a short description of the best known and fre-

quently used standard fuzzy arithmetic [24] based on standard
interval arithmetic [8] will be presented.

Uncertain values can be modelled in a various way. A very
popular form is an interval [8]. Its definition is as follows:
closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
fuzzy set.

A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
A convenient way of expressing any fuzzy interval A is the
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where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
Any trapezoidal fuzzy interval A is fully characterized by the
quadruple (a,b,c,d) of real numbers occurring in the special
canonical form (3). See also Fig. 1.
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0 otherwise.
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Let A = (a,b,c,d) be used as a shorthand notation of trape-
zoidal fuzzy intervals. When b = c in (3), A is usually called
triangular fuzzy number.

The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):
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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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For fuzzy intervals A and B operations defined by (4) and 

(5) are realized for each μ-cut, μ 2 [0, 1], which is the interval 
and can be denoted as [a–(μ), a–(μ)] and [b–(μ), b–(μ)].

SFA does not posses the inverse element of addition and 
multiplication with properties (6).
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by (1).
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on the set of real numbers R. Their purpose is to approximate
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[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
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where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
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quadruple (a,b,c,d) of real numbers occurring in the special
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A(x) =



















(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(3)

Let A = (a,b,c,d) be used as a shorthand notation of trape-
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The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)

[a1,a2]⊗ [b1,b2] = [min(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2),

max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):

µ(x) =
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






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(x−a)/(b−a) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
(d − x)/(d− c) for x ∈ (c,d] ,
0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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The sub-distributivity law and cancellation law for addition 
and multiplication do not hold in SFA. Therefore, application 
possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure fuzzy 
arithmetic (MD RDM-FA) is an alternative method of FA pro-
posed and developed by Polish scientists from Szczecin [5–7, 
11, 13, 18, 25]. Its basic concepts and the idea of horizontal 
membership functions (MF) were proposed by Piegat [25]. Fur-
ther on, these concepts will be shortly presented.

Fig. 1. Trapezoidal membership function
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Figure 1 shows a trapezoidal MF (fuzzy interval). It can be 
noted that triangular or rectangular MFs are a special case of 
this function.

Vertical models of MFs are used in classic fuzzy systems. 
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closed interval denoted by [a,b] is the set of real numbers given
by (1).

[a,b] = {x ∈ R : a ≤ x ≤ b} (1)

Fuzzy arithmetic deals with fuzzy numbers (FN) and fuzzy
intervals (FI) [24]. FN and FI are special fuzzy sets defined
on the set of real numbers R. Their purpose is to approximate
real, not precisely known, values of variables.

Given a fuzzy set A defined on R and a real number µ ∈
[0,1], the crisp set Aµ = {x ∈ R : A(x) ≥ µ} is called µ-cut
of A. The crisp set S(A) = {x ∈ R : A(x) > 0} is called the
support of A. When maxx∈R A(x) = 1, A is called a normal
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A fuzzy interval A is a normal fuzzy set on R whose µ-
cuts for all µ ∈ (0,1] are closed intervals of real numbers and
whose support is bounded. When A(x) = 1 for exactly one
x ∈R, then this special fuzzy interval is called a fuzzy number.
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canonical form:

A(x) =



















fL(x) for x ∈ [a,b) ,
1 for x ∈ [b,c] ,
fR for x ∈ (c,d] ,
0 otherwise,

(2)

where x ∈R, fL is a real-valued function that is increasing and
right-continuous, fR is a real-valued function that is decreasing
and left-continuous. fL and fR can be called left and right bor-
der of A. a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. When fL and fR are lin-
ear functions we obtain a special type of fuzzy intervals called
trapezoidal fuzzy intervals which are dominant in applications.
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quadruple (a,b,c,d) of real numbers occurring in the special
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Let A = (a,b,c,d) be used as a shorthand notation of trape-
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The mostly used fuzzy arithmetic is called standard fuzzy
arithmetic (SFA). In SFA, basic arithmetic operations on real
numbers are extended to operations on fuzzy intervals. Two
common ways of defining the extended operations are based on
the µ-cut representation of fuzzy intervals and on the extension
principle of fuzzy set theory [20].

When the µ-cut representation is applied, arithmetic opera-
tions on fuzzy intervals are defined in terms of arithmetic oper-
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ations on closed intervals [8]. If we have two intervals [a1,a2]
and [b1,b2] then:

[a1,a2]⊕ [b1,b2] = [a1 ⊕b1,a2 ⊕b2] , (4)
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max(a1 ⊗b1,a1 ⊗b2,a2 ⊗b1,a2 ⊗b2)] ,

(5)

where: ⊕ ∈ {+,−}, ⊗ ∈ {×,÷} and 0 /∈ [b1,b2] if ⊗=÷.
For fuzzy intervals A and B operations defined by (4) and (5)

are realised for each µ-cut, µ ∈ [0,1], which is the interval and
can be denoted as [a(µ),a(µ)] and [b(µ),b(µ)].

SFA does not posses the inverse element of addition and
multiplication with properties (6).

X +(−X) = 0 , X · (1/X) = 1 (6)

The sub-distributivity law and cancellation law for addition
and multiplication does not hold in SFA. Therefore, applica-
tion possibilities of SFA are limited.

Currently known methods are not perfect and can be im-
proved. The multi-dimensional, relative distance measure
fuzzy arithmetic (MD RDM-FA) is an alternative method of
FA proposed and developed by Polish scientists from Szczecin
[5, 6, 7, 11, 13, 18, 25]. Its basic concepts and the idea of hor-
izontal membership functions (MF) were proposed by Piegat
[25]. Further on, these concepts will be shortly presented.

Fig. 1 shows a trapezoidal MF (fuzzy interval). It can be
noted that triangular or rectangular MFs are a special case of
this function.

Vertical models of MFs are used in classic fuzzy systems.
They express a vertical dependence µ = f (x):
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0 otherwise.

(7)

Formula (7) expresses a unique dependence of the ‘verti-
cal’ variable µ from the ‘horizontal’ variable x. However, (7)
is a model of MF borders only. Function (7) does not model
an interior of MF. If such function is used in fuzzy calcula-
tions, only borders of MF (without its interior) are applied. It
decreases accuracy of achieved results. Vertical MFs also in-
crease computational effort in fuzzy calculations. Hence, an
idea of horizontal MFs was conceived.
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Formula (7) expresses a unique dependence of the ‘ver-
tical’ variable μ from the ‘horizontal’ variable x. However, (7) 
is a model of MF borders only. Function (7) does not model an 
interior of MF. If such function is used in fuzzy calculations, 
only borders of MF (without its interior) are applied. It reduces 
the accuracy of achieved results. Vertical MFs also increase 
computational effort in fuzzy calculations. Hence, an idea of 
horizontal MFs was conceived.

However the question arises whether it is possible to create 
an inverse (‘horizontal’) model x = f –1(μ). At first glance, it 
seems impossible because the dependence would not be unam-

biguous and it would not be a function then. However, it will 
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level μ. Fur-
ther on, this cut will be called μ-cut (not α-cut as usually), as 
in Fig. 2a. Variable αx, αx 2 [0, 1], will be called RDM-variable 
(RDM – relative distance measure). It determines a relative dis-
tance of point x¤ 2 [xL(μ), xR(μ)] from the origin of the local 
coordinate system (Fig. 2).

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left boundary 
xL(μ) of MF and the right boundary xR(μ) are expressed by (8).
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b− a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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The RDM-variable αx transforms the left boundary xL(μ) 
into the right boundary xR(μ). Contour line x(μ, αx) of constant 
αx values is determined by (9).
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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The contour line x(μ, αx) is set of points situated at an equal 
relative distance αx from the left boundary of MF xL(μ). A more 
precise form (10) of (9) can be called a horizontal MF.
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The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
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setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
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For example, if X is trapezoidal MF (1,3,4,5):
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and Y is trapezoidal MF (1,2,3,4):
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The horizontal MF x = f(μ, αx) is a function of two variables 
and exists in 3D-space (Fig. 3). It is unique.

Fig. 2. Visualization of the horizontal approach to fuzzy membership 
functions

Fig. 3. Horizontal MF x = (1 + 2μ) + (4 ¡ 3μ)αx, αx 2 [0, 1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x = f(μ, αx) defines not a single value of 
the variable x, but a set of possible values of x corresponding 
to a given μ-cut level. It defines an information granule and 
hence it will be denoted as xgr. Formula (10) describes the trap-
ezoidal MF. However, it can be adapted to triangular MF by 
setting b = c and to rectangular MF by setting a = b and c = d. 



500 Bull.  Pol.  Ac.:  Tech.  65(4)  2017

A. Piegat and M. Pluciński

Boundaries of these functions are linear. To derive formulas 
for nonlinear boundaries, e.g. of Gauss type, formulas for the 
left and right boundary should be determined and used in (8).

2.	 Operations of MD RDM fuzzy arithmetic

Let xgr = f(μ, αx) be a horizontal MF representing a fuzzy in-
terval X (11) and ygr = f(μ, αy) be a horizontal MF representing 
a fuzzy interval Y (12).
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx − ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
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tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.
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by (8).
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ables and exists in 3D-space, Fig. 3. It is unique.
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The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).
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Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
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For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
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The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
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Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
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x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,
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(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
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Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
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then zgr is given by:
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Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Fuzzy number division and the multi-granularity phenomenon

Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
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by (8).
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The RDM-variable αx transforms the left boundary xL(µ)
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stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
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The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+ 2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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For example, if X is trapezoidal MF (1, 3, 4, 5):
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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and Y is trapezoidal MF (1, 2, 3, 4):
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functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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then zgr is given by:
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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Fig. 2. Visualization of the horizontal approach to fuzzy membership
functions

However the question arises, whether it is possible to create
an inverse (‘horizontal’) model x = f−1(µ). At first glance, it
seems impossible because the dependence would not be unam-
biguous and it would not be a function then. However, it will
be shown that such inverse model can be created.

Let us consider a horizontal cut of MF on the level µ . Fur-
ther on, this cut will be called µ-cut (not α-cut as usually),
Fig. 2a. Variable αx, αx ∈ [0,1], will be called RDM-variable
(RDM - relative distance measure). It determines a relative dis-
tance of point x∗ ∈ [xL(µ),xR(µ)] from the origin of the local
coordinate system, Fig. 2.

The RDM-variable αx introduces the local Cartesian coor-
dinate system into the interior of an interval. The left bound-
ary xL(µ) of MF and the right boundary xR(µ) are expressed
by (8).

xL = a+(b−a)µ , xR = d − (d− c)µ (8)

The RDM-variable αx transforms the left boundary xL(µ)
into the right boundary xR(µ). Contour line x(µ ,αx) of con-
stant αx values is determined by (9).

x(µ ,αx) = xL +(xR − xL)αx, αx ∈ [0,1] (9)

The contour line x(µ ,αx) is set of points lying at equal rela-
tive distance αx from the left boundary of MF xL(µ). A more
precise form (10) of (9) can be called a horizontal MF.

x = [a+(b−a)µ ]
+ [(d−a)− (d− c+b−a)µ ]αx , αx ∈ [0,1]

(10)

The horizontal MF x = f (µ ,αx) is a function of two vari-
ables and exists in 3D-space, Fig. 3. It is unique.

Fig. 3. Horizontal MF x = (1+2µ)+ (4−3µ)αx , αx ∈ [0,1], corre-
sponding to vertical function shown in Fig. 2

The horizontal MF x= f (µ ,αx) defines not a single value of
the variable x, but a set of possible values of x corresponding
to a given µ-cut level. It defines an information granule and
hence it will be denoted as xgr. Formula (10) describes the
trapezoidal MF. However, it can be adapted to triangular MF by
setting b = c and to rectangular MF by setting a = b and c = d.
Boundaries of these functions are linear. To derive formulas
for nonlinear boundaries, e.g. of Gauss type, formulas for the
left and right boundary should be determined and used in (8).

2. Operations of MD RDM Fuzzy Arithmetic
Let xgr = f (µ ,αx) be a horizontal MF representing a fuzzy
interval X (11) and ygr = f (µ ,αy) be a horizontal MF repre-
senting a fuzzy interval Y (12).

X : xgr = [ax +(bx −ax)µ ]
+ [(dx −ax)− (dx − cx +bx −ax)µ ]αx ,

µ ,αx ∈ [0,1]
(11)

Y : ygr = [ay +(by −ay)µ ]
+ [(dy −ay)− (dy − cy +by−ay)µ ]αy ,

µ ,αy ∈ [0,1]
(12)

Addition of two independent fuzzy intervals

X +Y = Z : xgr(µ ,αx)+ ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(13)

For example, if X is trapezoidal MF (1,3,4,5):

xgr = (1+2µ)+ (4−3µ)αx , (14)

and Y is trapezoidal MF (1,2,3,4):

ygr = (1+ µ)+ (3−2µ)αy , (15)

then zgr is given by:

zgr = (2+3µ)+ (4−3µ)αx+(3−2µ)αy, µ ,αx,αy ∈ [0,1] .
(16)

The 4D-solution (16) exists in the space which cannot be
seen. Therefore we can be interested in its low dimensional
representations. Frequently, the 2D-representation in the form
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The 4D-solution (16) exists in the space which cannot be 
seen. Therefore we can be interested in its low dimensional rep-
resentations. Frequently, the 2D-representation in the form of 
span s(zgr) is determined. It can be found with known methods 
of function examination:
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4− 3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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In the case discussed, extrema of (16) do not lie inside, but 
on boundaries of the result domain. The minimum corresponds 
to αx = αy = 0 and the maximum to αx = αy = 1. The span of 
the 4D-result granule (16) is given by:
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The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.
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X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
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zgr,max
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= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
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Fig. 4 shows the MF of the span representation of the multi-
plication result.
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Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
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zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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The span (17) is not the addition result. The addition result 
has the form of 4D-function (16). The span is only a 2D-infor-
mation about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+ 2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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For example, if X and Y are trapezoidal MF (14) and (15) 
then the result is given by:
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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4D-subtraction result, then it can be determined from:
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+ 3µ ,4− 2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for 
minzgr and αx = 1, αy = 0 for maxzgr.
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+ 2µ)+ (4− 3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3− 2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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For example, if X and Y are trapezoidal MF (14) and (15) 
then the division result zgr is given by:
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+ 2µ)+ (4− 3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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3.	 Mathematical properties of MD RDM  
fuzzy arithmetic

Commutativity
For any fuzzy intervals X and Y, equations (27) and (28) 

are true.

	 X  + Y   =   Y  + X � (27)

	 XY   =   YX � (28)

Associativity
For any fuzzy intervals X, Y and Z, equations (29) and (30) 

are true.

	 X  + (Y  + Z)   =   (X  + Y ) + Z � (29)

	 X(YZ)   =   (XY)Z � (30)

Neutral element of addition and multiplication
In MD RDM FA, there exist additive and multiplicative 

neutral elements such as the degenerate interval 0 and 1 for 
any interval X.

	 X  + 0   =   0 + X  = X � (31)

	 X ¢1   =   1¢X  = X � (32)

Fig. 4. MF of the span representation of the 4D multiplication result (22)

Fig. 5. Span representation of the 4D division result (25)

Fig. 6. Simplified view of the 4D-solution granule (25) zgr(x, y, z) in 
3D-space X£Y£Z, without μ-coordinate

The span representation s(zgr) of the result (25) is expressed 
by (26) and is shown in Fig. 5.
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of span s(zgr) is determined. It can be found with known meth-
ods of function examination:

s(zgr) = [min
αx,αy

zgr(µ ,αx,αy),max
αx,αy

zgr(µ ,αx,αy)] .

In the case of discussed example, extrema of (16) lie not
inside but on boundaries of the result domain. The minimum
corresponds to αx = αy = 0 and the maximum to αx = αy = 1.
Span of the 4D-result granule (16) is given by:

s(zgr) = [2+3µ ,9−2µ ] , µ ∈ [0,1] . (17)

The span (17) is not the addition result. The addition re-
sult has the form of 4D-function (16). The span is only a 2D-
information about the maximal uncertainty of the result.

Subtraction of two independent fuzzy intervals

X −Y = Z : xgr(µ ,αx)− ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(18)

For example, if X and Y are trapezoidal MF (14) and (15)
then the result is given by:

zgr = µ +(4−3µ)αx− (3−2µ)αy, µ ,αx,αy ∈ [0,1] . (19)

If we are interested in the span representation s(zgr) of the
4D-subtraction result, then it can be determined from:

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr] = [−3+3µ ,4−2µ ] ,

µ ∈ [0,1] .
(20)

The span (20) of zgr (19) corresponds to αx = 0, αy = 1 for
minzgr and αx = 1, αy = 0 for maxzgr.

Multiplication of two independent fuzzy intervals

X ·Y = Z : xgr(µ ,αx) · ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(21)

For example, if X and Y are trapezoidal MF (14) and (15)
then the multiplication result zgr is expressed by:

zgr = xgr · ygr = [(1+2µ)+ (4−3µ)αx]

· [(1+ µ)+ (3−2µ)αy] , µ ,αx,αy ∈ [0,1] .
(22)

Formula (22) describes the full 4D-result of the multiplica-
tion. If we are interested in the 2D simplified representation of
this result in the form of a span s(zgr) then formula (23) should
be used.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

= [(1+2µ)(1+ µ),(5− µ)(4−µ)] , µ ∈ [0,1] .
(23)

Fig. 4 shows the MF of the span representation of the multi-
plication result.

Fig. 4. MF of the span representation of the 4D multiplication result
(22)

Fig. 5. Span representation of the 4D division result (25)

Division X/Y of two independent fuzzy intervals, 0 /∈ Y

X/Y = Z : xgr(µ ,αx)/ygr(µ ,αy) = zgr(µ ,αx,αy) ,

µ ,αx,αy ∈ [0,1]
(24)

For example, if X and Y are trapezoidal MF (14) and (15)
then the division result zgr is given by:

zgr = xgr/ygr =
(1+2µ)+ (4−3µ)αx
(1+ µ)+ (3−2µ)αy

,

µ ,αx,αy ∈ [0,1] .
(25)

The span representation s(zgr) of the result (25) is expressed
by (26) and is shown in Fig. 5.

s(zgr) = [min
αx,αy

zgr,max
αx,αy

zgr]

=

[

1+2µ
4− µ

,
5− µ
1+ µ

]

, µ ∈ [0,1] .
(26)

The solution granule of the division (25) is 4-dimensional,
so it cannot be presented in its full space. However, it can be
shown in a simplified way, in the X ×Y ×Z 3D-space, without
µ-coordinate. Fig. 6 presents surfaces for constant µ = 0 and
µ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This
results from the fact that the divisor does not contain zero. As it
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The solution granule of the division (25) is 4-dimensional, 
so it cannot be presented in its full space. However, it can be 
shown in a simplified way, in the X£Y£Z 3D-space, without 
μ-coordinate. Figure 6 presents surfaces for constant μ = 0 and 
μ = 1 values.

As Fig. 6 shows, the solution granule (25) is uniform. This 
results from the fact that the divisor does not contain zero. As it 
will be shown further on, division results can be discontinuous 
and multi-granular in more complicated cases.
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Inverse elements
In MD RDM FA, fuzzy interval:

Fuzzy number division and the multi-granularity phenomenon

Fig. 6. Simplified view of the 4D-solution granule (25) zgr(x,y,z) in
3D-space X ×Y ×Z, without µ-coordinate.

will be shown further on, division results can be discontinuous
and multi-granular in more complicated cases.

3. Mathematical Properties of MD RDM Fuzzy
Arithmetic
Commutativity

For any fuzzy intervals X and Y , equations (27) and (28) are
true.

X +Y = Y +X (27)
XY = YX (28)

Associativity
For any fuzzy intervals X , Y and Z, equations (29) and (30)

are true.

X +(Y +Z) = (X +Y)+Z (29)
X(YZ) = (XY )Z (30)

Neutral element of addition and multiplication
In MD RDM FA, there exist additive and multiplicative neu-

tral elements such as the degenerate interval 0 and 1 for any
interval X .

X +0 = 0+X = X (31)
X ·1 = 1 ·X = X (32)

Inverse elements
In MD RDM FA, fuzzy interval:

−X : −xgr =− [a+(b− a)µ ]− [(d− a)
− µ(d−a+b− c)]αx , αx ∈ [0,1] ,

is an additive inverse element of fuzzy interval:

X : xgr = [a+(b−a)µ ]+ [(d−a)
− µ(d−a+b− c)]αx , αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval −Y is the
additive inverse interval of X , when also inner RDM-variables
are equal: αx = αy. It means full coupling (correlation) of both
uncertain values x and y modelled by intervals.

Assuming that 0 /∈ X , a multiplicative inverse element of the
fuzzy interval X is equal in MD RDM FA:

1
X

:
1

xgr =
1

[a+(b−a)µ]+ [(d −a)−µ(d −a+b−c)]αx
,

αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval 1/Y is
the multiplicative inverse interval of X only when also inner
RDM-variables are equal: αx = αy. It means full coupling
(correlation) of both uncertain values x and y modelled by in-
tervals. Such full or partial correlation of uncertain variables
occurs in many real problems.

Sub-distributivity law
The sub-distributivity law holds in MD RDM FA:

X(Y +Z) = XY +XZ . (33)

The consequence of this law is a possibility of formulas
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

X +Z = Y +Z ⇒ X = Y , (34)
XZ = YZ ⇒ X = Y . (35)

4. Multi-granularity phenomenon in division of
fuzzy intervals

As it was presented in section 2, result in the form of only one
granule is achieved during dividing fuzzy intervals X and Y ,
0 /∈ Y . However, it will be shown further on, that the solution
is multi-granular if a denominator set contains 0.

Three examples below describe problems in which division
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1 A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it de-
pends on current prices of components changing from month
to month and which are results of negotiations with many sup-
pliers. Price p1 of 1 kg of the product is also uncertain because
it is also a result of negotiations with customers (supermar-
kets, shops, dealers). It also depends on volume of purchased
product. Profit Pr of the company is equal to the difference
between incomes and costs: Pr = In−Cs. The global income
can be calculated as: In = n · p1, where n is the number of kilo-
grams of the product. General costs of production are equal
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Fig. 6. Simplified view of the 4D-solution granule (25) zgr(x,y,z) in
3D-space X ×Y ×Z, without µ-coordinate.

will be shown further on, division results can be discontinuous
and multi-granular in more complicated cases.

3. Mathematical Properties of MD RDM Fuzzy
Arithmetic
Commutativity

For any fuzzy intervals X and Y , equations (27) and (28) are
true.

X +Y = Y +X (27)
XY = YX (28)

Associativity
For any fuzzy intervals X , Y and Z, equations (29) and (30)

are true.

X +(Y +Z) = (X +Y)+Z (29)
X(YZ) = (XY )Z (30)

Neutral element of addition and multiplication
In MD RDM FA, there exist additive and multiplicative neu-

tral elements such as the degenerate interval 0 and 1 for any
interval X .

X +0 = 0+X = X (31)
X ·1 = 1 ·X = X (32)

Inverse elements
In MD RDM FA, fuzzy interval:

−X : −xgr =− [a+(b−a)µ ]− [(d−a)
− µ(d−a+b− c)]αx , αx ∈ [0,1] ,

is an additive inverse element of fuzzy interval:

X : xgr = [a+(b−a)µ ]+ [(d−a)
− µ(d− a+ b− c)]αx , αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval −Y is the
additive inverse interval of X , when also inner RDM-variables
are equal: αx = αy. It means full coupling (correlation) of both
uncertain values x and y modelled by intervals.

Assuming that 0 /∈ X , a multiplicative inverse element of the
fuzzy interval X is equal in MD RDM FA:

1
X

:
1

xgr =
1

[a+(b−a)µ]+ [(d −a)−µ(d −a+b−c)]αx
,

αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval 1/Y is
the multiplicative inverse interval of X only when also inner
RDM-variables are equal: αx = αy. It means full coupling
(correlation) of both uncertain values x and y modelled by in-
tervals. Such full or partial correlation of uncertain variables
occurs in many real problems.

Sub-distributivity law
The sub-distributivity law holds in MD RDM FA:

X(Y +Z) = XY +XZ . (33)

The consequence of this law is a possibility of formulas
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

X +Z = Y +Z ⇒ X = Y , (34)
XZ = YZ ⇒ X = Y . (35)

4. Multi-granularity phenomenon in division of
fuzzy intervals

As it was presented in section 2, result in the form of only one
granule is achieved during dividing fuzzy intervals X and Y ,
0 /∈ Y . However, it will be shown further on, that the solution
is multi-granular if a denominator set contains 0.

Three examples below describe problems in which division
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1 A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it de-
pends on current prices of components changing from month
to month and which are results of negotiations with many sup-
pliers. Price p1 of 1 kg of the product is also uncertain because
it is also a result of negotiations with customers (supermar-
kets, shops, dealers). It also depends on volume of purchased
product. Profit Pr of the company is equal to the difference
between incomes and costs: Pr = In−Cs. The global income
can be calculated as: In = n · p1, where n is the number of kilo-
grams of the product. General costs of production are equal
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Fig. 6. Simplified view of the 4D-solution granule (25) zgr(x,y,z) in
3D-space X ×Y ×Z, without µ-coordinate.

will be shown further on, division results can be discontinuous
and multi-granular in more complicated cases.

3. Mathematical Properties of MD RDM Fuzzy
Arithmetic
Commutativity

For any fuzzy intervals X and Y , equations (27) and (28) are
true.

X +Y = Y +X (27)
XY = YX (28)

Associativity
For any fuzzy intervals X , Y and Z, equations (29) and (30)

are true.

X +(Y +Z) = (X +Y)+Z (29)
X(YZ) = (XY )Z (30)

Neutral element of addition and multiplication
In MD RDM FA, there exist additive and multiplicative neu-

tral elements such as the degenerate interval 0 and 1 for any
interval X .

X +0 = 0+X = X (31)
X ·1 = 1 ·X = X (32)

Inverse elements
In MD RDM FA, fuzzy interval:

−X : −xgr =− [a+(b−a)µ ]− [(d−a)
− µ(d−a+b− c)]αx , αx ∈ [0,1] ,

is an additive inverse element of fuzzy interval:

X : xgr = [a+(b− a)µ ]+ [(d− a)
− µ(d−a+b− c)]αx , αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval −Y is the
additive inverse interval of X , when also inner RDM-variables
are equal: αx = αy. It means full coupling (correlation) of both
uncertain values x and y modelled by intervals.

Assuming that 0 /∈ X , a multiplicative inverse element of the
fuzzy interval X is equal in MD RDM FA:

1
X

:
1

xgr =
1

[a+(b−a)µ]+ [(d −a)−µ(d −a+b−c)]αx
,

αx ∈ [0,1] .

If parameters of two fuzzy intervals X and Y are equal:
ax = ay, bx = by, cx = cy, dx = dy, then the interval 1/Y is
the multiplicative inverse interval of X only when also inner
RDM-variables are equal: αx = αy. It means full coupling
(correlation) of both uncertain values x and y modelled by in-
tervals. Such full or partial correlation of uncertain variables
occurs in many real problems.

Sub-distributivity law
The sub-distributivity law holds in MD RDM FA:

X(Y +Z) = XY +XZ . (33)

The consequence of this law is a possibility of formulas
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

X +Z = Y +Z ⇒ X = Y , (34)
XZ = YZ ⇒ X = Y . (35)

4. Multi-granularity phenomenon in division of
fuzzy intervals

As it was presented in section 2, result in the form of only one
granule is achieved during dividing fuzzy intervals X and Y ,
0 /∈ Y . However, it will be shown further on, that the solution
is multi-granular if a denominator set contains 0.

Three examples below describe problems in which division
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1 A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it de-
pends on current prices of components changing from month
to month and which are results of negotiations with many sup-
pliers. Price p1 of 1 kg of the product is also uncertain because
it is also a result of negotiations with customers (supermar-
kets, shops, dealers). It also depends on volume of purchased
product. Profit Pr of the company is equal to the difference
between incomes and costs: Pr = In−Cs. The global income
can be calculated as: In = n · p1, where n is the number of kilo-
grams of the product. General costs of production are equal
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3D-space X ×Y ×Z, without µ-coordinate.

will be shown further on, division results can be discontinuous
and multi-granular in more complicated cases.
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are equal: αx = αy. It means full coupling (correlation) of both
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Assuming that 0 /∈ X , a multiplicative inverse element of the
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,
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the multiplicative inverse interval of X only when also inner
RDM-variables are equal: αx = αy. It means full coupling
(correlation) of both uncertain values x and y modelled by in-
tervals. Such full or partial correlation of uncertain variables
occurs in many real problems.

Sub-distributivity law
The sub-distributivity law holds in MD RDM FA:

X(Y +Z) = XY +XZ . (33)

The consequence of this law is a possibility of formulas
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

X +Z = Y +Z ⇒ X = Y , (34)
XZ = YZ ⇒ X = Y . (35)

4. Multi-granularity phenomenon in division of
fuzzy intervals

As it was presented in section 2, result in the form of only one
granule is achieved during dividing fuzzy intervals X and Y ,
0 /∈ Y . However, it will be shown further on, that the solution
is multi-granular if a denominator set contains 0.

Three examples below describe problems in which division
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1 A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it de-
pends on current prices of components changing from month
to month and which are results of negotiations with many sup-
pliers. Price p1 of 1 kg of the product is also uncertain because
it is also a result of negotiations with customers (supermar-
kets, shops, dealers). It also depends on volume of purchased
product. Profit Pr of the company is equal to the difference
between incomes and costs: Pr = In−Cs. The global income
can be calculated as: In = n · p1, where n is the number of kilo-
grams of the product. General costs of production are equal
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The sub-distributivity law holds in MD RDM FA:

X(Y +Z) = XY +XZ . (33)

The consequence of this law is a possibility of formulas
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

X +Z = Y +Z ⇒ X = Y , (34)
XZ = YZ ⇒ X = Y . (35)

4. Multi-granularity phenomenon in division of
fuzzy intervals

As it was presented in section 2, result in the form of only one
granule is achieved during dividing fuzzy intervals X and Y ,
0 /∈ Y . However, it will be shown further on, that the solution
is multi-granular if a denominator set contains 0.

Three examples below describe problems in which division
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1 A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it de-
pends on current prices of components changing from month
to month and which are results of negotiations with many sup-
pliers. Price p1 of 1 kg of the product is also uncertain because
it is also a result of negotiations with customers (supermar-
kets, shops, dealers). It also depends on volume of purchased
product. Profit Pr of the company is equal to the difference
between incomes and costs: Pr = In−Cs. The global income
can be calculated as: In = n · p1, where n is the number of kilo-
grams of the product. General costs of production are equal
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If parameters of two fuzzy intervals X and Y are equal: 
ax = ay, bx = by, cx = cy, dx = dy, then the interval 1/Y is 
the multiplicative inverse interval of X only when also inner 
RDM-variables are equal: αx = αy. It means full coupling (cor-
relation) of both uncertain values x and y modelled by intervals. 
Such full or partial correlation of uncertain variables occurs in 
many real problems.

Sub-distributivity law
The sub-distributivity law holds in MD RDM FA:

	 X(Y  + Z)   =   XY  + XZ . � (33)

The consequence of this law is the possibility of formula 
transformations. They do not change the calculation result.

Cancellation law for addition and multiplication
Cancellation laws (34) and (35) hold in MD RDM FA:

	 X  + Z   =   Y  + Z  ) X  = Y , � (34)

	 XZ   =   YZ  ) X  = Y . � (35)

4.	 Multi-granularity phenomenon in division  
of fuzzy intervals

As it was presented in Section 2, result in the form of only one 
granule is achieved during dividing fuzzy intervals X and Y, 
0 2/ Y. However, it will be shown further on that the solution is 
multi-granular if a denominator set contains 0.

Three examples below describe problems in which division 
by fuzzy denominator containing 0 occurs and in which solu-
tions will be multi-granular.

Example 1. A company produces a food product. The produc-
tion cost c1 per 1 kg of the product is uncertain because it 
depends on current prices of components changing from month 
to month and on negotiations with many suppliers. Price p1 of 
1 kg of the product is also uncertain because it is also a result 
of negotiations with customers (supermarkets, shops, dealers). 
It also depends on volume of purchased product. Profit Pr of 
the company is equal to the difference between incomes and 
costs: Pr = In ¡ Cs. The global income can be calculated as: 
In = n ¢ p1, where n is the number of kilograms of the product. 
General costs of production are equal to Cs = 100 000 + n ¢ c1, 
where the number 100 000 describes fixed costs of the company.

Hence, the company profit Pr is expressed by equation:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
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. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
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V 2
2x +V 2

2y =

√
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+
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and the course angle of the ferry is defined as:
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V2y
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lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):
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In the next year, the company managers plan to achieve general 
profit ‘about 5 500 000’ defined by the triangular fuzzy number 
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated 
the cost c1 as ‘about 1’ defined by the triangular fuzzy number 
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1, 1.2, 
1.4). How many kilograms n of the product should the company 
produce in the next year?

To obtain the answer, the following calculation should be 
realized:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
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To get the answer, following calculation should be realised:

n =
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p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+ 105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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Denominator of the formula (36) contains 0 in a hidden way. 
Example 1 corresponds to Case 3 of division described in the 
paper further on.

Example 2. An oil rafinery produces regular and super gasoline 
using two production lines. Line 1 produces gasoline according 
to an older process and line 2 according to a newer process. The 
older process produces about 6.0 units of regular and about 5.5 
units of super gasoline in one run. The newer process produces 
about 8.5 units of regular and about 8 units of super gasoline. 
Production results are uncertain because 3 types of crude oils 
used in the production (supplied by few companies) are of dif-
ferent quality.

Uncertain results can be described by the following triangle 
fuzzy numbers:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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In the next month the company predicts to get contracts for 
production of about 500 units of regular and about 350 units of 
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super gasoline, where uncertain values are described by triangle 
fuzzy numbers:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1
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=
√

([2,3]− [2,4])2+1 ,
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Let us denote by x1 – the number of production runs of line 1 
(older process) and by x2 – the number of runs of line 2 (newer 
process). After x1 runs of line 1 and x2 runs of line 2 amount 
of regular gasoline will be 6̃x1 + 8.̃5x2 and of super gasoline 
5.̃5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are 
necessary to fulfil the contract commitments?

The results x1 and x2 have not to be integers because it is 
possible to organize fractional runs that use raw materials in 
an appropriate proportion. To determine results x1 and x2, fol-
lowing equation system has to be solved:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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The results are given by x1 = D1/D and x2 = D2/D where:  
D = 6̃ ¢ 8̃ ¡ 5.̃5 ¢ 8.̃5, D1 = 50̃0 ¢ 8̃ ¡ 35̃0 ¢ 8.̃5 and D2 = 6̃ ¢ 35̃0 ¡  
¡ 5.̃5 ¢ 50̃0.

Determinant D = (5.7, 6, 6.3) ¢ (7.8, 8, 8.2) ¡ (5.2, 5.5, 5.8) ¢ 
¢ (8.2, 8.5, 8.8) contains 0 as one of possible values. Therefore 
the solution of the problem corresponds to Case 5 presented 
further on in the paper and it will be multi-granular.

Example 3. The ferry departs from point A on the southern 
bank of the river and has to get to any place of the concrete quay 
on the northern bank between points B1 and B2, the distance 
lB1B2 = 1 km. The remaining northern bank of the river is not 
suitable for mooring, Fig. 7. An average speed of the river de-
pends on the water level and varies in the range V1 2 [2, 4] km/h. 
The ferry has to reach the opposite bank within time T = 1 hour. 
The distance to the bank is d = 1 km. We must specify an angle 
β and a speed V2 in relation to water, assuming that the ferry 
should reach the point B located between points B1 and B2.

As the ferry (apart from its own move) is floated by the 
water with a speed V1, a horizontal component of the relative 
speed V2 should satisfy the next condition:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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Thus, the total speed V2 of the ferry can be calculated as:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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and the course angle of the ferry is defined as:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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The value of lAB  ¢ sinα always equals 1 and the value of 
lAB  ¢ cosα must be included in the interval [2, 3], Fig. 7. Taking 
into account all known values, we obtain new interval depen-
dencies from equations (40) and (41):
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1
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]

=
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˜500
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Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1
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+

(

d
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and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):
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(

[2,3]
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+
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1
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=
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tgβ =
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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Formulas (42) and (43) determine the relative speed V2 and 
the course angle β of the ferry and it can be seen that they are 
coupled. The RDM arithmetic, in contrast to the standard in-
terval arithmetic, allows for taking into account such couplings. 
The interval [2, 3], describing the concrete quay on the northern 
bank between points B1 and B2, is defined as:

	

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
interval arithmetic, allows for the taking into account of such
couplings. The interval [2,3], describing the concrete quay on
the northern bank between points B1 and B2, is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1] , (44)

and the interval describing values of the river speed is:

V1 = 2+2αV1, αV1 ∈ [0,1] . (45)

Finally, possible values of V2 and tgβ are described by equa-
tions:

V2 =

√

(2+αB1B2)+ (2+2αV1)
2 +1, αB1B2,αV 1 ∈ [0,1] ,

(46)

tgβ =
1

(2+αB1B2)− (2+2αV1)
=

1
αB1B2 −2αV1

. (47)

Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?

Is it possible to divide: (about 2)/(about 0)? Of course
it is, but after excluding the value xB = 0. For this pur-
pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and
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XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and
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Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)
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the ferry in the direction of the river current, while a negative
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Formulas (46) and (47) also show that the speed V2 and the 
angle β are coupled. The speed should be calculated according 
to the chosen course angle.

Fig. 7. An illustration to Example 3

A vertical component of the relative speed V2 should satisfy 
the condition:
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to Cs = 100000+ n · c1, where the number 100 000 describes
fixed costs of the company.

Hence, the company profit Pr is expressed by equation:

Pr = n · p1 − (100000+n ·c1) = n · (p1 − c1)−100000 .

In the next year, the company managers plan to achieve general
profit ‘about 5 500 000’ defined by the triangular fuzzy number
(5 300 000, 5 500 000, 5 700 000). Company experts evaluated
the cost c1 as ‘about 1’ defined by the triangular fuzzy number
(0.9, 1, 1.1) and the price p1 as ‘about 1.2’ expressed by (1,
1.2, 1.4). How many kilograms n of the product should the
company produce in the next year?

To get the answer, following calculation should be realised:

n =
Pr−100000

p1 − c1
=

(5.3 ·106,5.5 ·106,5.7 ·106)+105

(1,1.2,1.4)− (0.9,1.0,1.1)
.

(36)
Denominator of the formula (36) contains 0 in a hidden way.
Example 1 corresponds to Case 3 of division described in the
paper further on.

Example 2 An oil rafinery produces regular and super gaso-
line using two production lines. Line 1 produces gasoline ac-
cording to an older process and line 2 according to a newer
process. The older process produces about 6.0 units of regular
and about 5.5 units of super gasoline in one run. The newer
process produces about 8.5 units of regular and about 8 units
of super gasoline. Production results are uncertain because 3
types of crude oils used in the production (supplied by few
companies) are of different quality.

Uncertain results can be described by following triangle
fuzzy numbers:

about 5.5 = ˜5.5 = (5.2,5.5,5.8) ,
about 6.0 = ˜6.0 = (5.7,6.0,6.3) ,
about 8.0 = ˜8.0 = (7.8,8.0,8.2) ,
about 8.5 = ˜8.5 = (8.2,8.5,8.8) .

In the next month the company predict to get contracts for
production of about 500 units of regular and about 350 units of
super gasoline, where uncertain values are described by trian-
gle fuzzy numbers:

about 500 = ˜500 = (480,500,520) ,
about 350 = ˜350 = (330,350,370) .

Let us denote by x1 – the number of production runs of line 1
(older process) and by x2 – the number of runs of line 2 (newer
process). After x1 runs of line 1 and x2 runs of line 2 amount
of regular gasoline will be 6̃x1 + ˜8.5x2 and of super gasoline
˜5.5x1 + 8̃x2. How many runs x1 of line 1 and x2 of line 2 are

necessary to realise the contract commitments?
The results x1 and x2 have not to be integers because it is

possible to organise fractional runs that use raw materials in an
appropriate proportion. To determine results x1 and x2, follow-
ing equation system has to be solved:

[

6̃ ˜8.5
˜5.5 8̃

][

x1

x2

]

=

[

˜500
˜350

]

. (37)

Fig. 7. An illustration to Example 3

The results are given by x1 = D1/D and x2 = D2/D where:
D = 6̃ · 8̃− ˜5.5 · ˜8.5, D1 = ˜500 · 8̃− ˜350 · ˜8.5 and D2 = 6̃ · ˜350−
˜5.5 · ˜500.

Determinant D = (5.7,6,6.3) · (7.8,8,8.2)− (5.2,5.5,5.8) ·
(8.2,8.5,8.8) contains 0 as one of possible values. Therefore
the solution of the problem corresponds to Case 5 presented
further on in the paper and it will be multi-granular.

Example 3 The ferry departs from point A on the southern
bank of the river and has to get to any place of the concrete
quay on the northern bank between points B1 and B2, the dis-
tance lB1B2 = 1 km. The remaining northern bank of the river is
not suitable for mooring, Fig. 7. An average speed of the river
depends on the water level and varies in the range V1 ∈ [2,4]
km/h. The ferry has to reach the opposite bank within time
T = 1 hour. The distance to the bank is d = 1 km. We must
specify an angle β and a speed V2 in relation to water, assuming
that the ferry should reach the point B located between points
B1 and B2.

A vertical component of the relative speed V2 should satisfy
the condition:

V2y =
d
T

=
1
1

= 1 . (38)

As the ferry (apart from its own move) is floated by the water
with a speed V1, a horizontal component of the relative speed
V2 should satisfy the next condition:

(V2x +V1)T = lAB · cosα . (39)

Thus, the total speed V2 of the ferry can be calculated as:

V2 =
√

V 2
2x +V 2

2y =

√

(

lAB · cosα
T

−V1

)2
+

(

d
T

)2
, (40)

and the course angle of the ferry is defined as:

tgβ =
V2y
V2x

=
lAB · sinα

lAB · cosα −V1T
. (41)

The value of lAB · sinα always equals 1 and the value of lAB ·
cosα must be included in the interval [2,3], Fig. 7. Taking into
account all known values, we get new interval dependencies
from equations (40) and (41):

V2 =

√

(

[2,3]
1

− [2,4]
)2

+

(

1
1

)2
=
√

([2,3]− [2,4])2+1 ,

(42)
tgβ =

1
[2,3]− [2,4]

. (43)
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From the point of view of this paper, formula (47) is the 
most interesting. Figure 8 presents two separate granules of its 
possible solutions. A positive value of tgβ means the movement 
of the ferry in the direction of the river current, while a negative 
value means movement in the opposite direction.

4.1. Case 1. Let us assume that two triangular fuzzy numbers 
XA = (1, 2, 3) and XB = (¡3, 0, 1) have to be divided (Fig. 9). 
How to calculate the quotient Z = XA/XB?

Is it possible to divide (about 2)/(about 0)? It is possible, but 
after excluding the value xB = 0. For this purpose, FN (about 
0) has to be decomposed into two components: XB = XB¡[XB+, 
where XB¡ is the triangle fuzzy number (¡3, 0¡, 0¡) and XB+ is 
the triangle fuzzy number (0+, 0+, 1) (Fig. 10).

The quotient XA/XB can be presented in the form:

	

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
interval arithmetic, allows for the taking into account of such
couplings. The interval [2,3], describing the concrete quay on
the northern bank between points B1 and B2, is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1] , (44)

and the interval describing values of the river speed is:

V1 = 2+2αV1, αV1 ∈ [0,1] . (45)

Finally, possible values of V2 and tgβ are described by equa-
tions:

V2 =

√

(2+αB1B2)+ (2+2αV1)
2 +1, αB1B2,αV 1 ∈ [0,1] ,

(46)

tgβ =
1

(2+αB1B2)− (2+2αV1)
=

1
αB1B2 −2αV1

. (47)

Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?

Is it possible to divide: (about 2)/(about 0)? Of course
it is, but after excluding the value xB = 0. For this pur-
pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and
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From equation (10) and Fig. 9, horizontal MFs of sets XA, 
XB¡, XB+ can be found:
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The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+ 2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
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Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.
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XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
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Is it possible to divide: (about 2)/(about 0)? Of course
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pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1− 0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
interval arithmetic, allows for the taking into account of such
couplings. The interval [2,3], describing the concrete quay on
the northern bank between points B1 and B2, is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1] , (44)

and the interval describing values of the river speed is:

V1 = 2+2αV1, αV1 ∈ [0,1] . (45)

Finally, possible values of V2 and tgβ are described by equa-
tions:

V2 =

√

(2+αB1B2)+ (2+2αV1)
2 +1, αB1B2,αV 1 ∈ [0,1] ,

(46)

tgβ =
1

(2+αB1B2)− (2+2αV1)
=

1
αB1B2 −2αV1

. (47)

Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?

Is it possible to divide: (about 2)/(about 0)? Of course
it is, but after excluding the value xB = 0. For this pur-
pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:
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XB− , XB+ can be found:
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,
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(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
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interval arithmetic, allows for the taking into account of such
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to the chosen course angle.
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The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,
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,
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According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.
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possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
interval arithmetic, allows for the taking into account of such
couplings. The interval [2,3], describing the concrete quay on
the northern bank between points B1 and B2, is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1] , (44)

and the interval describing values of the river speed is:

V1 = 2+2αV1, αV1 ∈ [0,1] . (45)

Finally, possible values of V2 and tgβ are described by equa-
tions:

V2 =

√

(2+αB1B2)+ (2+2αV1)
2 +1, αB1B2,αV 1 ∈ [0,1] ,

(46)

tgβ =
1

(2+αB1B2)− (2+2αV1)
=

1
αB1B2 −2αV1

. (47)

Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?

Is it possible to divide: (about 2)/(about 0)? Of course
it is, but after excluding the value xB = 0. For this pur-
pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fuzzy number division and the multi-granularity phenomenon

Fig. 8. Two granules representing subsets of possible solutions; the
upper granule corresponds to the acute course angle of the ferry (β <
90◦) and the lower corresponds to the obtuse angle (β > 90◦)

Formulas (42) and (43) determine the relative speed V2 and
the course angle β of the ferry and it can be seen that they
are coupled. The RDM arithmetic, in contrast to the standard
interval arithmetic, allows for the taking into account of such
couplings. The interval [2,3], describing the concrete quay on
the northern bank between points B1 and B2, is defined as:

lAB · cosα = 2+αB1B2, αB1B2 ∈ [0,1] , (44)

and the interval describing values of the river speed is:

V1 = 2+2αV1, αV1 ∈ [0,1] . (45)

Finally, possible values of V2 and tgβ are described by equa-
tions:

V2 =

√

(2+αB1B2)+ (2+2αV1)
2 +1, αB1B2,αV 1 ∈ [0,1] ,

(46)

tgβ =
1

(2+αB1B2)− (2+2αV1)
=

1
αB1B2 −2αV1

. (47)

Formulas (46) and (47) also show that the speed V2 and the
angle β are coupled. The speed should be calculated according
to the chosen course angle.

From the point of view of this paper, the most interesting is
formula (47). Fig. 8 presents two separate granules of its possi-
ble solutions. A positive value of tgβ means the movement of
the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?

Is it possible to divide: (about 2)/(about 0)? Of course
it is, but after excluding the value xB = 0. For this pur-
pose, FN (about 0) has to be decomposed into two compo-
nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
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The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

Taking into account (49), we get the formula for the division:
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∪
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,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and
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located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
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Solution granules xA/xB− and xA/xB+ are functions exist-
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XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,
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1
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1
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the ferry in the direction of the river current, while a negative
value means movement in the opposite direction.

4.1. Case 1 Let us assume that two triangular fuzzy numbers:
XA = (1,2,3) and XB = (−3,0,1) have to be divided, Fig. 9.
How to calculate the quotient: Z = XA/XB?
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it is, but after excluding the value xB = 0. For this pur-
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nents: XB =XB− ∪XB+ , where XB− is the triangle fuzzy number
(−3,0−,0−) and XB+ is the triangle fuzzy number (0+,0+,1),
Fig. 10.

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components
XB− and XB+

The quotient XA/XB can be presented in the form:

XA/XB = (XA/XB−)∪ (XA/XB+) . (48)

From equation (10) and Fig. 9, horizontal MFs of sets XA,
XB− , XB+ can be found:

XA : xA = (1+ µ)+2(1− µ)αXA , (49)
XB− : xB− =−3+(0−+3)µ +(0−+3)(1− µ)αXB− ,

XB+ : xB+ = 0++(1−0+)(1− µ)αXB+ ,
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Taking into account (49), we get the formula for the division:

XA/XB : xA/xB = xA/xB− ∪ xA/xB+

=
(1+ µ)+2(1− µ)αXA

−3+(0−+3)µ +(0−+3)(1− µ)αXB−

∪
(1+ µ)+2(1− µ)αXA

0++(1−0+)(1− µ)αXB+
,

µ ,αXA,αXB− ,αXB+ ∈ [0,1] .

(50)

According to (50), the true value of the quotient xA/xB is
located in the granule xA/xB− or xA/xB+ . Both quotients are
monotonic, so their extrema can be found on boundaries of
possible solutions sets. Table 1 and 2 present values of quo-
tients in corners of solution sets for µ = 0.

Solution granules xA/xB− and xA/xB+ are functions exist-
ing in 4D-space because: xA/xB− = f1(µ , αxA,αxB−) and
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located in the granule xA/xB¡ or xA/xB+. Both quotients are 
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Solution granules xA/xB¡ and xA/xB+ are functions existing 
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= f2(μ, αxA, αxB+). Hence, they cannot be fully visualized. How-
ever, the granules can be visualized partly in the 3D-space 
which corresponds to various levels of μ-cuts, e.g. μ = 0, 

Fig. 8. Two granules representing subsets of possible solutions; the 
upper granule corresponds to the acute course angle of the ferry 
(β < 90°) and the lower corresponds to the obtuse angle (β > 90°)

Fig. 9. Fuzzy numbers XA (about 2) and XB (about 0)

Fig. 10. Decomposition of the fuzzy number XB into two components 
XB¡ and XB+

Table 1 
Values of xA/xB¡ in corners of the solution space, level μ = 0

αXA 0 0 1 1

αXB¡ 0 1 0 1

xA 1 1 3 3

xB¡ ¡3 0¡ ¡3 0¡

xA/xB¡ ¡1/3 ¡1 ¡1 ¡1
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μ = 0.5, etc. Figure 11 shows 2 granules of the quotient xA/xB 
in the 3D-space.

Granules of the quotient z = xA/xB can be presented also in 
a more simplified way, in the 2D-space: Z£XA (Fig. 12).

As Fig. 12 shows, the result of the division of two fuzzy 
numbers: XA determined by triple (1, 2, 3) and XB that contains 
zero (¡3, 0, 1) is not one, single and compact granule. The re-
sult consists of two distinctly separated granules. The smallest 
separation occurs for the cut-level μ = 0. With increasing 
μ-value, the separation of granules Z¡ and Z+ increases. The 
separation approaches infinity for μ = 1.

In the considered example of the division XA/XB, zero oc-
curs explicitly in the denominator of the number XB. However, 
in many calculation tasks, zero does not occur in denominators 
openly but in a more or less secret way. Then we cannot be 
aware of its occurrence. It will be shown in next examples.

4.2. Case 2. Let us consider the case of a division in which 3 
fuzzy intervals A, B, C take part:
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Table 1. Values of xA/xB− in corners of the solution space, level µ = 0

αXA 0 0 1 1

αXB− 0 1 0 1

xA 1 1 3 3

xB− −3 0− −3 0−

xA/xB− −1/3 −∞ −1 −∞

Table 2. Values of xA/xB+ in corners of the solution space, level µ = 0

αXA 0 0 1 1

αXB+ 0 1 0 1

xA 1 1 3 3

xB+ 0+ 1 0+ 1

xA/xB+ +∞ 1 +∞ 3

Fig. 11. Visualization of two granules of the quotient a = xA/xB,
formula (50), in 3D-space for the cut µ = 0

xA/xB+ = f2(µ ,αxA,αxB+). Hence, they cannot be fully vi-
sualized. However, the granules can be visualized partly in the
3D-space which corresponds to various levels of µ-cuts, e.g.
µ = 0, µ = 0.5, etc. Fig. 11 shows 2 granules of the quotient
xA/xB in the 3D-space.

Granules of the quotient z = xA/xB can be presented also in
a more simplified way, in the 2D-space: Z ×XA, Fig. 12.

As Fig. 12 shows, the division result of two fuzzy num-
bers: XA determined by triple (1,2,3) and XB that contains
zero (−3,0,1) is not one, single and compact granule. The
result consists of two distinctly separated granules. The small-

Fig. 12. Granules of the quotient z = xA/xB, formula (50), in the 2D-
space for cut-level µ = 0 and µ = 0.5

est separation occurs for the cut-level µ = 0. With increasing
µ-value, the separation of granules Z− and Z+ increases. The
separation approaches infinity for µ = 1.

In the considered example of the division XA/XB, zero oc-
curs explicitly in the denominator of the number XB. However,
in many calculation tasks, zero does not occur in denominators
openly but in a more or less secret way. Then we can not be
conscious of its occurrence. It will be shown in next examples.

4.2. Case 2 Let us consider the case of a division in which 3
fuzzy intervals A, B, C take part:

A
B−C

=
[1,2,3]

[2,3,4]− [3,4,5]
= Z . (51)

None of intervals contains zero. However, though not di-
rectly, the denominator B−C does. Horizontal MFs of A, B
and C will be formulated (52) to calculate the division result.

A : xA = (1+ µ)+2(1− µ)αXA ,

B : xB = (2+ µ)+2(1− µ)αXB ,

C : xC = (3+ µ)+2(1− µ)αXC ,

µ ,αXA,αXB,αXC ∈ [0,1]

(52)

After using horizontal MFs in (51) we achieve:

A
B−C

= Z :
xgr

A
xgr

B − xgr
C

= zgr ,

zgr =
(1+ µ)+2(1− µ)αXA

−1+2(1− µ)(αXB−αXC)
,

µ ,αXA,αXB,αXC ∈ [0,1] .
(53)
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None of intervals contains zero. However, though not di-
rectly, the denominator B ¡ C does. Horizontal MFs of A, B 
and C will be formulated (52) to calculate the division result.

	

A. Piegat, M. Pluciński
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After using horizontal MFs in (51) we obtain
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µ ,αXA,αXB,αXC ∈ [0,1]

(52)

After using horizontal MFs in (51) we achieve:

A
B−C

= Z :
xgr

A
xgr

B − xgr
C

= zgr ,

zgr =
(1+ µ)+2(1− µ)αXA

−1+2(1− µ)(αXB−αXC)
,

µ ,αXA,αXB,αXC ∈ [0,1] .
(53)

8 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (53)

Fig. 12. Granules of the quotient z = xA/xB, formula (50), in the 
2D-space for cut-level μ = 0 and μ = 0.5

Fig. 11. Visualization of two granules of the quotient a = xA/xB, for-
mula (50), in 3D-space for the cut μ = 0

Table 2 
Values of xA/xB+ in corners of the solution space, level μ = 0

αXA 0 0 1 1

αXB+ 0 1 0 1

xA 1 1 3 3

xB+ 0+ 1 0+ 1

xA/xB+ +1 1 +1 3
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For the cut-level μ = 0 formula (53) takes form:
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+ 2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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As can be seen from (54), the division result zgr = f (αXA, 
αXB, αXC) exists in the 4D-space and cannot be fully visualized. 
However, in a simplified way, it can be shown in 2D-space 
(Fig. 13).

4.3. Case 3. Let us consider a more complicated division case, 
where two fuzzy intervals containing zero appear in the denom-
inator. Fuzzy intervals are shown in Fig. 14.
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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Since zero-values of uncertain variables xB and xC cannot 
take part in the division operation, these values have to be re-
moved from the intervals (Fig. 15).

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and 
C occurring in the denominator of the division (56)

Fig. 13. Simplified 2D-visualization of two separate solution granules 
of division A/(B ¡ C) on the cut-level μ = 0, formula (54); values 

z 2 [¡1/3, 1] are impossible

As Fig. 13 shows, solution values z 2 [¡1/3, 1] are impos-
sible for the cut-level μ = 0. It can be easily checked by use of 
formula (54). If the value z = 0 is possible, equation (55) should 
also have a solution.
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+ 2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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However, since αXA 2 [0, 1], the division result z = 0 is impos-
sible. A similar situation concerns other μ-levels.

0¡ is a very small, negative value approaching 0. Similarly 
0+ is a very small positive value approaching 0. Symbolically, 
the division operation can be decomposed into 4 components:
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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Particular component functions presented in Fig. 14 are de-
scribed with the following horizontal MFs:
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+ 3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .
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Now, particular component division results Z1, Z2, Z3 and
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Fig. 13. Simplified 2D-visualization of two separate solution granules
of division A/(B−C) on the cut-level µ = 0, formula (54); values
z ∈ [−1/3,1] are impossible

For the cut-level µ = 0 formula (53) takes form:

Z : zgr =
1+2αXA

−1+2(αXB−αXC)
,

αXA,αXB,αXC ∈ [0,1] , αXB −αXC �= 0.5 .
(54)

As can be seen from (54), the division result zgr =
f (αXA,αXB,αXC) exists in the 4D-space and cannot be fully
visualized. However, in a simplified way, it can be shown in
2D-space, Fig. 13.

As Fig. 13 shows, solution values z ∈ [−1/3,1] are impos-
sible for the cut-level µ = 0. It can be easily checked with use
of formula (54). If the value z = 0 would be possible also the
equation (55) should have solution.

1+2αXA
−1+2(αXB−αXC)

= 0 , αXB −αXC �= 0.5 (55)

However, because αXA ∈ [0,1] the division result z = 0 is im-
possible. Similar situation concerns other µ-levels.

4.3. Case 3 Let us consider a more complicated division case,
where in the denominator two fuzzy intervals containing zero
occur. Fuzzy intervals are shown in Fig. 14.

A
BC

=
[1,2,3]

[−2,0,1][−1,0,3]
, xB �= 0, xC �= 0 (56)

Because zero-values of uncertain variables xB and xC can not

Fig. 14. Fuzzy intervals A, B, C taking part in the division (56)

Fig. 15. Removing zero-values and partition of fuzzy intervals B and
C occurring in the denominator of the division (56)

take part in the division operation, therefore these values have
to be removed from the intervals, Fig. 15.

0− is a very small, negative value approaching 0. Similarly
0+ is a very small positive value approaching 0. Symbolically,
the division operation can be decomposed into 4 components:

A
BC

= Z =
A

B1C1
∪

A
B1C2

∪
A

B2C1
∪

A
B2C2

= Z1 ∪Z2 ∪Z3 ∪Z4 .

(57)

Particular component functions presented in Fig. 14 are de-
scribed with following horizontal MFs:

A : xA = (1+ µ)+2(1− µ)αXA, µ ,αXA ∈ [0,1] ,
B : xB = (1− µ)(−2+3αXB), µ ,αXB ∈ [0,1] ,
C : xC = (1− µ)(−1+ 4αXC), µ ,αXC ∈ [0,1] .

(58)

Decomposed functions presented in Fig. 15 can be described
by following horizontal MFs:

B1 : xB = (1− µ)(−2+3αXB), αXB ∈ [0,
2
3
) ,

B2 : xB = (1− µ)(−2+3αXB), αXB ∈ (
2
3
,1] ,

C1 : xC = (1− µ)(−1+4αXC), αXC ∈ [0,
1
4
) ,

C2 : xC = (1− µ)(−1+4αXC), αXC ∈ (
1
4
,1] .

(59)

Now, particular component division results Z1, Z2, Z3 and
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have to be found according to the general formula (56).
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Z4 according to the general formula (56) have to be found.

Z1 =
A

B1C1
:

zgr
1 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
)

(60)

The division result zgr
1 = f1(µ ,αXA,αXB,αXC) is an infor-

mation granule existing in a 5D-space and hence it can not be
precisely visualized. However, it can be presented in a simpli-
fied way for particular levels of membership µ . For the level
µ = 0, formula (60) takes form:

Z1 : zgr
1 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
) .

(61)

It should be noticed that in the considered domain of RDM
variables αXA, αXB, αXC, the nominator and the denominator
of formula (61) do not change their sign, i.e.: 1+ 2αXA > 0,
−2+ 3αXB < 0, −1+ 4αXC < 0. So, all possible division re-
sults contained in the granule Z1 are positive. Analysis of for-
mula (61) allows for simplified visualization of the granule of
possible solutions zgr

1 , which is shown in Fig. 16.
Next, the component solution Z2 of the division will be de-

termined:

Z2 =
A

B1C2
:

zgr
2 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1] .

(62)

Component Z2 of the division is an information granule in
the 5D-space. As before, for particular membership levels this
granule can be visualized in a simplified way. For the level
µ = 0, the granule is given by (63).

Z2 : zgr
2 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1]

(63)

The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:

Z3 =
A

B2C1
:

zgr
3 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(64)

In particular, for the level µ = 0 formula (64) takes the form:

Z3 : zgr
3 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(65)

This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:

Z4 =
A

B2C2
:

zgr
4 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(66)

In particular, for the level µ = 0 the component granule can
be simplified:

Z4 : zgr
4 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(67)

This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
the real system only one value of each variable αXA, αXB, αXC
is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.

Z =
A
B
=

(1,2,4)
X2

B −10XB+21
, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, XB1
and XB2.

A : xA = (1+ µ)+3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+3(1− µ)αXB, αXB ∈ [0,
1
3
) ,

XB2 : xB2 = (2+ µ)+3(1− µ)αXB, αXB ∈ (
1
3
,1]

(69)
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tion granule existing in a 5D-space and hence it cannot be pre-
cisely visualized. However, it can be presented in a simplified 
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It should be noticed that in the considered domain of RDM 
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Z4 according to the general formula (56) have to be found.

Z1 =
A

B1C1
:

zgr
1 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
)

(60)

The division result zgr
1 = f1(µ ,αXA,αXB,αXC) is an infor-

mation granule existing in a 5D-space and hence it can not be
precisely visualized. However, it can be presented in a simpli-
fied way for particular levels of membership µ . For the level
µ = 0, formula (60) takes form:

Z1 : zgr
1 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
) .

(61)

It should be noticed that in the considered domain of RDM
variables αXA, αXB, αXC, the nominator and the denominator
of formula (61) do not change their sign, i.e.: 1+ 2αXA > 0,
−2+ 3αXB < 0, −1+ 4αXC < 0. So, all possible division re-
sults contained in the granule Z1 are positive. Analysis of for-
mula (61) allows for simplified visualization of the granule of
possible solutions zgr

1 , which is shown in Fig. 16.
Next, the component solution Z2 of the division will be de-

termined:

Z2 =
A

B1C2
:

zgr
2 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1] .

(62)

Component Z2 of the division is an information granule in
the 5D-space. As before, for particular membership levels this
granule can be visualized in a simplified way. For the level
µ = 0, the granule is given by (63).

Z2 : zgr
2 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1]

(63)

The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:

Z3 =
A

B2C1
:

zgr
3 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(64)

In particular, for the level µ = 0 formula (64) takes the form:

Z3 : zgr
3 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(65)

This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:

Z4 =
A

B2C2
:

zgr
4 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(66)

In particular, for the level µ = 0 the component granule can
be simplified:

Z4 : zgr
4 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(67)

This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
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is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
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are shown in Fig. 17.
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xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.
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Component Z2 of the division is an information granule in 
the 5D-space. As before, for particular membership levels this 
granule can be visualized in a simplified way. For the level 
μ = 0, the granule is given by (63).
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It should be noticed that in the considered domain of RDM
variables αXA, αXB, αXC, the nominator and the denominator
of formula (61) do not change their sign, i.e.: 1+ 2αXA > 0,
−2+ 3αXB < 0, −1+ 4αXC < 0. So, all possible division re-
sults contained in the granule Z1 are positive. Analysis of for-
mula (61) allows for simplified visualization of the granule of
possible solutions zgr

1 , which is shown in Fig. 16.
Next, the component solution Z2 of the division will be de-

termined:
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Component Z2 of the division is an information granule in
the 5D-space. As before, for particular membership levels this
granule can be visualized in a simplified way. For the level
µ = 0, the granule is given by (63).
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,
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The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:
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This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:
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:
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In particular, for the level µ = 0 the component granule can
be simplified:
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This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
the real system only one value of each variable αXA, αXB, αXC
is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.

Z =
A
B
=

(1,2,4)
X2

B −10XB+21
, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, XB1
and XB2.

A : xA = (1+ µ)+3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+3(1− µ)αXB, αXB ∈ [0,
1
3
) ,

XB2 : xB2 = (2+ µ)+3(1− µ)αXB, αXB ∈ (
1
3
,1]

(69)
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tion granule in the 5D-space. For various μ-levels this result 
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is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.
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The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.
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This granule is visualized in Fig. 16. As can be seen, it is 
different from other granules.

Fig. 16. Simplified visualization of 5D result granules Z1 ¡ Z4 of the 
division Z = A/(BC)  in a 3D subspace for the cut level μ = 0
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1
4
,1]

(63)

The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:

Z3 =
A

B2C1
:

zgr
3 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(64)

In particular, for the level µ = 0 formula (64) takes the form:

Z3 : zgr
3 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(65)

This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:

Z4 =
A

B2C2
:

zgr
4 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(66)

In particular, for the level µ = 0 the component granule can
be simplified:

Z4 : zgr
4 =

1+ 2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(67)

This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
the real system only one value of each variable αXA, αXB, αXC
is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.

Z =
A
B
=

(1,2,4)
X2

B −10XB+21
, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, XB1
and XB2.

A : xA = (1+ µ)+3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+3(1− µ)αXB, αXB ∈ [0,
1
3
) ,

XB2 : xB2 = (2+ µ)+3(1− µ)αXB, αXB ∈ (
1
3
,1]

(69)
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This component granule is shown in Fig. 16 and it can be 
seen that it differs from other component granules. For other 
fractional μ-levels, distances between component granules are 
different from granule distances for the level μ = 0. For the 
level μ = 1, the division result is undetermined. Because in 
the real system only one value of each variable αXA, αXB, αXC 
is true, therefore also one division result z = xA/(xBxC) exists. 
This result is a single point that can lie only in one of the four 
component granules Z1 ¡ Z4.

4.4. Case 4. Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68). 
Value of the variable xB is uncertain and is expressed by the 
fuzzy value XB given by triple (2, 3, 5). Fuzzy values A and XB 
are shown in Fig. 17.
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Z4 according to the general formula (56) have to be found.

Z1 =
A

B1C1
:

zgr
1 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
)

(60)

The division result zgr
1 = f1(µ ,αXA,αXB,αXC) is an infor-

mation granule existing in a 5D-space and hence it can not be
precisely visualized. However, it can be presented in a simpli-
fied way for particular levels of membership µ . For the level
µ = 0, formula (60) takes form:

Z1 : zgr
1 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ [0,

1
4
) .

(61)

It should be noticed that in the considered domain of RDM
variables αXA, αXB, αXC, the nominator and the denominator
of formula (61) do not change their sign, i.e.: 1+ 2αXA > 0,
−2+ 3αXB < 0, −1+ 4αXC < 0. So, all possible division re-
sults contained in the granule Z1 are positive. Analysis of for-
mula (61) allows for simplified visualization of the granule of
possible solutions zgr

1 , which is shown in Fig. 16.
Next, the component solution Z2 of the division will be de-

termined:

Z2 =
A

B1C2
:

zgr
2 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1] .

(62)

Component Z2 of the division is an information granule in
the 5D-space. As before, for particular membership levels this
granule can be visualized in a simplified way. For the level
µ = 0, the granule is given by (63).

Z2 : zgr
2 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1]

(63)

The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:

Z3 =
A

B2C1
:

zgr
3 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(64)

In particular, for the level µ = 0 formula (64) takes the form:

Z3 : zgr
3 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(65)

This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:

Z4 =
A

B2C2
:

zgr
4 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(66)

In particular, for the level µ = 0 the component granule can
be simplified:

Z4 : zgr
4 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(67)

This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
the real system only one value of each variable αXA, αXB, αXC
is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.

Z =
A
B
=

(1,2,4)
X2

B −10XB+21
, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, XB1
and XB2.

A : xA = (1+ µ)+3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+3(1− µ)αXB, αXB ∈ [0,
1
3
) ,

XB2 : xB2 = (2+ µ)+3(1− µ)αXB, αXB ∈ (
1
3
,1]

(69)
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The denominator in formula (68) has two roots: xB = 3 and 
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should 
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, 
XB1 and XB2.
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Z4 according to the general formula (56) have to be found.

Z1 =
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B1C1
:
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The division result zgr
1 = f1(µ ,αXA,αXB,αXC) is an infor-

mation granule existing in a 5D-space and hence it can not be
precisely visualized. However, it can be presented in a simpli-
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It should be noticed that in the considered domain of RDM
variables αXA, αXB, αXC, the nominator and the denominator
of formula (61) do not change their sign, i.e.: 1+ 2αXA > 0,
−2+ 3αXB < 0, −1+ 4αXC < 0. So, all possible division re-
sults contained in the granule Z1 are positive. Analysis of for-
mula (61) allows for simplified visualization of the granule of
possible solutions zgr

1 , which is shown in Fig. 16.
Next, the component solution Z2 of the division will be de-

termined:

Z2 =
A
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:
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(1+ µ)+2(1− µ)αXA
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,

αXA ∈ [0,1], αXB ∈ [0,
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3
), αXC ∈ (
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Component Z2 of the division is an information granule in
the 5D-space. As before, for particular membership levels this
granule can be visualized in a simplified way. For the level
µ = 0, the granule is given by (63).

Z2 : zgr
2 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ [0,
2
3
), αXC ∈ (

1
4
,1]

(63)

The granule Z2 is visualized in Fig. 16. It can be noticed that
granules Z1 and Z2 are various.

The component result Z3 of the division is also an informa-
tion granule in the 5D-space. For various µ-levels this result
can be shown in the form:

Z3 =
A

B2C1
:

zgr
3 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(64)

In particular, for the level µ = 0 formula (64) takes the form:

Z3 : zgr
3 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ [0,

1
4
) .

(65)

This granule is visualized in Fig. 16. As can be seen, it is
different from other granules.

The last component result Z4 of the division is also an in-
formation granule existing in the 5D-space. For particular µ-
levels it has the form:

Z4 =
A

B2C2
:

zgr
4 =

(1+ µ)+2(1− µ)αXA
[(1− µ)(−2+3αXB)][(1− µ)(−1+4αXC)]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(66)

In particular, for the level µ = 0 the component granule can
be simplified:

Z4 : zgr
4 =

1+2αXA
[−2+3αXB][−1+4αXC]

,

αXA ∈ [0,1], αXB ∈ (
2
3
,1], αXC ∈ (

1
4
,1] .

(67)

This component granule is shown in Fig. 16 and it can be
seen that it differs from other component granules. For other
fractional µ-levels, distances between component granules are
different from granule distances for the level µ = 0. For the
level µ = 1, the division result is undetermined. Because in
the real system only one value of each variable αXA, αXB, αXC
is true, therefore also one division result z = xA/(xBxC) exists.
This result is a single point that can lie only in one of the four
component granules Z1 – Z4.

4.4. Case 4 Now, let us examine the division case with a de-
nominator in which the second-order polynomial occurs, (68).
Value of the variable xB is uncertain and is expressed by the
fuzzy value XB given by triple (2,3,5). Fuzzy values A and XB
are shown in Fig. 17.

Z =
A
B
=

(1,2,4)
X2

B −10XB+21
, XB = (2,3,5) (68)

The denominator in formula (68) has two roots: xB = 3 and
xB = 7. The fuzzy value XB contains the root xB = 3. The divi-
sion result is indeterminate for this value, so MF of XB should
be decomposed into two parts as shown in Fig. 18.

Formula (69) presents horizontal MFs of fuzzy values A, XB1
and XB2.

A : xA = (1+ µ)+ 3(1− µ)αXA, µ ,αXA ∈ [0,1] ,

XB1 : xB1 = (2+ µ)+3(1− µ)αXB, αXB ∈ [0,
1
3
) ,

XB2 : xB2 = (2+ µ)+3(1− µ)αXB, αXB ∈ (
1
3
,1]

(69)
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After inserting horizontal MFs into formula (68) we have:

	

Fuzzy number division and the multi-granularity phenomenon

Fig. 16. Simplified visualization of 5D result granules Z1 – Z4 of the
division Z = A/(BC) in a 3D subspace for the cut level µ = 0

Fig. 17. Membership functions of fuzzy values A and XB occurring in
the division (68)

Fig. 18. Decomposition of membership function of fuzzy value XB
into two parts, xB �= 3, αXB �= 1/3

After inserting horizontal MFs into formula (68) we have:

Z1 : zgr
1 =

(1+ µ)+ 3(1− µ)αXA
D

,

µ ,αXA ∈ [0,1], αXB ∈ [0,
1
3
) ,

Z2 : zgr
2 =

(1+ µ)+3(1− µ)αXA
D

,

µ ,αXA ∈ [0,1], αXB ∈ (
1
3
,1] ,

(70)

where:

D= [(2+µ)+3(1−µ)αXB]
2−10[(2+µ)+3(1−µ)αXB]+21 .

Fig. 19. Two component granules Z1 and Z2 of the division result
determined by formula (71), xB �= 3, αXB �= 1/3, z /∈ [−0.25,0.2]

As can be seen from formula (70), the division result con-
sists of two granules Z1 and Z2 which exist in 4D-space
z = f (µ ,αXA,αXB), hence they cannot be precisely visualized.
However, they can be visualized in a simplified way in 2D-
space for particularly chosen membership levels µ . For the
level µ = 0 formula (70) takes the form:

Z1 : zgr
1 =

1+3αXA

9α2
XB −18αXB +5

,

µ ,αXA ∈ [0,1], αXB ∈ [0,
1
3
) ,

Z2 : zgr
2 =

(1+ µ)+3(1− µ)αXA

9α2
XB −18αXB +5

,

µ ,αXA ∈ [0,1], αXB ∈ (
1
3
,1] .

(71)

Component granules Z1 and Z2 of the division result are
shown in Fig. 19.

The true, crisp result of the division (70) lies in one of two
granules: Z1 or Z2. In the real problem we have sometimes
some additional knowledge, e.g. that the division result is neg-
ative. Then the true result can be located only in Z2, which
means decreasing the uncertainty.

4.5. Case 5 Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficients oc-
curring in the equations are uncertain. Typical example is an
economical plan model for the next period as e.g. balance
model of Leontief for state economy [29]. Solving a linear
equation system requires division by the system determinant D
which also is uncertain and can contain negative numbers, zero
and positive numbers. Such situation results in multi-granular
solutions. Let us consider equation system (72) with uncertain
coefficients determined by triangle MFs.

A1x1 +B1x2 =C1

A2x1 +B2x2 =C2
(72)

MFs of particular coefficients can be expressed in the form
of triples: A1 = (1,2,4), B1 = (3,5,6), C1 = (15,16,17), A2 =
(2,3,5), B2 = (7,8,9), C2 = (21,24,25), Fig. 20.
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where:

D = [(2 + μ) + 3(1 ¡ μ)αxA]
2 ¡ 10[(2 + μ) + 3(1 ¡ μ)αxB] + 21.

As can be seen from formula (70), the division result 
consists of two granules Z1 and Z2 which exist in 4D-space 
z = f (μ, αXA, αXB), hence they cannot be precisely visual-
ized. However, they can be visualized in a simplified way in 
2D-space for particularly chosen membership levels μ. For the 
level μ = 0 formula (70) takes the form:
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Fig. 19. Two component granules Z1 and Z2 of the division result
determined by formula (71), xB �= 3, αXB �= 1/3, z /∈ [−0.25,0.2]

As can be seen from formula (70), the division result con-
sists of two granules Z1 and Z2 which exist in 4D-space
z = f (µ ,αXA,αXB), hence they cannot be precisely visualized.
However, they can be visualized in a simplified way in 2D-
space for particularly chosen membership levels µ . For the
level µ = 0 formula (70) takes the form:
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1 =
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Component granules Z1 and Z2 of the division result are
shown in Fig. 19.

The true, crisp result of the division (70) lies in one of two
granules: Z1 or Z2. In the real problem we have sometimes
some additional knowledge, e.g. that the division result is neg-
ative. Then the true result can be located only in Z2, which
means decreasing the uncertainty.

4.5. Case 5 Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficients oc-
curring in the equations are uncertain. Typical example is an
economical plan model for the next period as e.g. balance
model of Leontief for state economy [29]. Solving a linear
equation system requires division by the system determinant D
which also is uncertain and can contain negative numbers, zero
and positive numbers. Such situation results in multi-granular
solutions. Let us consider equation system (72) with uncertain
coefficients determined by triangle MFs.

A1x1 +B1x2 =C1

A2x1 +B2x2 =C2
(72)

MFs of particular coefficients can be expressed in the form
of triples: A1 = (1,2,4), B1 = (3,5,6), C1 = (15,16,17), A2 =
(2,3,5), B2 = (7,8,9), C2 = (21,24,25), Fig. 20.
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Component granules Z1 and Z2 of the division result are 
shown in Fig. 19.

Fig. 17. Membership functions of fuzzy values A and XB occurring in 
the division (68)

Fig. 18. Decomposition of membership function of fuzzy value XB into 
two parts, xB  6= 3, αXB  6= 1/3
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The true, crisp result of the division (70) lies in one of two 
granules: Z1 or Z2. In a real proble,m we sometimes have some 
additional knowledge, e.g. that the division result is negative. 
Then the true result can be located only in Z2, which means 
decreasing the uncertainty.

4.5. Case 5. Solving linear equation systems is a frequent task 
in practical problems [26–28]. Coefficients occurring in the 
equations are often uncertain. A typical example is an econom-
ical plan model for the next period as e.g. balance model of Le-
ontief for state economy [29]. Solving a linear equation system 
requires division by the system determinant D which also is 
uncertain and can contain negative numbers, zero and positive 
numbers. Such situation results in multi-granular solutions. Let 
us consider equation system (72) with uncertain coefficients 
determined by triangle MFs.
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where:
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As can be seen from formula (70), the division result con-
sists of two granules Z1 and Z2 which exist in 4D-space
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However, they can be visualized in a simplified way in 2D-
space for particularly chosen membership levels µ . For the
level µ = 0 formula (70) takes the form:

Z1 : zgr
1 =

1+3αXA

9α2
XB −18αXB +5

,

µ ,αXA ∈ [0,1], αXB ∈ [0,
1
3
) ,

Z2 : zgr
2 =

(1+ µ)+3(1− µ)αXA

9α2
XB −18αXB +5

,

µ ,αXA ∈ [0,1], αXB ∈ (
1
3
,1] .

(71)

Component granules Z1 and Z2 of the division result are
shown in Fig. 19.

The true, crisp result of the division (70) lies in one of two
granules: Z1 or Z2. In the real problem we have sometimes
some additional knowledge, e.g. that the division result is neg-
ative. Then the true result can be located only in Z2, which
means decreasing the uncertainty.

4.5. Case 5 Solving linear equation systems is a frequent task
in practical problems [26, 27, 28]. Frequently, coefficients oc-
curring in the equations are uncertain. Typical example is an
economical plan model for the next period as e.g. balance
model of Leontief for state economy [29]. Solving a linear
equation system requires division by the system determinant D
which also is uncertain and can contain negative numbers, zero
and positive numbers. Such situation results in multi-granular
solutions. Let us consider equation system (72) with uncertain
coefficients determined by triangle MFs.

A1x1 +B1x2 =C1

A2x1 +B2x2 =C2
(72)

MFs of particular coefficients can be expressed in the form
of triples: A1 = (1,2,4), B1 = (3,5,6), C1 = (15,16,17), A2 =
(2,3,5), B2 = (7,8,9), C2 = (21,24,25), Fig. 20.
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as:
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C1 : xC1 = (15+ µ)+2αC1(1− µ) ,
A2 : xA2 = (2+ µ)+3αA2(1− µ) ,
B2 : xB2 = (7+ µ)+2αB2(1− µ) ,
C2 : xC2 = (21+3µ)+4αC2(1− µ) ,
µ ,αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] .

(73)

The determinant D of the equation system (72) has the form
D = xA1xB2 − xA2xB1 and solutions xgr

1 and xgr
2 can be formu-

lated as:

xgr
1 =

xB2xC1 − xB1xC2
xA1xB2 − xA2xB1

,

xgr
2 =

xA1xC2 − xA2xC1
xA1xB2 − xA2xB1

.
(74)

To check whether solutions xgr
1 and xgr

2 really have charac-
ter of multi-granules it is sufficient to examine them for the
membership level µ = 0. For this level solutions (74) take the
form:

xgr
1 =

(7+2αB2)(15+2αC1)− (3+3αB1)(21+4αC2)

(1+3αA1)(7+2αB2)− (2+3αA2)(3+3αB1)
,

xgr
2 =

(1+3αA1)(21+4αC2)− (2+3αA2)(15+2αC1)

(1+3αA1)(7+2αB2)− (2+3αA2)(3+3αB1)
,

αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] .
(75)

Let us notice, that the nominator and denominator of xgr
1 in

(75) are not independent. They are coupled by RDM-variables
αB1 and αB2. Similar coupling occurs in xgr

2 by RDM-variables
αA1 and αA2. To check whether solutions xgr

1 and xgr
2 have

Fig. 21. Visualisation of 2-granularity of xgr
1 = xgr

1,1 ∪ xgr
1,2 as the func-

tion of the denominator D and the numerator N of the solution (75)

Fig. 22. Visualisation of xgr
2 = xgr

2,1 ∪ xgr
2,2 as the function of the de-

nominator D and the numerator N of the solution (75)

the form of multi-granules or not, the denominator D of the
equation system (75) for the level µ = 0 should be examined.

D = (1+3αA1)(7+2αB2)− (2+3αA2)(3+3αB1) ,

αA1,αB1,αA2,αB2,∈ [0,1]
(76)

Because the denominator D is a monotonic function of
RDM-variables, its extremes lie in corners of its domain αA1×
αB1 ×αA2 ×αB2. To detect these extremes, the denominator
value for all combinations of RDM variables αA1, αB1, αA2,
αB2 for values 0 and 1 must be calculated. Results of this ex-
amination are given in (77).

minD = D(αA1 = 0,αB1 = 1αA2 = 1,αB2 = 0) =−23 ,
maxD = D(αA1 = 1,αB1 = 0αA2 = 0,αB2 = 1) = 30

(77)

It can be seen that D ∈ [−23,30]. Occurrence of zero in the
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(75) are not independent. They are coupled by RDM-variables
αB1 and αB2. Similar coupling occurs in xgr

2 by RDM-variables
αA1 and αA2. To check whether solutions xgr

1 and xgr
2 have

Fig. 21. Visualisation of 2-granularity of xgr
1 = xgr

1,1 ∪ xgr
1,2 as the func-

tion of the denominator D and the numerator N of the solution (75)

Fig. 22. Visualisation of xgr
2 = xgr

2,1 ∪ xgr
2,2 as the function of the de-

nominator D and the numerator N of the solution (75)

the form of multi-granules or not, the denominator D of the
equation system (75) for the level µ = 0 should be examined.

D = (1+3αA1)(7+2αB2)− (2+3αA2)(3+3αB1) ,

αA1,αB1,αA2,αB2,∈ [0,1]
(76)

Because the denominator D is a monotonic function of
RDM-variables, its extremes lie in corners of its domain αA1×
αB1 ×αA2 ×αB2. To detect these extremes, the denominator
value for all combinations of RDM variables αA1, αB1, αA2,
αB2 for values 0 and 1 must be calculated. Results of this ex-
amination are given in (77).

minD = D(αA1 = 0,αB1 = 1αA2 = 1,αB2 = 0) =−23 ,
maxD = D(αA1 = 1,αB1 = 0αA2 = 0,αB2 = 1) = 30

(77)

It can be seen that D ∈ [−23,30]. Occurrence of zero in the
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Fig. 20. Membership functions of uncertain coefficients A1, B1, C1,
A2, B2, C2 occurring in the equation system (72)

Horizontal MFs of uncertain coefficients can be determined
as:

A1 : xA1 = (1+ µ)+3αA1(1− µ) ,
B1 : xB1 = (3+2µ)+3αB1(1− µ) ,
C1 : xC1 = (15+ µ)+2αC1(1− µ) ,
A2 : xA2 = (2+ µ)+3αA2(1− µ) ,
B2 : xB2 = (7+ µ)+2αB2(1− µ) ,
C2 : xC2 = (21+3µ)+4αC2(1− µ) ,
µ ,αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] .

(73)

The determinant D of the equation system (72) has the form
D = xA1xB2 − xA2xB1 and solutions xgr

1 and xgr
2 can be formu-

lated as:

xgr
1 =
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xA1xB2 − xA2xB1

,

xgr
2 =

xA1xC2 − xA2xC1
xA1xB2 − xA2xB1

.
(74)
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(1+3αA1)(7+ 2αB2)− (2+3αA2)(3+3αB1)
,

αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] .
(75)

Let us notice, that the nominator and denominator of xgr
1 in

(75) are not independent. They are coupled by RDM-variables
αB1 and αB2. Similar coupling occurs in xgr
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αA1 and αA2. To check whether solutions xgr
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2 have
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the form of multi-granules or not, the denominator D of the
equation system (75) for the level µ = 0 should be examined.

D = (1+ 3αA1)(7+ 2αB2)− (2+ 3αA2)(3+ 3αB1) ,

αA1,αB1,αA2,αB2,∈ [0,1]
(76)

Because the denominator D is a monotonic function of
RDM-variables, its extremes lie in corners of its domain αA1×
αB1 ×αA2 ×αB2. To detect these extremes, the denominator
value for all combinations of RDM variables αA1, αB1, αA2,
αB2 for values 0 and 1 must be calculated. Results of this ex-
amination are given in (77).

minD = D(αA1 = 0,αB1 = 1αA2 = 1,αB2 = 0) =−23 ,
maxD = D(αA1 = 1,αB1 = 0αA2 = 0,αB2 = 1) = 30

(77)

It can be seen that D ∈ [−23,30]. Occurrence of zero in the
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Fig. 19. Two component granules Z1 and Z2 of the division result 
determined by formula (71), xB  6= 3, αXB  6= 1/3, z 2/ [¡0.25, 0.2]

Fig. 20. Membership functions of uncertain coefficients A1, B1, C1, A2, 
B2, C2 occurring in the equation system (72)
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Because the denominator D is a monotonic function of 
RDM-variables, its extremes lie in corners of its domain 
αA1£αB1£αA2£αB2. To detect these extremes, the denominator 
value for all combinations of RDM variables αA1, αB1, αA2, αB2 
for values 0 and 1 must be calculated. Results of this examina-
tion are given in (77).

	
minD = D(αA1 = 0, αB1 = 1αA2 = 1, αB2 = 0) = ¡23
maxD = D(αA1 = 1, αB1 = 0αA2 = 0, αB2 = 1) = 30

� (77)

It can be seen that D 2 [¡23, 30]. Occurrence of zero in 
the interval of the denominator D means that the solution 
of the equation system is two-granular: x1

gr = xg
1,

r
1 [ xg

1,
r
2 and 

x2
gr = xg

2,
r
1 [ xg

2,
r
2.

	

Fuzzy number division and the multi-granularity phenomenon

Fig. 23. Visualisation of the set of possible solutions (75) for
αA1,αB1,αC1,αA2,αB2,αC2 ∈ [0,1] in the space X1 × X2; no sepa-
ration is visible

interval of the denominator D means that the solution of the
equation system is two-granular: xgr

1 = xgr
1,1 ∪ xgr

1,2 and xgr
2 =

xgr
2,1 ∪ xgr

2,2.

xgr
1,1 = f1,1(αA1,αB1,αC1,αA2,αB2,αC2) ,

for D(αA1,αB1,αA2,αB2) ∈ [−23,0)
xgr

1,2 = f1,2(αA1,αB1,αC1,αA2,αB2,αC2) ,

for D(αA1,αB1,αA2,αB2) ∈ (0,30]

(78)

The 3D-projection from the 7D-space of the two-granular
solution xgr

1 is shown in Fig. 21. Projection of the solution xgr
2

is of the similar character, Fig. 22.
In Figs. 21 and 22 one can distinctly see the separation of

component-solution granules. One can also see that compo-
nent granules xgr

1,1 and xgr
1,2 are various functions.

When the solution of the equation system (72) is presented
in a too low-dimensional or inappropriate space (as in Fig. 23)
then the separation of solution granules is not visible. How-
ever, such inappropriate presentation can be found in many pa-
pers concerning uncertain equation systems, e.g in [26].

5. Conclusions
Solving problems described by uncertain mathematical mod-
els which explicitly or sometimes implicitly (as fuzzy equa-
tion systems) contain the division operation can provide multi-
granular, not compact solutions consisting of two or more com-
ponent granules which are distinctly separated. Sometimes,
the granule separation is considerable as has been shown in
examples. The multi-granularity hinders problem solving, es-
pecially when the multi-granular solution of one sub-model
has to be introduced in the next submodel in which division
also occurs. Fuzzy RDM arithmetic allows for detecting the
multi-granularity and allows for taking into account possible
couplings (correlations) existing between particular problem
variables as in the case of fuzzy system equations where such

couplings exists between the numerator and the denominator
of system solutions. Consciousness of the solutions’ multi-
granularity is very important for correct and precise solving
uncertain problems.
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In Figs. 21 and 22 one can distinctly see the separation of 

component-solution granules. One can also see that component 
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When the solution of the equation system (72) is presented 
in a too low-dimensional or inappropriate space (as in Fig. 23), 
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inappropriate presentation can be found in many papers con-
cerning uncertain equation systems, e.g in [26].

5.	 Conclusions

Solving problems described by uncertain mathematical models 
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systems) contain the division operation can provide multi-gran-
ular, not compact solutions consisting of two or more com-
ponent granules which are distinctly separated. Sometimes, 
the granule separation is considerable, as has been shown in 
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Fig. 23. Visualization of the set of possible solutions (75) for αA1, 
αB1, αC1, αA2, αB2, αC2 2 [0, 1] in the space X1£X2; no separation is 

visible
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also occurs. Fuzzy RDM arithmetic allows for detecting the 
multi-granularity and allows for taking into account possible 
couplings (correlations) existing between particular problem 
variables, as in the case of fuzzy system equations where such 
couplings exists between the numerator and the denominator 
of system solutions. Being aware of the multi-granularity of 
the solutions is very important for correct and precise solving 
of uncertain problems.
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