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Abstract. The paper presents the phenomenon of directional change in LQG control of multivariable systems with amplitude constraints, as well 
as the impact of the latter on control performance. The interplay of directional change of the computed control vector with control performance 
has been thoroughly investigated, and is   a result of the presence of constraints imposed on the applied control vector for different proportions 
of the number of control inputs to plant outputs. The impact of directional change phenomenon on the control performance has been defined, 
stating that performance deterioration is not tightly coupled with preservation of direction of the computed control vector. The statement has 
been supported by numerous simulation results for different types of plants with different LQG controller parameters.
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Since unexpected actuator failures may cause severe 
damage, performance deterioration or might even be hazardous 
to the environment, it is of practical importance to analyze the 
interplay of control performance and directional change.

Independently of the kind of actuator failure, directional 
change modifies the proportions between the elements of the 
control vector. This aspect is usually omitted in the papers con-
cerning windup phenomenon, and can be hardly ever seen in 
the works concerning multivariable systems. On the contrary 
to the SISO case, in the MIMO control systems one has to take 
cross-coupling and unequal number of plant inputs and outputs 
into consideration. The direction of computed control vector 
might not only fall in the principal input direction [7, 8] or can 
be related to maximal directional gain [9], but it can also reflect 
the degree of decoupling. Changing the control direction in such 
a case might cause performance deterioration.

Initial study of directional change in LQR control scheme 
has been presented in the previous work [10], though in the 
case of a square system only. This paper extends the results 
to non-square systems with perfect measurements, giving two 
conjectures that are supported by research carried out in [11] 
(improvement caused by introduction of no directional change 
in the case of one-input, six-outputs system) or [12] (with dis-
cussion of directional change impact on control quality for a set 
of controllers).

The main contribution of the paper is the identification of the 
interplay between directional change phenomenon, overall per-
formance of the control system and dimensionality of the con-
sidered models. As a result, it would be possible to predict per-
formance improvement/degradation when direction-preserving 
algorithm is implemented for non-square plant models in the 
case of robustness feature introduced to the control system. It 
has to be stressed that the presented design criteria of the LQG 
controller do not take dimension of the plant explicitly, but by 
observing performance indices’ values it is possible to identify 
where it is advantageous to apply the proposed approach.

1.	 Introduction

The problem of robust control and stabilization is well-estab-
lished in the literature. Some papers are related to performance 
measures in the quadratic cost sense for uncertain systems, as 
in [1] or [2], in the case of continuous-time control systems. In 
the case of discrete-time control systems, the guaranteed-cost 
control has been addressed in, e.g., [3].

In real-world applications actuators are prone to failures, 
thus it is of value to use the controller that can tolerate such 
situations, to guarantee stability and certain performance level. 
The paper adopts the approach presented in [4] in order to study 
the interplay between a special kind of actuator failure and phe-
nomenon that takes place in multivariable control systems only, 
namely directional change.

This kind of actuator failure is a possible saturation of the 
elements of control vector, changing the information at the same 
time that is carried by the unconstrained (i.e., computed) control 
vector visible as directional change in controls. The state-feed-
back control law is proposed to guarantee the cost in the case 
of actuator failure, with failures modeled by scaling factors, that 
are used to project the ,,robustness area’’ on the static charac-
teristic of the nonlinearity (saturation function) present in the 
control system.

A vast majority of real-world systems are subject to satura-
tion-like actuator constraints or sensors’ saturations. Such non-
linearities have negative impact on the control performance, and 
actuator saturation gives rise to windup phenomenon (lack of 
consistency between computed and constrained control input). 
The stability analysis results of saturated control systems may 
be found in, e.g. [5, 6].
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2.	 Plant and actuator failure models

The following multivariable model is taken into consider-
ation:

	 x–t+1 = Ax–t + Bu–t + ξ–t ,� (1)

y–t = Cx–t ,� (2)

with ξ–t as vector disturbance with covariance matrix ∑ξ = {σξ2, 
σξ2, …, σξ2}, statistically independent with zero mean value, with 
the possibility of perfect measurements [13]. The output vector 
y– 2 
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0
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t
(

Q+FT ρRρF
)

xt

}

≤
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(
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)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
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If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(
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4. Control law
The control law of the form
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rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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with weighing matrices Q ¸ 0, R ¸ 0. Taking possible satura-
tions into account, one can assume actuator failure model as 
in  [18], i.e.,
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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where ρk
t, i is an unknown constant from the span that will be 

defined in the further part of the text, index k denotes the k-th 
failure model, and g is the total number of failure models. The 
notation uk

t, i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes 
place (in the other case, uk

t, i = vt, i). For any actuator failure 
model, including the situation for constraints imposed on the 
control vector, the constant ρk

t, i lies in ρk
–, t, i ∙ ρk

t, i ∙ ρk
+, t, i, and 

function sat defines the method od applying constraints (e.g., 
cut-off constraint).

The control vector might be either constrained by a cut-off 
nonlinearity, changing its direction in general, what can be 
treated as an actuator failure case, or by direction-preserving 
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
–, t, i = ρk

+, t, i = 0 holds in (4), it means that failure (4) has 
not taken place (there is only the saturation of the i-th con-
trol signal present). If ρk

–, t, i = ρk
+, t, i = 1 holds, it corresponds to 

outage case in the k-th failure model. The failure according to 
the k-th model means that 0 < ρk

–, t, i ∙ ρk
+, t, i < 1 holds.

In the most general case, having taken a single model of 
failure into account, i.e. uF

t, i = uk
t, i, (4) can be transformed [4, 

13, 14], to
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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where (ρ¡, i ∙ 1 and ρ+, i ¸ 1)
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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In analogy to (4), ρ¡, i = ρ+, i for i = 1, …, m means that 
there are no active constraints imposed on the control vector, 
and uF

t, i = ut, i (i.e. linear range of controller’s actions). The 
case ρ¡, i > 0 corresponds to partial failure, and ρ¡, i = 0 to the 
outage case, as mentioned earlier. This is a more general case 
in comparison with (4), since relation between computed and 
applied control signals is taken into account.

In order to streamline the further presentation, the following 
notation has been adopted from [13, 14]:
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
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t Rut
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}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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diag
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, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as
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, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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diag
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, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),
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The control performance index is defined as
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with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,
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t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{
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t=0

xT
t
(

Q+FT ρRρF
)
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}

≤
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)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{

∞

∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)
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in [18], i.e.,
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function sat defines the method od applying constraints (e.g.,
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The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk
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failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
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J = E

{
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t=0
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t
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Q+FT ρRρF
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≤ xT
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(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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+,t,i, and

function sat defines the method od applying constraints (e.g.,
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The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
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−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk
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+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF
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t,i, (4) can be transformed [16],

[17], [7], to
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where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E
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≤
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If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
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The notation uk
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The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.
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not taken place (there is only the saturation of the i-th control
signal present). If ρk
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+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk
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+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to
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where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E
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}

≤
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(
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)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)
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t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
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in comparison with (4), since relation between computed and
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Depending on the method of imposing constraints on the con-
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Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
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4. Control law
The control law of the form

vt = Fxt (11)
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formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]
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(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
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m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as
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t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)
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}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)

2 Bull. Pol. Ac.: Tech. XX(Y) 2017

Dariusz Horla

with ξ t as vector disturbance with covariance matrix Σξ =

diag
{

σ2
ξ , σ2

ξ , . . . , σ2
ξ

}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as

J = E

{
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∑
t=0

(

xT
t Qxt +uT

t Rut
)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.
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4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)
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}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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with ξ t as vector disturbance with covariance matrix Σξ =

diag
{
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ξ , σ2

ξ , . . . , σ2
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}

, statistically independent with zero
mean value, with the possibility of perfect measurements [13].
The output vector y ∈ R p, the constrained control vector u ∈
R

m (on the contrary to the computed control vector v ∈ R
m),

and the state vector x ∈ Rn.
The control performance index is defined as
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{
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∑
t=0

(
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t Qxt +uT
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)

}

, (3)

with weighing matrices Q ≥ 0, R ≥ 0. Taking possible satu-
rations into account, one can assume actuator failure model as
in [18], i.e.,

uk
t,i = (1−ρk

t,i)sat(vt,i; αi) (4)
(i = 1, 2, . . . , m, k = 1, 2, . . . , g) ,

where ρk
t,i is an unknown constant from the span that will be

defined in the further part of the text, index k denotes the k-
th failure model, and g is the total number of failure models.
The notation uk

t,i corresponds to the i-th component of the con-
strained control vector, assuming that an actuator failure takes
place (in the other case, uk

t,i = vt,i). For any actuator failure
model, including the situation for constraints imposed on the
control vector, the constant ρk

t,i lies in ρk
−,t,i ≤ ρk

t,i ≤ ρk
+,t,i, and

function sat defines the method od applying constraints (e.g.,
cut-off constraint).

The control vector might be either constrained by a cut-off
nonlinearity, changing its direction in general, what can be
treated as an actuator failure case, or by direction-preserving
(DP) saturation algorithm. The latter is the core of this paper.

If ρk
−,t,i = ρk

+,t,i = 0 holds in (4), it means that failure (4) has
not taken place (there is only the saturation of the i-th control
signal present). If ρk

−,t,i = ρk
+,t,i = 1 holds, it corresponds to

outage case in the k-th failure model. The failure according to
the k-th model means that 0 < ρk

−,t,i ≤ ρk
+,t,i < 1 holds.

In the most general case, having taken a single model of
failure into account, i.e. uF

t,i = uk
t,i, (4) can be transformed [16],

[17], [7], to

uF
t,i = ρivt,i (i = 1, 2, . . . , m) , (5)

where (ρ−,i ≤ 1 and ρ+,i ≥ 1)

0 ≤ ρ−,i ≤ ρi ≤ ρ+,i (i = 1, 2, . . . , m) . (6)

In analogy to (4), ρ−,i = ρ+,i for i = 1, . . . , m means that
there are no active constraints imposed on the control vector,
and uF

t,i = vt,i (i.e. linear range of controller’s actions). The
case ρ−,i > 0 corresponds to partial failure, and ρ−,i = 0 to the
outage case, as mentioned earlier. This is a more general case
in comparison with (4), since relation between computed and
applied control signals is taken into account.

In order to streamline the further presentation, the following
notation has been adopted from [17], [7]:

uT
t =

[

uF
t,1, uF

t,2, . . . , uF
t,m

]T
, (7)

ρ+ = diag{ρ+,1, ρ+,2, . . . , ρ+,m} , (8)
ρ− = diag{ρ−,1, ρ−,2, . . . , ρ−,m} , (9)

ρ = diag{ρ1, ρ2, . . . , ρm} . (10)

3. Directional change phenomenon
Depending on the method of imposing constraints on the con-
trol vector, one can observe directional change, illustrated in
Fig. 1a in the case of cut-off saturation, which is not present
when saturation is performed according to the imposed con-
straints (dashed lines) with constant direction, Fig. 1b.

v1

v2

vt

a)

ut u1

u2 directional
change

v1

v2b)

ut u1

u2

Fig. 1. a) direction-changing, b) direction-preserving saturation (left:
control vector before amplitude saturation, right: after saturation)

4. Control law
The control law of the form

vt = Fxt (11)

is called reliable, i.e., assuring that a specified value of the per-
formance index (3) is not exceeded, if it is connected to a cer-
atin matrix P that satisfies the inequality [7], [17]

(A+BρF)T P(A+BρF)−P+FT ρRρF +Q ≤ 0 . (12)

The closed loop system

xt+1 = (A+BρF)xt (13)

is then stable, and the performance index in an infinite horizon
satisfies

J = E

{

∞

∑
t=0

xT
t
(

Q+FT ρRρF
)

xt

}

≤

≤ xT
0Px0 + trace

(

PΣξ
)

. (14)

If no robustness against actuator failure is taken into consid-
eration, the optimal state-feedback matrix F◦ for the control
law (11) is derived as a solution of the set of equations [7]:

F◦ = −
(

BT P◦B+R
)−1 BT P◦A , (15)

P◦ = Q+AT P◦A−AT P◦B
(

BT P◦B+R
)−1BT P◦A ,(16)
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to (15) and (16) being at the same time the upper boundary of 
(14) in the case of no actuator failure, is
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).

vt,i

uF
t,i

αi

−αi

−αi
tanϕ− = ρ−

tanϕ+ = ρ+

αi

Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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5.	 Derivation of optimal state-feedback matrix 
in the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the 
following algorithm [13, 14] enabling derivation of the optimal 
state-feedback matrix F to increase the robustness of the system 
against actuator failure:
1)	 solve (16) with respect to P (mark the result as P¤), and 

choose an arbitrary diagonal matrix R0, satisfying
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
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I −Γ2
0
)((

BT PB+R
)(
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+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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2)	 solve
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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with respect to the stabilizing P and check the condition
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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(matrix Γ0 will be defined in due course of the paper);
3)	 if the inequality (18) is satisfied for R0 and P, increase the 

elements of R0 and proceed to step 2; otherwise, decrease 

the elements of R0 and proceed to step 2, checking if step 4 
is satisfied;

4)	 if the inequality (18) is satisfied for R0 and P, the stabilizing 
matrix P satisfies the equation (19), and there is no posi-
tive-definite solution for the pair R0 and P for arbitrary R0

0, 
where R0 ∙ R0

0 ∙ (BTP¤P + R)–1, then stop the algorithm; 
in this case, the state-feedback matrix is given as
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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The following notation has been adopted in the considered 
algorithm [13]:
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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In addition, on the basis of (10, 23 and 24) we have [4]:
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
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. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:
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(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′
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1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
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Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)
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where
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)((
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)(
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(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
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0 ≤
(
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)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as
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)((
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The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:
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ρ+,i +ρ−,i
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The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(
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)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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where matrix ρ0 = diag{ρ0,1, ρ0,2, …, ρ0, m}, ρ0, i =  ρi ¡ γi
γi (i =  

= 1, …, m), and operation of the absolute value jρ0j is elemen-
talism for the whole matrix.

6.	 Actuator failure and control subject  
to constraints

Amplitude-constrained control, where the input signals of the 
actuator can saturate, may be treated as a special case of the 
actuator failure, thus one can model possible saturations of the 
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [15]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, …, m, and i-th 
component of the constrained control vector becomes [14]
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7. Simulation results
7.1. Model parameters The following models are taken into
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):

• P1 (m = 2, p = 2)
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• P3 (m = 2, p = 3)

A =





















0.7 0.0 −0.1
0.1 0.8 −0.2

−0.1 0.0 0.8
I

0.1 0.0 0.0
0.0 −0.1 0.0
0.0 0.0 −0.5

0





















,

B =





















1.0 0.1
0.2 1.0
0.5 −0.1
0.0 0.0
0.0 0.0
0.0 0.0





















,

in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:
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where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables.
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acting on it, with disturbance variances equal to 0.1; the initial 
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The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical 
for all m control inputs, for the fixed values of α and variable 
δ and for fixed values of δ and variable α. In addition, it has 
been assumed that ρ+ = 1 + δ, ρ¡ = 1 ¡ δ, and the performance 
index J is computed as an expected value.

In order to verify the behavior of the control system, two 
additional performance indices have been introduced, related 
to mean absolute and squared tracking errors. Here r– denotes 
a square-wave reference vector tracked by output plant vector. 
Tracking property is due to introducing an the offset/shift to the 
control vector (11) related to the current values of the reference 
vector, allowing its asymptotic tracking. As a result, the control 
vector is a sum of (11) and offset vector, what results in y– being 
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are two square waves in reference vector delayed by half of the 
period as a reference vector, with amplitudes §3 and period of 
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).

vt,i

uF
t,i

αi

−αi

−αi
tanϕ− = ρ−

tanϕ+ = ρ+

αi

Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(

BT PB+R
)−1

, (20)

where

J0 = B
(

I −Γ2
0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
R0 ≤ R′

0 ≤
(

BT P∗P+R
)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as

F = −Γ−1(I−
(

X−1−R0
)((

I−Γ2
0
)

+ (22)

+ Γ2
0R−1

0 X−1)−1Γ2
0R−1

0

)

X−1BT PA ,

where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i

2
, (25)

γ0,i =
ρ+,i −ρ−,i

ρ+,i +ρ−,i
. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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Fig. 2. Actuator failure and amplitude constraints

The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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a linear range, and ρi  6= 1 otherwise. In other words, actuator 
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and the optimal value JF◦ of (3), based on deriving F◦ accord-
ing to (15) and (16) being at the same time the upper boundary
of (14) in the case of no actuator failure, is

JF◦ = xT
0P◦x0 + trace

(

P◦Σξ
)

. (17)

5. Derivation of optimal state-feedback matrix in
the case of actuator failure

The case of cut-off and direction-preserving saturation func-
tions are considered below, in which case one can give the
following algorithm [7], [17] enabling derivation of the opti-
mal state-feedback matrix F to increase the robustness of the
system against actuator failure:

1) solve (16) with respect to P (mark the result as P∗), and
choose an arbitrary diagonal matrix R0, satisfying

R0 ≤
(

BT P∗B+R
)−1 ; (18)

2) solve
P = Q+AT PA−AT PJ0PA (19)

with respect to the stabilizing P and check the condition

R0 ≤
(
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)−1

, (20)

where

J0 = B
(
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0
)((

BT PB+R
)(

I−Γ2
0
)

+R−1
0 Γ2

0
)−1 BT

,(21)

(matrix Γ0 will be defined in due course of the paper);
3) if the inequality (18) is satisfied for R0 and P, increase the

elements of R0 and proceed to step 2; otherwise, decrease the
elements of R0 and proceed to step 2, checking if step 4 is
satisfied;

4) if the inequality (18) is satisfied for R0 and P, the stabilizing
matrix P satisfies the equation (19), and there is no positive-
definite solution for the pair R0 and P for arbitrary R′

0, where
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0 ≤
(
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)−1, then stop the algorithm; in this

case, the state-feedback matrix is given as
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(

X−1−R0
)((
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+ (22)
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0 X−1)−1Γ2
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where X = BT PB+R.

The following notation has been adopted in the considered
algorithm [17]:

Γ = diag{γ1, γ2, . . . , γm} , (23)
Γ0 = diag{γ0,1, γ0,2, . . . , γ0,m} , (24)

where:

γi =
ρ+,i +ρ−,i
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, (25)

γ0,i =
ρ+,i −ρ−,i
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. (26)

The matrix P satisfying the equation

P = Q+AT PA−AT PB
(

BT PB+R
)−1 BT PA (27)

is called the stabilizing Ricotta solution to the Ricatti equation,
and all eigenvalues of the matrix A− B

(

BT PB+R
)−1 BT PA

are inside the unit circle.
In addition, on the basis of (10), (23) and (24) we have [16]:

ρ = (I +ρ0)Γ , (28)
|ρ0| ≤ Γ0 ≤ I , (29)

where matrix ρ0 = diag{ρ0,1, ρ0,2, . . . , ρ0,m}, ρ0,i =
ρi−γi

γi
(i =

1, . . . , m), and operation of the absolute value |ρ0| is elemen-
talism for the whole matrix.

6. Actuator failure and control subject to con-
straints

Amplitude-constrained control, where the input signals of the
actuator can saturate, may be treated as a special case of the
actuator failure, thus one can model possible saturations of the
control signals as a case of actuator failures (for successful ap-
plication to a real-world process, see e.g. [11]). In such a sit-
uation, it is assumed that γi = αi for i = 1, 2, . . . , m, and i-th
component of the constrained control vector becomes [7]

uF
i,t = sat

(

f T
i xt ;αi

)

, (30)

where sat is a function that imposes constraints on the i-th com-
ponent of control vector in the span of ±αi, and f T

i is the i-th
row of F . With reference to comments in Section 2, and (5),
ρi = 1 holds whenever the i-th component of the control vector
is in a linear range, and ρi �= 1 otherwise. In other words, ac-
tuator failure in (30) refers to discrepancy between computed
and applied control signals, as in (4), (5).

An isolated actuator failure on the basis of (5) and (30) is
presented in the Figure 2. The assumed failure model can be
put for the complete system in the form (i = 1, 2, . . . , m)

uF
i,t = sat (ρivt,i;αi) , (31)

as a compilation of models (30) and (5) (dashed area in Fig. 2).
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The situation from the Figure 2 can be extended to the case
of simultaneous amplitude and rate constraints having assumed
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.
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The situation from the Fig. 2 can be extended to the case of 

simultaneous amplitude and rate constraints having assumed 
that the domain of acceptable solutions is non-empty and it in-
cludes the area of guaranteed performance index value. Should 
the domain be empty, the rate constraints are treated as sec-
ondary and thus omitted.

7.	 Simulation results

7.1. Model parameters. The following models are taken into 
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):
●	 P1 (m = 2, p = 2)
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7. Simulation results
7.1. Model parameters The following models are taken into
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):

• P1 (m = 2, p = 2)
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• P2 (m = 3, p = 2)
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• P3 (m = 2, p = 3)
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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40 samples, whereas in the case of m > p the third reference 
signal is zero. The indices are:
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7.1. Model parameters The following models are taken into
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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7. Simulation results
7.1. Model parameters The following models are taken into
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):

• P1 (m = 2, p = 2)
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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where N denotes the simulation horizon.
In order to evaluate the directional change impact on the 
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7. Simulation results
7.1. Model parameters The following models are taken into
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):

• P1 (m = 2, p = 2)
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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7. Simulation results
7.1. Model parameters The following models are taken into
consideration (in all the cases C = [I, 0] with appropriate di-
mensions of the inner matrices):
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in order to cover the cases with m = p, m > p, m < p.

7.2. Figures and tables

7.2.1. Preliminaries A set of simulations has been performed
in the horizon of N = 10000 steps, assuming that the state vec-
tor is to be stabilized at the origin subject to constraints acting
on it, with disturbance variances equal to 0.1; the initial re-
sults have been described in [7] (carried out for the same plant
models described as P1, P2, P3).

The tests have been performed assuming that there is a sym-
metrical cut-off amplitude saturation in the system, identical
for all m control inputs, for the fixed values of α and variable
δ and for fixed values of δ and variable α . In addition, it has
been assumed that ρ+ = 1+ δ , ρ− = 1− δ , and the perfor-
mance index J is computed as an expected value.

In order to verify the behavior of the control system, two
additional performance indexes have been introduced, related
to mean absolute and squared tracking errors. Here r denotes
a square-wave reference vector tracked by output plant vector.
Tracking property is due to introducing an the offset/shift to
the control vector (11) related to the current values of the ref-
erence vector, allowing its asymptotic tracking. As a result, the
control vector is a sum of (11) and offset vector, what results
in y being shifted accordingly to the values in r. In the case of
m ≤ p there are two square waves in reference vector delayed
by half of the period as a reference vector, with amplitudes ±3
and period of 40 samples, whereas in the case of m > p the
third reference signal is zero. The indexes are:

J1 =
1
N

N

∑
t=0

p

∑
k=1

|rk,t − yk,t | , (32)

J2 =
1
N

N

∑
t=0

p

∑
k=1

�

rk,t − yk,t
�2
, (33)

where N denotes the simulation horizon.
In order to evaluate the directional change impact on the

control performance, the following indices are introduced:

Jϕ =
1
N

N

∑
t=0

|ϕ(vt)−ϕ(ut)| [
◦] , (34)

Jϕ2 =
1
N

N

∑
t=0

�

ϕ(vt)−ϕ(ut)

�2
, (35)

where ϕ(vt) is an angle between e1 and vt , and ϕ(ut) is an
angle between e1 and ut .

Index Jϕ is related to the mean absolute directional change
(in degrees), and its value increases in proportion to the excess
of the directional change. Performance index Jϕ2 increases
rapidly with severe directional change, and allows one to check
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α On the basis
of Fig. 3, one can state that by increasing the area of robust
performance (i.e., by increasing δ ) we can observe a local min-
imum of the performance index for tough constraints. On the
basis of Figure 3a, one can say that the control system is sta-
ble from α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142
(δ = 0.7) up to α = 0.4, J = 0.4438 (δ = 0.8). There is a
decrease of the performance index at δ = 0.8 visible in the
Figures for the case of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:

• P1: 0.4438 for δ = 0.8, 0.3142 for δ = 0.7,
• P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
• P2: 0.4367 for δ = 0.8, 0.3338 for δ = 0.7,
• P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ =
0.7 (both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1
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where φ(v–t) is an angle between e–1 and v–t, and φ(u–t) is an angle 
between e–1 and u–t.

Index Jφ is related to the mean absolute directional change 
(in degrees), and its value increases in proportion to the excess 
of the directional change. Performance index Jφ2 increases rap-
idly with severe directional change, and allows one to check 
what is the character of these changes.

7.2.2. Index J (3) vs. amplitude constraint α. Based on Fig. 3, 
one can state that by increasing the area of robust perfor-

mance (i.e., by increasing δ) we can observe a local minimum 
of the performance index for tough constraints. On the basis 
of Fig. 3a, one can say that the control system is stable from 
α = 0.6, J = 0.2551 (δ = 0.3), α = 0.5, J = 0.3142 (δ = 0.7) 
up to α = 0.4, J = 0.4438 (δ = 0.8). There is a decrease of the 
performance index at δ = 0.8 visible in the Figures for the case 
of P1 and P2 and tightening constraints.

The plots of J for the toughest constraints start at:
●	 P1: 0.4438$ for δ = 0.8, 0.3142 for δ = 0.7,
●	 P1-DP: 0.4158 for δ = 0.8, 0.3088 for δ = 0.7,
●	  P2: 0.4367$ for δ = 0.8, 0.3338 for δ = 0.7,
●	 P2-DP: 0.4344 for δ = 0.8, 0.3297 for δ = 0.7,

and end (in order) at: 0.4312 for δ = 0.8 and 0.3028 for δ = 0.7 
(both for P1) as well as 0.4487 for δ = 0.8 and 0.3136 for 
δ = 0.7 (both for P2).

The plant P3 is the opposite case: the decrease of the per-
formance index takes place in the whole range of δ (from 0.1 
to 0.8), and the performance index J decreases for the system 
without constraints with the increase in δ.

It can be stated that when the controller is static, one can 
improve the performance when DP algorithm is considered with 
respect to a cut-off saturation, in the sense that the performance 
index decreases when control vector saturates (see Fig. 3a and 
b), enabling at the same time the system to operate in stable 
mode with tougher values of α and by decreasing the values of 
the performance index for large δ and tougher constraints. In 
the case of P2 model, this is connected with m > p.

In the case of P3, when there is no directional change al-
lowed, the index J degrades at non-impending values of α, what 
is connected to the deficient number of control signals with 
respect to plant outputs. The plots of J1 end at:

Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3

Dariusz Horla

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

Ja)

δ = 0.8

0.7
0.6

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

Jb)

δ = 0.8

0.7
0.6

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

Jc)

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

J

δ = 0.8

0.7
0.6

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

J

δ = 0.8

0.7
0.6

0.2

0.3

0.4

0.5

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

α

J

Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 5. Performance index J2 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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●	 P1 (both): 0.7234 for δ = 0.8, 0.6144 for δ = 0.7,
●	 P2 (both): 0.7358 for δ = 0.8, 0.6242 for δ = 0.7,

and the plots of J2 at:
●	 P1 (both): 0.4313 for δ = 0.8, 0.3028 for δ = 0.7,
●	 P2 (both): 0.4487 for δ = 0.8, 0.3137 for δ = 0.7.

In the case of P3, the plots for different values of δ are alike 
for each of the performance indices either for the non-DP or 
DP system. Introducing the DP requirement increases perfor-

mance indices. This is on the contrary to the case of dynamical 
controllers, see [16].

7.2.3. J1 i J2 indices vs. amplitude constraint α. On the basis 
of Figs. 4 and 5, one can formulate similar conclusions con-
cerning indices J1, J2 and J, as previously. It is, however, in-
teresting that control system with P3 is stable even for tough 
constraints α, i.e. from 0.1 in the given robustness area.

Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3

Fig. 5. Performance index J2 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 3. Performance index J against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 4. Performance index J1 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 5. Performance index J2 against α (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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7.2.4. J, J1 and J2 indices vs. amplitude constraint δ. On the 
basis of Fig. 6, plots of the characteristics start at:
●	 P1: 0.2738 for α = 0.55, 0.2488 for α = 0.70,
●	 P1-DP: 0.2892 for α = 0.55, 0.2365 for α = 0.70,
●	 P2: 0.3232 for α = 0.40, 0.2711 for α = 0.55, 0.2525 for 
α = 0.70,

●	 P2-DP: n/a for α = 0.40, 0.2791 for α = 0.55, 0.2336 for 
α = 0.70,

●	 P3: 0.4921 for α = 0.10, 0.3127 for α = 0.25, 0.2622 for 
α = 0.40,

●	 P3-DP: 0.5325 for α = 0.10, 0.3528 for α = 0.25, 0.2844 
for α = 0.40.

The plots depicted in Fig. 7 start at:
●	 P1: 0.5797 for α = 0.55, 0.5544 for α = 0.70,
●	 P1-DP: 0.5891 for α = 0.55, 0.5444 for α = 0.70,

Fig. 6. Performance index J against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 7. Performance index J1 against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 7. Performance index J1 against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 6. Performance index J against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 7. Performance index J1 against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 6. Performance index J against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 6. Performance index J against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 8. Performance index J2 against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Fig. 7. Performance index J1 against δ (upper row: cut-off, lower row: DP constraint), a) P1, b) P2, c) P3
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Bull. Pol. Ac.: Tech. XX(Y) 2017 7

Directional change in multivariable LQG control with actuator failure

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

Ja)

α = 0.55
0.70
0.85

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

Jb)

α = 0.40

0.550.70
0.85

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

Jc)
α = 0.10

0.25
0.40

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

J

α = 0.55
0.70

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

J

α = 0.55
0.70

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

δ

J α = 0.10

0.25

0.40
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Bull. Pol. Ac.: Tech. XX(Y) 2017 7●	 P2: 0.6292 for α = 0.40, 0.5762 for α = 0.55, 0.5556 for 
α = 0.70,

●	 P2-DP: n/a for α = 0.40, 0.5817 for α = 0.55, 0.5414 for 
α = 0.70,

●	 P3: 1.2222 for α = 0.10, 1.0112 for α = 0.25, 0.9238 for 
α = 0.40,

●	 P3-DP: 1.2525 for α = 0.10, 1.0484 for α = 0.25, 0.9474 
for α = 0.40.

The plots depicted in Fig. 8 start at:
●	 P1: 0.2738 α = 0.55, 0.2489 for α = 0.70,
●	 P1-DP: 0.2892 for α = 0.55, 0.2366 for α = 0.70,
●	 P2: 0.3233 for α = 0.40, 0.2711 for α = 0.55, 0.2525 for 
α = 0.70,

●	 P2-DP: n/a for α = 0.40, 0.2792 for α = 0.55, 0.2336 for 
α = 0.70,

●	 P3: 0.8073 for α = 0.10, 0.5650 for α = 0.25, 0.4646 for 
α = 0.40,

●	 P3-DP: 0.8441 for α = 0.10, 0.5999 for α = 0.25, 0.4876 
for α = 0.40.
It is evident, though, that regardless of the type of the per-

formance index for P1 and P2, introducing the DP requirement 
causes improvement of the indices. This is the case of a static 
controller, unable to perform correcting action over a series of 
steps. The decrease is visible for δ down to 0.4 for amplitude 
constraints less severe than α = 0.55.

Because of the fact that m < p in the case of P3, this phe-
nomenon is not observed here. Changing the computed control 
vector direction in the case of this plant is mostly connected to 
the quality of decoupling by the controller.

In the case of P1 and P2, the listed indices for large δ tend 
approximately to the same values that increase to a very minor 
extent for tougher constraints.

7.3. Directional change in controls. The plots of perfor-
mance indices have been presented in Figs. 9 and 10 for 
variable α (upper part) and δ (lower part). On the basis 
of the plots for variable δ and plants P1 and P2, one can 
see that for every constraint value considered there is such 
a specific value of δ corresponding to the volume of the 
robustness area that directional change between computed 
and constrained control vectors is minimal. As an example, 
for P1 and α = 0.55 we have the minimum at δ = 0.42, for 
α = 0.70 at δ = 0.40 and for α = 0.85 at δ = 0.39. In this 
case, minimal directional change corresponds to increasing 
the robustness area.

Having assumed that for P2 and α = 0.70 with δ = 0.40 we 
have the minimum, with corresponding ρ¡ = 1 ¡ δ = 0.6, and 
one can draw a line on Fig. 2 at angle of 45° ¡ 31° = 14° that 
intersects the line uF

t, i = 0.70 at vt, i = 1.16. It can be understood 
then that elements of control vector up to the amplitude of 1.16 
lie inside the robustness area, what explains why the observed 
increase for the indices for δ > 0.4 is not large for less tough 
constraints and why it increases for δ < 0.4.

Increasing the robustness area for P3 and performance in-
dices of J-type, does not cause the degradation in control perfor-
mance (performance indices are approximately invariant), what 
is additionally verified for in the upper part of Figs. 9 and 10, 
showing virtually no change in the characteristics of the plots 
as a function of α for variable δ.

a) b) c)
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On the basis of Figs. 9a and b, as well as Figs. 10a and b, 
one can see that for P1 and P2 with less severe constraints 
one can observe an initial increase in directional change, and 
with further less impending constraints, decrease in directional 
change, i.e. decrease of the performance indices measuring an-
gular change.

8.	 Conjectures – summary

As it has been presented in the paper, the increase in control 
performance indices does not have to be connected with the 
increase in intensity of directional change. By introducing the 
degree of robustness against the actuator failure corresponding 

Fig. 9. Performance index Jφ against α (upper row), δ (lower row), a) P1, b) P2, c) P3
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to, e.g., cut-off or DP constraint, there is a possibility of fur-
ther performance index reduction what is related to better an-
ti-windup compensation with simultaneous minimal directional 
change possible.

Conjecture 1. By increasing the robustness area for controllable 
plants with cut-off saturation and m ¸ p performance indices 
increase. For tougher constraints performance indices initially 
decrease, to increase in the end. In such a case, introducing the 
DP constraint improves their values, assuring faster desaturation 
of the control vector.

Conjecture 2. In the considered control system, for control-
lable plants with m < p introduction of DP constraint causes 
performance indices to increase. In this case, there is no reason 
to implement the controllers with DP algorithm.
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