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1�By the latter we mean indexes with space bounded by O (nH0) or even O (nHk) 
bits, where n is the text length, and H0 (Hk) the order-0 (order-k) entropy. 
The former term, compact full-text indexes, is less definite, and may fit any 
structure with less than nlog2n bits of space, at least for ՚՚typical՚՚ texts.

*e-mail: sgrabow@kis.p.lodz.pl
Manuscript submitted 2016-11-01, revised 2016-12-16, initially accepted for publication 2017-01-23, 
published in August 2017.

Abstract. Full-text indexing aims at building a data structure over a given text capable of efficiently finding arbitrary text patterns, and possibly 
requiring little space. We propose two suffix array inspired full-text indexes. One, called SA-hash, augments the suffix array with a hash table 
to speed up pattern searches due to significantly narrowed search interval before the binary search phase. The other, called FBCSA, is a com-
pact data structure, similar to Mäkinen՚s compact suffix array (MakCSA), but working on fixed size blocks. Experiments on the widely used 
Pizza & Chili datasets show that SA-hash is about 2–3 times faster in pattern searches (counts) than the standard suffix array, for the price of 
requiring 0.2n¡1.1n bytes of extra space, where n is the text length. FBCSA, in one of the presented variants, reduces the suffix array size by 
a factor of about 1.5–2, while it gets close in search times, winning in speed with its competitors known from the literature, MakCSA and LCSA.
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One may define a full-text index over text T of length n as 
a data structure supporting at least two types of queries, both 
with respect to a pattern P of length m, where T and P share 
an integer alphabet of size σ. One query type is count: return 
the number occ ¸ 0 of occurrences of P in T. The other query 
type is locate: for each pattern occurrence report its position 
in T, that is, such j that P [0 … m ¡ 1] = T [ j … j + m ¡ 1].

The suffix array SA [0 … n ¡ 1] for text T is a permutation 
of the indexes {0, 1, …, n ¡ 1} such that T[SA [i] … n ¡ 1] Á 
T[SA [i + 1] … n ¡ 1] for all 0 ∙ i < n ¡ 1, where the “Á” re-
lation is the lexicographical order. The inverse suffix array SA¡1 
is the inverse permutation of SA: SA¡1 [ j] = i , SA [i] = j. 
The Burrows-Wheeler transform of the text T, denoted as 
T BWT, can be obtained from T and SA using the formula 
T BWT[i] = T [(SA [i] ¡ 1)mod n].

3.	 Related work

The full-text indexing history starts with the suffix tree (ST) [7], 
a trie whose string collection is the set of all the suffixes of 
a given text, with an additional requirement that all non-
branching paths of edges are converted into single edges.

Each ST path is terminated as soon as it points to a unique 
suffix, whose start position is kept in the corresponding leaf. As 
there are n leaves, up to n ¡ 1 internal nodes (as each internal 
node must have at least two children) and edge labels are rep-
resented with pointers to the text, it is easy to see that the suffix 
tree takes O(n) words of space, i.e., O(nlogn) bits.

Suffix trees can be built in linear time for integer alpha-
bets [8]. Assuming constant-time access to any child of a given 
node, the search in the ST takes only O(m + occ) time in the 
worst case. In practice, this is cumbersome for a large alphabet, 
of size nω(1), as it requires using perfect hashing, which also 
makes the construction time linear only in expectation. A small 
alphabet is easier to handle, which is one of the reasons of the 
wide use of suffix trees in bioinformatics.

1.	 Introduction

The field of text-oriented data structures continues to bloom. 
Curiously, in many cases several years after ingenious theoret-
ical solutions their more practical (which means: faster and/or  
simpler) counterparts are presented, to mention only recent 
advances in rank/select implementations [1] or the FM-index 
reaching the compression ratio bounded by k-th order entropy 
with very simple means [2].

Despite the great interest in compact or compressed1 full-text 
indexes in recent years [3], we believe that in some applications 
search speed is more important than memory savings, thus different 
space-time tradeoffs are worth being explored. The classic suffix 
array (SA) [4], combining speed, simplicity and often reasonable 
memory use, may be a good starting point for such research.

In this paper we present two SA-based full-text indexes. 
One augments the standard SA with a hash table to speed up 
searches, for a moderate overhead in the memory use, the other 
can be considered a byte-aligned variant of Mäkinen՚s com-
pact suffix array [5, 6]. The proposed algorithms, in their most 
successful variants, turn out to be competitive with other text 
indexes described in the literature.

2.	 Preliminaries

We use 0-based sequence notation, that is, a sequence S of 
length n is written as S[0 … n ¡ 1]. If not stated otherwise, all 
logarithms throughout the paper are in base 2.
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The main problem concerning the discussed index is its large 
space requirement. Even in the most economical version [9] the 
ST space use reaches almost 9n bytes on average and 16n in 
the worst case, plus the text, for σ ∙ 256, and even more for 
large alphabets. Most implementations need at least 20n bytes.

An important alternative to the suffix tree is the suffix 
array (SA) [4]. It is an array of n pointers to all text suffixes 
sorted according to the lexicographic order of these suffixes. 
The SA needs nlogn bits for its n suffix pointers (indexes), 
plus nlogσ bits for the text, which typically gives 5n bytes in 
total. The pattern search time is O(mlogn) in the worst case 
and O(mlogσn + logn) on average, which can be improved to 
O(m + logn) in the worst case using the longest common prefix 
(lcp) table. Yet Manber and Myers in their seminal paper [4] 
presented a way of saving several first steps in the binary 
search: if we know the SA intervals for all the possible first 
k symbols of the pattern, we can immediately start the binary 
search in a corresponding interval. We can set k close to logσn, 
with O(nlogn) extra bits of space, but constant expected size of 
the interval, which leads to O(m) average search time and only 
O(dm/CLe) cache misses on average, where CL is the cache 
line length expressed in symbols, typically 64 symbols/bytes in 
a modern CPU. Unfortunately, real texts are far from random, 
hence in practice, if text symbols are bytes, we can use k up 
to 3, which offers a limited (yet, non-negligible) benefit. This 
idea, later denoted as using a lookup table (LUT), is fairly well 
known, see e.g. its impact in the search over a suffix array on 
words [10].

The suffix array can be built from the suffix tree by visiting 
its leaves in order (hence preserving O(n) construction time), 
yet this approach is impractical. Only in 2003 several algo-
rithms building the SA directly in linear time were presented, 
e.g., [11], and currently the fastest O(n)-time construction al-
gorithm is the one given by Nong [12].

A number of suffix tree or suffix array inspired indexes 
have been proposed as well, including the suffix cactus [13] 
and the enhanced suffix array (ESA) [14], with space use usu-
ally between SA and ST, yet they are not generally faster than 
their famous predecessors in the count or locate queries. For 
example, according to an interesting experimental work [15], 
ESA may be moderately faster than SA if the alphabet is small 
(up to around 8 symbols) but SA dominates for larger alphabets.

On a theoretical front, the suffix tray by Cole et al. [16] 
allows to achieve O(m + logσ) search time, with O(n) worst-
case time construction and O(n logn) bits of space, which 
was recently improved by Fischer and Gawrychowski [17] to 
O(m + loglogσ) deterministic time, with preserved construc-
tion cost complexities.

Since around 2000 a great surge of interest in succinct 
data structures, in particular, text indexes, can be observed. 
Two main ideas in this area are the compressed suffix array 
(CSA) [18, 19] and the FM-index [20]; see the survey [3] for 
details.

It was noticed in extensive experimental comparisons [21, 1] 
that compressed indexes are not much slower, and sometimes 
comparable, to the suffix array in count queries, but locate is 
2–3 orders of magnitude slower if the number of matches is 

large. This instigated researchers to follow one of two paths 
in order to mitigate the locate cost for succinct indexes. One, 
pioneered by Mäkinen [5, 6] and addressed in a different way 
by González et al. [22, 23], exploits repetitions in the suffix 
array (the idea is explained in Section 5). The other approach 
is to build semi-external data structures (see [24, 25] and ref-
erences therein).

4.	 Suffix array with deep buckets

The mentioned idea of Manber and Myers with precomputed 
interval (bucket) boundaries for k starting symbols tends to 
bring more gain with growing k, but also precomputing costs 
grow exponentially. Obviously, σ k integers are needed to be 
kept in the lookup table. Our proposal is to apply hashing on 
relatively long strings, with an extra trick to reduce the number 
of unnecessary references to the text.

We start with building the hash table HT (Fig. 1). The keys 
inserted to the HT are distinct k-symbol (k ¸ 2) prefixes of suf-
fixes from the (previously built) suffix array. That is, we process 
the suffixes in their SA order and if the current suffix shares its 
k-long prefix with its predecessor, it is skipped (line 08). The 
value written to HT (line 11) is a pair: (the position in the SA 
of the first suffix with the given prefix, the position in the SA 
of the last suffix with the given prefix), denoted in the codes 
with fields 1 and r, respectively. Linear probing is used as the 
collision resolution method (lines 15–16). As for the hash func-
tion, we used xxhash (https://github.com/Cyan4973/xxHash). 
We tested also a few alternatives: MurmurHash (http://en.wiki-
pedia.org/wiki/MurmurHash) is practically as good as xxhash, 
CRC (http://rosettacode.org/wiki/CRC-32) is slightly slower 
overall (with up to about 3% slower searches), while the loss of 
sdbm (http://www.cse.yorku.ca/ oz/hash.html) is greater, often 
exceeding 10%. A more radical approach is to apply a minimal 
perfect hash function (mphf), which maps a static set of n keys 

Fig. 1. Building the hash table of a given size z

binary search: if we know the SA intervals for all the possi-
ble first k symbols of the pattern, we can immediately start the
binary search in a corresponding interval. We can set k close
to logσ n, with O(n logn) extra bits of space, but constant ex-
pected size of the interval, which leads to O(m) average search
time and only O(�m/CL�) cache misses on average, where CL
is the cache line length expressed in symbols, typically 64 sym-
bols/bytes in a modern CPU. Unfortunately, real texts are far
from random, hence in practice, if text symbols are bytes, we
can use k up to 3, which offers a limited (yet, non-negligible)
benefit. This idea, later denoted as using a lookup table (LUT),
is fairly well known, see e.g. its impact in the search over a
suffix array on words [10].

The suffix array can be built from the suffix tree by visiting
its leaves in order (hence preserving O(n) construction time),
yet this approach is impractical. Only in 2003 several algo-
rithms building the SA directly in linear time were presented,
e.g., [11], and currently the fastest O(n)-time construction al-
gorithm is the one given by Nong [12].

A number of suffix tree or suffix array inspired indexes have
been proposed as well, including the suffix cactus [13] and the
enhanced suffix array (ESA) [14], with space use usually be-
tween SA and ST, yet they are not generally faster than their
famous predecessors in the count or locate queries. For exam-
ple, according to an interesting experimental work [15], ESA
may be moderately faster than SA if the alphabet is small (up
to around 8 symbols) but SA dominates for larger alphabets.

On a theoretical front, the suffix tray by Cole et al. [16] al-
lows to achieve O(m+ logσ) search time, with O(n) worst-
case time construction and O(n logn) bits of space, which
was recently improved by Fischer and Gawrychowski [17] to
O(m+ log logσ) deterministic time, with preserved construc-
tion cost complexities.

Since around 2000 a great surge of interest in succinct
data structures, in particular, text indexes, can be observed.
Two main ideas in this area are the compressed suffix array
(CSA) [18, 19] and the FM-index [20]; see the survey [3] for
details.

It was noticed in extensive experimental comparisons [21, 1]
that compressed indexes are not much slower, and sometimes
comparable, to the suffix array in count queries, but locate is
2–3 orders of magnitude slower if the number of matches is
large. This instigated researchers to follow one of two paths in
order to mitigate the locate cost for succinct indexes. One, pi-
oneered by Mäkinen [5, 6] and addressed in a different way by
González et al. [22, 23], exploits repetitions in the suffix array
(the idea is explained in Section 5). The other approach is to
build semi-external data structures (see [24, 25] and references
therein).

4. Suffix array with deep buckets
The mentioned idea of Manber and Myers with precomputed
interval (bucket) boundaries for k starting symbols tends to
bring more gain with growing k, but also precomputing costs
grow exponentially. Obviously, σ k integers are needed to be
kept in the lookup table. Our proposal is to apply hashing on

HT_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2

(01) allocate HT [0 . . .z−1]
(02) for j ← 0 to z−1 do HT [ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← i−1
(11) HT [ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) j ← h(prevStr)
(15) while HT [ j] �= NIL do
(16) j ← ( j+1) % z
(17) HT [ j]← (l,n−1) /* the last SA interval */
(18) return HT

Fig. 1. Building the hash table of a given size z

relatively long strings, with an extra trick to reduce the number
of unnecessary references to the text.

We start with building the hash table HT (Fig. 1). The keys
inserted to the HT are distinct k-symbol (k ≥ 2) prefixes of
suffixes from the (previously built) suffix array. That is, we
process the suffixes in their SA order and if the current suf-
fix shares its k-long prefix with its predecessor, it is skipped
(line 08). The value written to HT (line 11) is a pair: (the po-
sition in the SA of the first suffix with the given prefix, the
position in the SA of the last suffix with the given prefix),
denoted in the codes with fields l and r, respectively. Linear
probing is used as the collision resolution method (lines 15–
16). As for the hash function, we used xxhash (

). We tested also a few alter-
natives: MurmurHash (

) is practically as good as xxhash, CRC (
) is slightly slower over-

all (with up to about 3% slower searches), while the loss
of sdbm ( ) is
greater, often exceeding 10%. A more radical approach is to
apply a minimal perfect hash function (mphf), which maps a
static set of n keys into [0 . . .n−1], i.e., obtains the load factor
of 100%, without any collisions. This is an attractive option
from the theoretical point, unfortunately it is unclear if mphfs
can be really competitive if hash computation time is of pri-
mary concern. We experimented with the cmph library [26]
( ) to find out that its per-
formance is not satisfactory to our application.

Fig. 2 presents the pattern search (locate) procedure. It is
assumed that the pattern length m is not less than k. First
the range of rows in the suffix array corresponding to the first
two symbols of the pattern is found in a lookup table (line 1);
an empty range immediately terminates the search with no
matches returned (line 2). Then, the hash function over the
pattern prefix is calculated and a scan over the hash table per-
formed until no extra collisions (line 5; return no matches) or
found a match over the pattern prefix, which give us informa-
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into [0 … n ¡ 1], i.e., obtains the load factor of 100%, without 
any collisions. This is an attractive option from the theoretical 
point, unfortunately it is unclear if mphfs can be really com-
petitive if hash computation time is of primary concern. We 
experimented with the cmph library [26] (https://github.com/
zvelo/cmph) to find out that its performance is not satisfactory 
to our application.

Figure 2 presents the pattern search (locate) procedure. It 
is assumed that the pattern length m is not less than k. First the 
range of rows in the suffix array corresponding to the first two 
symbols of the pattern is found in a lookup table (line 1); an 
empty range immediately terminates the search with no matches 
returned (line 2). Then, the hash function over the pattern prefix 
is calculated and a scan over the  hash table performed until no 
extra collisions (line 5; return no matches)  or found a match 
over the pattern prefix, which give us information about the 
range  of suffixes starting with the current prefix (line 6). In 
this case, the binary search strategy is applied to narrow down 
the SA interval  to contain exactly the suffixes starting with the 
whole pattern. As an implementation note: the binary search 
could be modified to ignore the first k  symbols in the compar-
isons, but it did not help in our experiments,  due to specifics 
of the used A_strcmp function from the asmlib library2.

We notice that the range of suffixes starting with any k-gram, 
where k ¸ 2, must be nested in the range of suffixes starting 
with the first two symbols of this k-gram. Such ranges over all 
possible character pairs are stored in LUT2, and the access to 
it (line 14) allows to set the variables beg and end. In the next 
line (15), the granularity with which we approximate the right 
boundary of the suffix range for each k-gram is set and stored 
in step. As we assume that n ¸ 232 ¡ 216, then also the values 
in LUT2 have this limit. Let us take at look at line 10 (setting 
r), referring to step, set in line 15 in an earlier iteration of the 
for loop. For the involved values of i and end we notice that 
i ∙ end + 1, which in turns implies that r 2 {0, …, 216 ¡ 1}, 
i.e., can be stored as a 2-byte value. During the pattern search 
(for which we do not provide a pseudocode) we thus usually 
have a slightly wider interval for a binary search than in the 
baseline variant, which means that we trade some search speed 
for lower space use.

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because 
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected. 
Here is a counterexample. Let us assume that we have two 
k-long prefixes (k = 8): “somethin” and “once in”, which 
have the same hash value (collision). The SA range for “some-
thin” is [30 200, 30 700] and LUT2 stores (for “so՚՚) the range 
[30 000, 31 000]. The SA range for “once in” is [10 300, 10 600] 
and LUT2 table stores (for “on՚՚) the range [10 000, 11 000]. 
Now we are decoding the range of “somethin” suffixes and 
there is a collision with “once in”. Hence we obtained the SA 
range [30 000 + 300, 30 000 + 600] = [30 300, 30 600], which 
is a subrange of [30 200, 30 700] and we cannot detect a colli-
sion. We are searching in a narrower range, so the results may 
be wrong. Quantizing only the right boundary of the range does 
not imply a similar problem.2 http://www.agner.org/optimize/asmlib.zip, v2.34.

Fig. 3. Building the hash table with reduced memory
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Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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4.1. Reducing the memory for the hash table. Each slot in 
the hash table (HT) constructed in Fig. 1 contains two 32-bit 
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it 
is possible in practice to reduce the second value to 16 bits. To 
this end, we make use of a lookup table over pairs of symbols 
(LUT2) to initially narrow down the interval related to which 
the range in the HT will be encoded. Then the actual range 
will be written approximately, with quantized right boundary 
of the range.

For clarity, let us denote the new hash table with HTapprox. 
The code for building HTapprox is shown in Fig. 3. The construc-
tion resembles Fig. 1, with the only difference concerning the 
right boundary of each interval, stored in variable r.
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5.	 Fixed block based compact suffix array

Mäkinen՚s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this index 
whose key feature is finding approximate repetitions of suffix 
areas of predefined size. More precisely, our (fixed size) suffix 
areas are mostly assembled with up to three references to other 
runs of suffixes in the suffix array. Choosing the fixed area size 
allows to maintain a byte-aligned data layout, beneficial for 
speed and simplicity. Moreover, by setting a natural restriction 
on one of the key parameters we force the elementary compo-
nents of the structure to be multiples of 32 bits, which prevents 
misaligned access to data.

Mäkinen՚s index was the first {\em opportunistic} scheme 
for compressing a suffix array, that is such that uses less space 
on compressible texts. The key idea was to exploit runs in the 
SA, that is, maximal segments SA[i … i + 

Compact and hash based variants of the suffix array

Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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 ¡ 1] for which 
there exists another segment SA[ j … j + 

Compact and hash based variants of the suffix array

Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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 ¡ 1], such that 
SA[ j + s] = SA[i + s] + 1 for all 0 ∙ s < 

Compact and hash based variants of the suffix array

Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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. This structure still 
allows for binary search, only the accesses to SA cells require 
local decompression. In our algorithm, called fixed block based 
compact suffix array (FBCSA), we make use of Mäkinen՚s 
observation in a different way. We take suffix areas of fixed 
size, e.g., 32 bytes: SA[i … i + 31], and find for them u > 0 
other suffix array segments SA[ jh … jh + 

Compact and hash based variants of the suffix array

Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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h ¡ 1] such that for 
each h 2 {0, …, u ¡ 1} and s 2 {0, 1, …, 

Compact and hash based variants of the suffix array

Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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h ¡ 1} there exists 
m 2 {0, 1, …, 31} for which SA[ jh + s] +1 = SA[i + m]. More-
over, for a given pair ( jh, 
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Pattern_search(T [0 . . .n−1], SA[0 . . .n−1], HT [0 . . .z−1], k, h(.),
P[0 . . .m−1])

Precondition: m ≥ k ≥ 2

(1) beg,end ← LUT2[P[0],P[1]]
(2) if end < beg then report no matches; return
(3) j ← h(P[0 . . .k−1])
(4) while true do
(5) if HT [ j] = NIL then report no matches; return
(6) if (beg ≤ HT [ j].l ≤ end) and

(T [SA[HT [ j].l] . . .SA[HT [ j].l]+ k−1] = P[0 . . .k−1]) then
(7) binSearch(T [0 . . .n−1], SA, HT [ j].l, HT [ j].r, P[0 . . .m−1])
(8) return
(9) j ← ( j+1) % z

Fig. 2. Pattern search with SA-hash

tion about the range of suffixes starting with the current prefix
(line 6). In this case, the binary search strategy is applied to
narrow down the SA interval to contain exactly the suffixes
starting with the whole pattern. (As an implementation note:
the binary search could be modified to ignore the first k sym-
bols in the comparisons, but it did not help in our experiments,
due to specifics of the used A_strcmp function from the asmlib
library2).

4.1. Reducing the memory for the hash table Each slot in
the hash table (HT) constructed in Fig. 1 contains two 32-bit
integers, for the start and the end position of the range of suf-
fixes starting with the corresponding prefix of length k. Yet, it
is possible in practice to reduce the second value to 16 bits. To
this end, we make use of a lookup table over pairs of symbols
(LUT2) to initially narrow down the interval related to which
the range in the HT will be encoded. Then the actual range will
be written approximately, with quantized right boundary of the
range.

For clarity, let us denote the new hash table with HTapprox.
The code for building HTapprox is shown in Fig. 3. The con-
struction resembles Fig. 1, with the only difference concerning
the right boundary of each interval, stored in variable r.

We notice that the range of suffixes starting with any k-gram,
where k ≥ 2, must be nested in the range of suffixes starting
with the first two symbols of this k-gram. Such ranges over all
possible character pairs are stored in LUT2, and the access to
it (line 14) allows to set the variables beg and end. In the next
line (15), the granularity with which we approximate the right
boundary of the suffix range for each k-gram is set and stored
in step. As we assume that n ≤ 232 −216, then also the values
in LUT2 have this limit. Let us take at look at line 10 (setting
r), referring to step, set in line 15 in an earlier iteration of the
for loop. For the involved values of i and end we notice that
i ≤ end + 1, which in turns implies that r ∈ {0, . . . ,216 − 1},
i.e., can be stored as a 2-byte value. During the pattern search
(for which we do not provide a pseudocode) we thus usually
have a slightly wider interval for a binary search than in the
baseline variant, which means that we trade some search speed
for lower space use.

2 , v2.34.

HT_approx_build(T [0 . . .n−1], SA[0 . . .n−1], k, z, h(.))
Precondition: k ≥ 2, n ≤ 232 −216

(01) allocate HTapprox[0 . . .z−1]
(02) for j ← 0 to z−1 do HTapprox[ j]← NIL
(03) prevStr ← ε
(04) j ← NIL
(05) l ← NIL; r ← NIL
(06) for i ← 0 to n−1 do
(07) if SA[i]> n− k then continue
(08) if T [SA[i] . . .SA[i]+ k−1] �= prevStr then
(09) if j �= NIL then
(10) r ← �(i−beg)/step�
(11) HTapprox[ j]← (l,r)
(12) l ← i
(13) prevStr ← T [SA[i] . . .SA[i]+ k−1]
(14) beg,end ← LUT2[prevStr[0], prevStr[1]]
(15) step ← �(end +1−beg)/(216 −1)�
(16) j ← h(prevStr)
(17) while HTapprox[ j] �= NIL do
(18) j ← ( j+1) % z
(19) HTapprox[ j]← (l,�(n−1−beg)/step�) /* the last SA interval */
(20) return HTapprox

Fig. 3. Building the hash table with reduced memory

Let us now explain why a similar saving cannot be ap-
plied also to the start position of the range. This is because
a collision which (unluckily) points to a subrange of the ac-
tual HT range that we are looking for could pass undetected.
Here is a counterexample. Let us assume that we have two k-
long prefixes (k = 8): “somethin” and “once in ”, which have
the same hash value (collision). The SA range for “some-
thin” is [30200,30700] and LUT2 stores (for “so”) the range
[30000,31000]. The SA range for “once in ” is [10300,10600]
and LUT2 table stores (for “on”) the range [10000,11000].
Now we are decoding the range of “somethin” suffixes and
there is a collision with “once in ”. Hence we obtained the SA
range [30000+ 300,30000+ 600] = [30300,30600], which is
a subrange of [30200,30700] and we cannot detect a collision.
We are searching in a narrower range, so the results may be
wrong. Quantizing only the right boundary of the range does
not imply a similar problem.

5. Fixed Block based Compact Suffix Array
Mäkinen’s compact suffix array [5, 6] finds and succinctly rep-
resents repeating suffix areas. We propose a variant of this
index whose key feature is finding approximate repetitions of
suffix areas of predefined size. More precisely, our (fixed size)
suffix areas are mostly assembled with up to three references
to other runs of suffixes in the suffix array. Choosing the fixed
area size allows to maintain a byte-aligned data layout, benefi-
cial for speed and simplicity. Moreover, by setting a natural re-
striction on one of the key parameters we force the elementary
components of the structure to be multiples of 32 bits, which
prevents misaligned access to data.

Mäkinen’s index was the first opportunistic scheme for com-
pressing a suffix array, that is such that uses less space on com-
pressible texts. The key idea was to exploit runs in the SA,
that is, maximal segments SA[i . . . i+ �−1] for which there ex-
ists another segment SA[ j . . . j + �− 1], such that SA[ j + s] =
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h) the sequence of chosen values of 
m is ascending.

Let us now present the idea of FBCSA in more detail. 
Notice first that if we prepend each suffix from the range 
SA[ j … ( j + bs ¡ 1)] with the previous symbol in the text, the 
resulting suffixes form at most σ contiguous groups (segments) 
in the suffix array. In real texts, however, for most blocks the 
number of such (non-empty) groups will be much smaller. In 
FBCSA, the three largest such groups are identified and their 
start positions in the suffix array are stored. Yet, the predeces-
sors of the “current” suffixes are also kept in a referentially 
compressed form. To eventually break a reference chain in the 
Find(i) operation (Fig. 6), every value in SA[0 … n ¡ 1] which 
is a multiple of ss is stored verbatim, where ss is a space-time 
tradeoff.

The construction algorithm for FBCSA is presented in 
Fig. 4. As a result, we obtain two arrays, arr1 and arr2, which 
are empty at the beginning, and their elements are always ap-
pended at the end during the construction. The elements ap-
pended to arr2 are suffix array indexes (32-bit integers), while 
arr1 stores more varied data: single bits, pairs of bits, and 32-bit 
integers with the current size of arr2.

The construction makes use of the suffix array SA of text T, 
the inverse suffix array SA¡1 and T BWT. Additionally, there are 
two construction-time parameters: block size bs and sampling 
step ss. The block size tells how many successive suffix array 
cells are encoded together and is assumed to be a multiple of 
32, for int32 alignment of the structure layout. The parameter 
ss means that every SA value which is a multiple of ss will 
be represented verbatim. This sampling parameter is a time-

space tradeoff; using larger ss reduces the overall space but 
decoding a particular SA cell typically involves more recursive 
invocations.

Let us describe the encoding procedure for one block, 
SA[ j … j + bs ¡ 1], where j is a multiple of bs (see also a small 
example in Fig. 5). Encoding this block requires also access to 
the corresponding block of T BWT, i.e., to T BWT[ j … j + bs ¡ 1]. 
The following description will be given in points; below the 
points we explain how we handle some special cases.
1.	Let a2s be the size of the array arr2, expressed in bytes 

(line 04); initially arr2 is empty but grows with successive 
processed blocks.

2.	The three most frequent symbols in T BWT[ j … j + bs ¡ 1] are 
stored (in arbitrary order) in a small helper array M[0 … 2] 
(line 05). The symbols from T BWT[ j … j + bs ¡ 1], read 
from left to right, are mapped to 2-bit codes: 002, 012 or 
102, if they correspond to any of the symbols stored in M, 
and to 112 otherwise. The obtained sequence of bs 2-bit 
codes is appended to array arr1 (lines 06–10).

3.	Three integers are appended to arr2: SA¡1[SA[ j + pos0] ¡ 1], 
SA¡1[SA[ j + pos1] ¡ 1] and SA¡1[SA[ j + pos2] ¡ 1] 
(lines 14–16), where pos0, pos1 and pos2 are the positions 
of the first occurrences of M[0], M[1] and M[2], respectively, 
in T BWT[ j … j + bs ¡ 1] (lines 11–13).

Fig. 4. Building the fixed block based compact suffix array (FBCSA)

FBCSA_build(SA[0 . . .n−1], SA−1, T BWT , bs, ss)

/* assume n is a multiple of bs */
(01) arr1 ← [ ]; arr2 ← [ ]
(02) j ← 0
(03) while j < n do

/* current block of the suffix array is SA[ j . . . j+bs−1] */
(04) a2s = |arr2| /* arr2 size in bytes */
(05) find 3 most frequent symbols in T BWT [ j . . . j+bs−1]

and store them in M[0 . . .2]
/* if there are less than 3 distinct symbols,

the trailing cells of M[0 . . .2] are set to NIL) */
(06) for i ← 0 to bs−1 do
(07) if T BWT [ j+ i] = M[0] then arr1.append(002)
(08) elif T BWT [ j+ i] = M[1] then arr1.append(012)
(09) elif T BWT [ j+ i] = M[2] then arr1.append(102)
(10) else arr1.append(112)
(11) pos0 = T BWT [ j . . . j+bs−1].pos(M[0])
(12) pos1 = T BWT [ j . . . j+bs−1].pos(M[1])

/* set NIL if M[1] = NIL */
(13) pos2 = T BWT [ j . . . j+bs−1].pos(M[2])

/* set NIL if M[2] = NIL */
(14) arr2.append(SA−1[SA[ j+ pos0]−1])
(15) arr2.append(SA−1[SA[ j+ pos1]−1])

/* append −1 if pos1 = NIL */
(16) arr2.append(SA−1[SA[ j+ pos2]−1])

/* append −1 if pos2 = NIL */
(17) for i ← 0 to bs−1 do
(18) if (T BWT [ j+ i] �∈ {M[0],M[1],M[2]}) or

(SA[ j+ i] % ss = 0)
(19) then arr1.append(12); arr2.append(SA[ j+ i])
(20) else arr1.append(02)
(21) arr1.append(a2s)
(22) j ← j+bs
(23) return (arr1,arr2)

Fig. 4. Building the fixed block based compact suffix array (FBCSA)

SA[i+ s] + 1 for all 0 ≤ s < �. This structure still allows for
binary search, only the accesses to SA cells require local de-
compression. In our algorithm, called fixed block based com-
pact suffix array (FBCSA), we make use of Mäkinen’s ob-
servation in a different way. We take suffix areas of fixed
size, e.g., 32 bytes: SA[i . . . i+ 31], and find for them u > 0
other suffix array segments SA[ jh . . . jh + �h − 1] such that for
each h ∈ {0, . . . ,u− 1} and s ∈ {0,1, . . . , �h − 1} there exists
m ∈ {0,1, . . . ,31} for which SA[ jh + s]+1 = SA[i+m]. More-
over, for a given pair ( jh, �h) the sequence of chosen values of
m is ascending.

Let us now present the idea of FBCSA in more detail.
Notice first that if we prepend each suffix from the range
SA[ j . . .( j + bs − 1)] with the previous symbol in the text,
the resulting suffixes form at most σ contiguous groups (seg-
ments) in the suffix array. In real texts, however, for most
blocks the number of such (non-empty) groups will be much
smaller. In FBCSA, the three largest such groups are identified
and their start positions in the suffix array are stored. Yet, the
predecessors of the “current” suffixes are also kept in a referen-
tially compressed form. To eventually break a reference chain
in the Find(i) operation (Fig. 6), every value in SA[0 . . .n− 1]
which is a multiple of ss is stored verbatim, where ss is a space-
time tradeoff.

The construction algorithm for FBCSA is presented in

Fig. 4. As a result, we obtain two arrays, arr1 and arr2, which
are empty at the beginning, and their elements are always ap-
pended at the end during the construction. The elements ap-
pended to arr2 are suffix array indexes (32-bit integers), while
arr1 stores more varied data: single bits, pairs of bits, and 32-
bit integers with the current size of arr2.

The construction makes use of the suffix array SA of text T ,
the inverse suffix array SA−1 and T BWT . Additionally, there are
two construction-time parameters: block size bs and sampling
step ss. The block size tells how many successive suffix array
cells are encoded together and is assumed to be a multiple of
32, for int32 alignment of the structure layout. The parameter
ss means that every SA value which is a multiple of ss will
be represented verbatim. This sampling parameter is a time-
space tradeoff; using larger ss reduces the overall space but
decoding a particular SA cell typically involves more recursive
invocations.

Let us describe the encoding procedure for one block,
SA[ j . . . j+bs−1], where j is a multiple of bs (see also a small
example in Fig. 5). Encoding this block requires also access to
the corresponding block of T BWT , i.e., to T BWT [ j . . . j+bs−1].
The following description will be given in points; below the
points we explain how we handle some special cases.

1. Let a2s be the size of the array arr2, expressed in bytes
(line 04); initially arr2 is empty but grows with successive
processed blocks.

2. The three most frequent symbols in T BWT [ j . . . j+bs−1] are
stored (in arbitrary order) in a small helper array M[0 . . .2]
(line 05). The symbols from T BWT [ j . . . j+bs−1], read from
left to right, are mapped to 2-bit codes: 002, 012 or 102, if
they correspond to any of the symbols stored in M, and to
112 otherwise. The obtained sequence of bs 2-bit codes is
appended to array arr1 (lines 06–10).

3. Three integers are appended to arr2: SA−1[SA[ j + pos0]−
1], SA−1[SA[ j + pos1] − 1] and SA−1[SA[ j + pos2] − 1]
(lines 14–16), where pos0, pos1 and pos2 are the positions
of the first occurrences of M[0], M[1] and M[2], respectively,
in T BWT [ j . . . j+bs−1] (lines 11–13).

4. The sequence T BWT [ j . . . j+ bs− 1] is scanned again, from
left to right, and for each symbol that belongs to M and
whose position in T BWT is such j+ i that SA[ j+ i] % ss �= 0,
we set bit 0, and set bit 1 for the other symbols. Such a
bit per suffix is used to distinguish between referentially en-
coded and explicitly written suffix offsets. The latter ones
are those whose stored value (i.e., suffix location in T ) mod-
ulo ss is 0, or those prepended with a locally rare (i.e., not
from M) symbol. The resulting bit-string is appended to arr1
(lines 17–20).

5. During the scan from the previous point we also append to
array arr2 the values SA[ j+ i], 0 ≤ i < bs, for those symbols
to which bit 1 was assigned (line 19).

6. The value of a2s, set in Point 1, is appended to arr1 (line 21).
Note that we used here the size of arr2 (in bytes) as it was
before processing the current block, to allow for easy syn-
chronization between the portions of data in arr1 and arr2.

The signalled “special cases” occur when there are less than
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4.	The sequence T BWT[ j … j + bs ¡ 1] is scanned again, from 
left to right, and for each symbol that belongs to M and 
whose position in T BWT is such j + i that SA[ j + i] % ss 6= 0, 
we set bit 0, and set bit 1 for the other symbols. Such a bit 
per suffix is used to distinguish between referentially encod-
ed and explicitly written suffix offsets. The latter ones are 
those whose stored value (i.e., suffix location in T ) mod-
ulo ss is 0, or those prepended with a locally rare (i.e., not 
from M ) symbol. The resulting bit-string is appended to 
arr1 (lines 17–20).

5.	During the scan from the previous point we also append to 
array arr2 the values SA[ j + i], 0 ∙ i < bs, for those sym-
bols to which bit 1 was assigned (line 19).

6.	The value of a2s, set in Point 1, is appended to arr1 (line 21). 
Note that we used here the size of arr2 (in bytes) as it was 
before processing the current block, to allow for easy syn-
chronization between the portions of data in arr1 and arr2.
The signalled “special cases” occur when there are less than 

three distinct symbols in a block. We then write one or two NIL 
values to M, and also use NIL or (dummy) ¡1 values when 
dealing with the integers written to arr2; see the comments fol-
lowing the lines 12, 13, 15 and 16 in the code.

Figure 6 presents the function Find(i), which returns SA[i]. 
The helper arrays bit B and dbit B contain respectively bits and 
pairs of bits (extracted from one or several integers) for the 
block. The function pcc (popcount) returns the number of oc-
currences of symbol (integer) c in the given array of symbols 
(integers). In modern CPUs pc1 for a bit-vector of size e.g. 64 
is usually available as a single op-code.

Fig. 5. The FBCSA mechanism and the output arrays arr1, arr2 for 
a single block, presented on a toy example. Note that bs = 8 here, 
while in the real implementation bs must be a multiple of 32. The 
boldface numbers 1000 and 610 are the SA entries stored explicitly, as 
their values are multiples of ss. The underlined number 303 is the SA 
entry whose preceding symbol (namely, T[302] = c) is not among the 

three most common symbols preceding the current block.
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bs = 8, ss = 5
SA[400, ..., 407] = [1000, 522, 801, 303, 906, 477, 52, 610]

       TBWT[400, ..., 407] = [a, b, a, c, d, d, b, b]

text positions: [999, 521, 800, 302, 905, 476, 51, 609]

                        3 most common symbols: b, a, d

hence SA has 
the following groups:   [521, 51, 609]    [999, 800]   [905, 476]

SA
-1
[521] = 506, hence SA[506, 507, 508] = [521, 51, 609]

SA
-1
[999] = 287, hence SA[287, 288] = [999, 800]

SA
-1
[905] = 845, hence SA[845, 846] = [905, 476]

we code b as 00
2
, a as 01

2
, d as 10

2
, other as 11

2
 

arr
1
.appendBits([01

2
, 00

2
, 01

2
, 11

2
, 10

2
, 10

2
, 00

2
, 00

2
])

arr
2
.appendInts([506, 287, 845])

                           a2s

since ss = 5:
SA[400, ..., 407] = [1000, 522, 801, 303, 906, 477, 52, 610]
arr

1
.appendBits([1, 0, 0, 1, 0, 0, 0, 1])

arr
2
.appendInts([1000, 303, 610])

arr
1
.appendInts([a2s])

Fig. 5. The FBCSA mechanism and the output arrays arr1, arr2 for
a single block, presented on a toy example. Note that bs = 8 here,
while in the real implementation bs must be a multiple of 32. The
boldface numbers 1000 and 610 are the SA entries stored explicitly,
as their values are multiples of ss. The underlined number 303 is the
SA entry whose preceding symbol (namely, T [302] = c) is not among
the three most common symbols preceding the current block.

Find(arr1, arr2, bs, i)

/* assume bs is a multiple of 32 */
(01) o f1 ← bs/16
(02) o f2 ← (bs/16)+(bs/32)
(03) cbbeg ← �i/bs�∗ (o f2 +1)
(04) cbcurrpos ← i % bs
(05) d0 ← �cbcurrpos/32�
(06) c ← arr1[cbbeg +o f2]
(07) bitB ← int2bits(arr1[cbbeg +o f1 . . .cbbeg +o f1 +d0])
(08) if bitB[cbcurrpos] = 1 then
(09) return arr2[c+3+ pc1(bitB[0 . . .cbcurrpos −1])]
(10) else
(11) d1 ← �cbcurrpos/16�
(12) dbitB ← int2dibits(arr1[cbbeg . . .cbbeg +d1])
(13) sym ← dbitB[cbcurrpos]
(14) return Find(arr1, arr2, bs,

arr2[c+ int(sym)]+ pcsym(dbitB[0 . . .cbcurrpos −1]))+1

Fig. 6. Find(i) extracts SA[i] from the FBCSA structure

three distinct symbols in a block. We then write one or two NIL
values to M, and also use NIL or (dummy) −1 values when
dealing with the integers written to arr2; see the comments
following the lines 12, 13, 15 and 16 in the code.

Fig. 6 presents the function Find(i), which returns SA[i]. The
helper arrays bitB and dbitB contain respectively bits and pairs
of bits (extracted from one or several integers) for the block.
The function pcc (popcount) returns the number of occurrences
of symbol (integer) c in the given array of symbols (integers).
In modern CPUs pc1 for a bit-vector of size e.g. 64 is usually
available as a single op-code.

FBCSA simulates the binary search over a plain suffix array.
Alas, each lookup for an SA value typically translates to sev-
eral so-called LF-mappings over the Burrows–Wheeler trans-
form (BWT) of the indexed text. Each LF-mapping is likely to
incur a cache miss, which hampers the search performance. To
mitigate this effect, we propose a simple yet effective hybrid
of FBCSA and the plain SA. Assume, for presentation clar-
ity, that the suffix array size n is a power of 2. We sample
out every h-th suffix from SA (where h is a power of 2 and
h ≤ n/2) and the first log(n/(2h)) + 1 = logn− logh binary
search steps are performed with reference to this SA subset.
Only the last several steps make use of the FBCSA component.
The extra space, corresponding to the sampled SA offsets, is
n/h words, which is quite small for e.g. h = 32. Moreover, the
sampled offsets are arranged according to B-tree layout (with
B set to 1), for cache friendliness, as advocated in [27, 28].
The search for the right boundary in this variant is performed
with the doubling (galloping) technique, which peeks the loca-
tions SA[le f t+2i], i= 0,1,2, . . ., until it reaches too far and the
search continues in the binary manner over the last considered
interval. We denote this variant as FBCSA-hyb.

6. Experimental results
All experiments were run on a computer with an Intel i7-
4930K 3.4 GHz CPU, equipped with 64 GB of DDR3 RAM
and running Ubuntu 15.10 64-bit. The RAM modules were
8 × 8 GB DDR3-1600 with the timings 11-11-11 (Kingston
KVR16R11D4K4/64). All codes were written in C++ and
compiled with g++ 5.2.1 with option (and for the FBCSA
search algorithms with the additional option). One
CPU core was used for the computations.

The test datasets were taken from the popular Pizza & Chili
site ( ). For most ex-
periments we used the 200-megabyte versions of the files ,

, , and . Only to compare
search times of FBCSA variants against Mäkinen’s CSA we
used 50-megabyte datasets, due to text size limitations of the
MakCSA implementation.

In order to test the search algorithms, we generated 500
thousand (count queries) and 10 thousand (locate queries) pat-
terns for each used pattern length. The patterns were extracted
randomly from the corresponding datasets (i.e., each pattern
returns at least one match).

In a number of experiments, we compared pattern search
speeds using the following indexes:

• plain suffix array (SA),
• suffix array with a lookup table over the first 2 symbols (SA-

LUT2),
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Fig. 5. The FBCSA mechanism and the output arrays arr1, arr2 for
a single block, presented on a toy example. Note that bs = 8 here,
while in the real implementation bs must be a multiple of 32. The
boldface numbers 1000 and 610 are the SA entries stored explicitly,
as their values are multiples of ss. The underlined number 303 is the
SA entry whose preceding symbol (namely, T [302] = c) is not among
the three most common symbols preceding the current block.

Find(arr1, arr2, bs, i)

/* assume bs is a multiple of 32 */
(01) o f1 ← bs/16
(02) o f2 ← (bs/16)+(bs/32)
(03) cbbeg ← �i/bs�∗ (o f2 +1)
(04) cbcurrpos ← i % bs
(05) d0 ← �cbcurrpos/32�
(06) c ← arr1[cbbeg +o f2]
(07) bitB ← int2bits(arr1[cbbeg +o f1 . . .cbbeg +o f1 +d0])
(08) if bitB[cbcurrpos] = 1 then
(09) return arr2[c+3+ pc1(bitB[0 . . .cbcurrpos −1])]
(10) else
(11) d1 ← �cbcurrpos/16�
(12) dbitB ← int2dibits(arr1[cbbeg . . .cbbeg +d1])
(13) sym ← dbitB[cbcurrpos]
(14) return Find(arr1, arr2, bs,

arr2[c+ int(sym)]+ pcsym(dbitB[0 . . .cbcurrpos −1]))+1

Fig. 6. Find(i) extracts SA[i] from the FBCSA structure

three distinct symbols in a block. We then write one or two NIL
values to M, and also use NIL or (dummy) −1 values when
dealing with the integers written to arr2; see the comments
following the lines 12, 13, 15 and 16 in the code.

Fig. 6 presents the function Find(i), which returns SA[i]. The
helper arrays bitB and dbitB contain respectively bits and pairs
of bits (extracted from one or several integers) for the block.
The function pcc (popcount) returns the number of occurrences
of symbol (integer) c in the given array of symbols (integers).
In modern CPUs pc1 for a bit-vector of size e.g. 64 is usually
available as a single op-code.

FBCSA simulates the binary search over a plain suffix array.
Alas, each lookup for an SA value typically translates to sev-
eral so-called LF-mappings over the Burrows–Wheeler trans-
form (BWT) of the indexed text. Each LF-mapping is likely to
incur a cache miss, which hampers the search performance. To
mitigate this effect, we propose a simple yet effective hybrid
of FBCSA and the plain SA. Assume, for presentation clar-
ity, that the suffix array size n is a power of 2. We sample
out every h-th suffix from SA (where h is a power of 2 and
h ≤ n/2) and the first log(n/(2h)) + 1 = logn− logh binary
search steps are performed with reference to this SA subset.
Only the last several steps make use of the FBCSA component.
The extra space, corresponding to the sampled SA offsets, is
n/h words, which is quite small for e.g. h = 32. Moreover, the
sampled offsets are arranged according to B-tree layout (with
B set to 1), for cache friendliness, as advocated in [27, 28].
The search for the right boundary in this variant is performed
with the doubling (galloping) technique, which peeks the loca-
tions SA[le f t+2i], i= 0,1,2, . . ., until it reaches too far and the
search continues in the binary manner over the last considered
interval. We denote this variant as FBCSA-hyb.

6. Experimental results
All experiments were run on a computer with an Intel i7-
4930K 3.4 GHz CPU, equipped with 64 GB of DDR3 RAM
and running Ubuntu 15.10 64-bit. The RAM modules were
8 × 8 GB DDR3-1600 with the timings 11-11-11 (Kingston
KVR16R11D4K4/64). All codes were written in C++ and
compiled with g++ 5.2.1 with option (and for the FBCSA
search algorithms with the additional option). One
CPU core was used for the computations.

The test datasets were taken from the popular Pizza & Chili
site ( ). For most ex-
periments we used the 200-megabyte versions of the files ,

, , and . Only to compare
search times of FBCSA variants against Mäkinen’s CSA we
used 50-megabyte datasets, due to text size limitations of the
MakCSA implementation.

In order to test the search algorithms, we generated 500
thousand (count queries) and 10 thousand (locate queries) pat-
terns for each used pattern length. The patterns were extracted
randomly from the corresponding datasets (i.e., each pattern
returns at least one match).

In a number of experiments, we compared pattern search
speeds using the following indexes:

• plain suffix array (SA),
• suffix array with a lookup table over the first 2 symbols (SA-

LUT2),
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FBCSA simulates the binary search over a plain suffix array. 
Alas, each lookup for an SA value typically translates to several 
so-called LF-mappings over the Burrows-Wheeler transform 
(BWT) of the indexed text. Each LF-mapping is likely to incur 
a cache miss, which hampers the search performance. To mit-
igate this effect, we propose a simple yet effective hybrid of 
FBCSA and the plain SA. Assume, for presentation clarity, that 
the suffix array size n is a power of 2. We sample out every 
h-th suffix from SA (where h is a power of 2 and h ∙ n/2) and 
the first log(n/(2h)) + 1 = logn ¡ logh binary search steps are 
performed with reference to this SA subset. Only the last sev-
eral steps make use of the FBCSA component. The extra space, 
corresponding to the sampled SA offsets, is n/h words, which 
is quite small for e.g. h = 32. Moreover, the sampled offsets 
are arranged according to B-tree layout (with B set to 1), for 
cache friendliness, as advocated in [27, 28]. The search for the 
right boundary in this variant is performed with the doubling 
(galloping) technique, which peeks the locations SA[left + 2i], 
i = 0, 1, 2, …, until it reaches too far and the search continues 
in the binary manner over the last considered interval. We de-
note this variant as FBCSA-hyb.

6.	 Experimental results

All experiments were run on a computer with an Intel i7‒4930K 
3.4 GHz CPU, equipped with 64 GB of DDR3 RAM and 
running Ubuntu 15.10 64-bit. The RAM modules were 
8£8 GB DDR3‒1600 with the timings 11‒11‒11 (Kingston 
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KVR16R11D4K4/64). All codes were written in C++ and 
compiled with g++ 5.2.1 with --O3 option (and for the FBCSA 
search algorithms with the additional --mpopcnt option). One 
CPU core was used for the computations. The source codes for 
the SA-hash and FBCSA algorithms can be downloaded from 
https://github.com/mranisz/sa/releases/tag/v1.0.0 and https://
github.com/mranisz/fbcsa/releases/tag/v1.0.0, respectively.

The test datasets were taken from the popular Pizza \& Chili 
site (http://pizzachili.dcc.uchile.cl/). For most experiments we 
used the 200-megabyte versions of the files dna, english, pro-
teins, sources and xml. Only to compare search times of FBCSA 
variants against Mäkinen՚s CSA we used 50-megabyte datasets, 
due to text size limitations of the MakCSA implementation.

In order to test the search algorithms, we generated 500 
thousand (count queries) and 10 thousand (locate queries) pat-
terns for each used pattern length. The patterns were extracted 
randomly from the corresponding datasets (i.e., each pattern 
returns at least one match).

In a number of experiments, we compared pattern search 
speeds using the following indexes:
●	 plain suffix array (SA),
●	 suffix array with a lookup table over the first 2 symbols 

(SA-LUT2),
●	 the proposed suffix array with deep buckets, with hashing 

the prefixes of length k = 8 (only for dna k = 12 and for 
proteins k = 5 is used); the load factor α in the hash table 

was set to 90% (SA-hash, shortened in the figure legends 
to SA-h),

●	 a more compact variant of SA-hash, with 6 bytes rather than 
8 bytes per entry in the hash table (SA-hash-dense, short-
ened in the figure legends to SA-hd),

●	 the proposed fixed block based compact suffix array 
(FBCSA),

●	 FBCSA with a lookup table over the first 2 symbols (FBC-
SA-LUT2),

●	 FBCSA with a hash of prefixes of length k = 8 (only for 
dna k = 12 and for proteins k = 5 is used); the load factor 
in the hash table was set to 90% (FBCSA-hash, shortened 
in the figure legends to FBCSA-h),

●	 a more compact variant of FBCSA-hash, with 6 bytes rather 
than 8 bytes per entry in the hash table (FBCSA-hash-dense, 
shortened in the figure legends to FBCSA-hd).

●	 a hybrid of the standard FBCSA and an evenly sampled SA, 
with approximately n/32 sampled suffixes (FBCSA-hyb),

●	 MakCSA [6],
●	 LCSA [23],
●	 FM-V5, a fast FM-index variant with uncompressed 

rank [1].
The results of the faster indexes are presented in Fig. 7. As 

expected, SA-hash is the fastest index among the tested ones, 
followed rather closely by its somewhat more memory frugal 
variation, SA-hash-dense. The reader may also look at Table 1 

Fig. 7. Pattern search time (count query) for SA-related indexes. All times are averages over 500K random patterns of the same length 
m = {mmin, 16, 32, 64}, where mmin is 8 for most datasets except for dna (12) and proteins (5). The numbers in parentheses are the space uses 

of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts

Compact and hash based variants of the suffix array

Fig. 7. Pattern search time (count query) for SA-related indexes. All times are averages over 500K random patterns of the same length
m = {mmin,16,32,64}, where mmin is 8 for most datasets except for (12) and (5). The numbers in parentheses are the space
uses of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts.

Fig. 8. Pattern search time (count query) for FBCSA-related indexes. All times are averages over 500K random patterns of the same length
m = {mmin,16,32,64}, where mmin is 8 for most datasets except for (12) and (5). The numbers in parentheses are the space
uses of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts.
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• the proposed suffix array with deep buckets, with hashing
the prefixes of length k = 8 (only for k = 12 and for

k = 5 is used); the load factor α in the hash table
was set to 90% (SA-hash, shortened in the figure legends to
SA-h),

• a more compact variant of SA-hash, with 6 bytes rather than
8 bytes per entry in the hash table (SA-hash-dense, shortened
in the figure legends to SA-hd),

• the proposed fixed block based compact suffix array
(FBCSA),

• FBCSA with a lookup table over the first 2 symbols
(FBCSA-LUT2),

• FBCSA with a hash of prefixes of length k = 8 (only for
k = 12 and for k = 5 is used); the load factor in
the hash table was set to 90% (FBCSA-hash, shortened in
the figure legends to FBCSA-h),

• a more compact variant of FBCSA-hash, with 6 bytes rather
than 8 bytes per entry in the hash table (FBCSA-hash-dense,
shortened in the figure legends to FBCSA-hd).

• a hybrid of the standard FBCSA and an evenly sampled SA,
with approximately n/32 sampled suffixes (FBCSA-hyb),

• MakCSA [6],
• LCSA [23],
• FM-V5, a fast FM-index variant with uncompressed

rank [1].

The results of the faster indexes are presented in Fig. 7. As
expected, SA-hash is the fastest index among the tested ones,
followed rather closely by its somewhat more memory frugal
variation, SA-hash-dense. The reader may also look at Table 1
with a rundown of the achieved speedups, where the plain suf-
fix array is the baseline index and its speed is denoted with
1.00.

The SA-hash index has two drawbacks: it requires signifi-
cantly more space than the standard SA and we assume (at con-
struction time) a minimal pattern length mmin. The latter issue
may be eliminated, but for the price of even more space use;
namely, we can build one hash table for each pattern length up
to mmin (note that counting queries for those short patterns are
handled without any binary search).

We have not implemented this “all-HT” variant, but it is easy
to estimate the memory use for each dataset. To this end, one
needs to know the number of distinct k-grams for k ≤mmin (Ta-
ble 2). Note that the alphabet size, i.e., the number of 1-grams,
for the DNA and proteins datasets is 16 and 25, respectively.
These surprisingly large values are explained by the content of
the files in the corpus, “polluted” slightly with textual headers,
End-of-Line symbols, etc.

An obvious space-time factor in a hash table with open ad-
dressing is its load factor α . We checked several values of α
on two datasets (Table 3) to conclude that using α = 90% is a
reasonable alternative to α = 50%, as the pattern search times
grow by only about 10% or less.

The number of bytes for one hash table with z entries and
0 < α ≤ 1 load factor is, in our implementation of SA-hash,
z× 8× (1/α), since each entry contains two 4-byte integers.
For example, the hash table for with α = 90%

m = 16
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.42 1.37
SA-hash 3.33 2.83 2.78 2.77 2.16
SA-hash-dense 2.80 2.66 2.68 2.66 2.02
m = 64
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.41 1.35
SA-hash 3.41 2.86 2.84 2.81 1.80
SA-hash-dense 2.83 2.71 2.73 2.69 1.77

Table 1. Speedups with regard to the search speed of the plain SA, for
the five 200 MB datasets and pattern lengths m ∈ {16,64}

k
1 16 225 25 230 96
2 152 10,829 607 9,525 7,054
3 683 102,666 11,607 253,831 141,783
4 2,222 589,230 224,132 1,719,387 908,131
5 5,892 2,150,525 3,623,281 5,252,826 2,716,438
6 12,804 5,566,993 36,525,895 10,669,627 5,555,190
7 28,473 11,599,445 94,488,651 17,826,241 8,957,209
8 80,397 20,782,043 112,880,347 26,325,724 12,534,152
9 279,680 33,143,032 117,199,335 35,666,486 16,212,609

10 1,065,613 48,061,001 119,518,691 45,354,280 20,018,262

Table 2. The number of distinct k-grams (1 . . .10) in the 200 MB
datasets. The number of distinct 12-grams for is 13,752,341.

HT load factor (%)
25 50 70 80 90 95

, 12 0.625 0.635 0.648 0.692 0.722 0.792
, 16 0.820 0.825 0.861 0.865 0.901 0.977
, 32 0.786 0.796 0.817 0.841 0.877 0.949
, 64 0.788 0.809 0.825 0.833 0.878 0.952

, 8 0.742 0.750 0.761 0.762 0.762 0.785
, 16 1.042 1.043 1.043 1.048 1.054 1.067
, 32 1.014 1.017 1.025 1.029 1.039 1.047
, 64 1.029 1.029 1.038 1.043 1.061 1.064

Table 3. Average pattern search times (in µs) in function of the HT
load factor α for the SA-hash algorithm (xxhash function used). Each
200-megabyte dataset name is followed with the pattern length (m).

needed 20,782,043 ×(8/0.9) = 184,729,272 bytes, i.e., 88.1%
of the size of the text itself. Note that the overhead in the SA-
hash-dense variant with the same α is 66.1% of the text size.

Next, in Table 4 we present the overall space use for the four
non-compact SA variants: plain SA, SA-LUT2, SA-hash and
SA-hash-dense, plus SA-allHT(-dense), which is a (not imple-
mented) structure comprising a suffix array, a LUT2 and one
hash table for each k ∈ {3,4, . . . ,mmin}. The space is expressed
as a multiple of the text length n (including the text), which
is for example 5.000 for the plain suffix array. We note that
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Table 1 
Speedups with regard to the search speed of the plain SA, for the 

five 200 MB datasets and pattern lengths m 2 {16, 64}

• the proposed suffix array with deep buckets, with hashing
the prefixes of length k = 8 (only for k = 12 and for

k = 5 is used); the load factor α in the hash table
was set to 90% (SA-hash, shortened in the figure legends to
SA-h),

• a more compact variant of SA-hash, with 6 bytes rather than
8 bytes per entry in the hash table (SA-hash-dense, shortened
in the figure legends to SA-hd),

• the proposed fixed block based compact suffix array
(FBCSA),

• FBCSA with a lookup table over the first 2 symbols
(FBCSA-LUT2),

• FBCSA with a hash of prefixes of length k = 8 (only for
k = 12 and for k = 5 is used); the load factor in
the hash table was set to 90% (FBCSA-hash, shortened in
the figure legends to FBCSA-h),

• a more compact variant of FBCSA-hash, with 6 bytes rather
than 8 bytes per entry in the hash table (FBCSA-hash-dense,
shortened in the figure legends to FBCSA-hd).

• a hybrid of the standard FBCSA and an evenly sampled SA,
with approximately n/32 sampled suffixes (FBCSA-hyb),

• MakCSA [6],
• LCSA [23],
• FM-V5, a fast FM-index variant with uncompressed

rank [1].

The results of the faster indexes are presented in Fig. 7. As
expected, SA-hash is the fastest index among the tested ones,
followed rather closely by its somewhat more memory frugal
variation, SA-hash-dense. The reader may also look at Table 1
with a rundown of the achieved speedups, where the plain suf-
fix array is the baseline index and its speed is denoted with
1.00.

The SA-hash index has two drawbacks: it requires signifi-
cantly more space than the standard SA and we assume (at con-
struction time) a minimal pattern length mmin. The latter issue
may be eliminated, but for the price of even more space use;
namely, we can build one hash table for each pattern length up
to mmin (note that counting queries for those short patterns are
handled without any binary search).

We have not implemented this “all-HT” variant, but it is easy
to estimate the memory use for each dataset. To this end, one
needs to know the number of distinct k-grams for k ≤mmin (Ta-
ble 2). Note that the alphabet size, i.e., the number of 1-grams,
for the DNA and proteins datasets is 16 and 25, respectively.
These surprisingly large values are explained by the content of
the files in the corpus, “polluted” slightly with textual headers,
End-of-Line symbols, etc.

An obvious space-time factor in a hash table with open ad-
dressing is its load factor α . We checked several values of α
on two datasets (Table 3) to conclude that using α = 90% is a
reasonable alternative to α = 50%, as the pattern search times
grow by only about 10% or less.

The number of bytes for one hash table with z entries and
0 < α ≤ 1 load factor is, in our implementation of SA-hash,
z× 8× (1/α), since each entry contains two 4-byte integers.
For example, the hash table for with α = 90%

m = 16
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.42 1.37
SA-hash 3.33 2.83 2.78 2.77 2.16
SA-hash-dense 2.80 2.66 2.68 2.66 2.02
m = 64
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.41 1.35
SA-hash 3.41 2.86 2.84 2.81 1.80
SA-hash-dense 2.83 2.71 2.73 2.69 1.77

Table 1. Speedups with regard to the search speed of the plain SA, for
the five 200 MB datasets and pattern lengths m ∈ {16,64}

k
1 16 225 25 230 96
2 152 10,829 607 9,525 7,054
3 683 102,666 11,607 253,831 141,783
4 2,222 589,230 224,132 1,719,387 908,131
5 5,892 2,150,525 3,623,281 5,252,826 2,716,438
6 12,804 5,566,993 36,525,895 10,669,627 5,555,190
7 28,473 11,599,445 94,488,651 17,826,241 8,957,209
8 80,397 20,782,043 112,880,347 26,325,724 12,534,152
9 279,680 33,143,032 117,199,335 35,666,486 16,212,609

10 1,065,613 48,061,001 119,518,691 45,354,280 20,018,262

Table 2. The number of distinct k-grams (1 . . .10) in the 200 MB
datasets. The number of distinct 12-grams for is 13,752,341.

HT load factor (%)
25 50 70 80 90 95

, 12 0.625 0.635 0.648 0.692 0.722 0.792
, 16 0.820 0.825 0.861 0.865 0.901 0.977
, 32 0.786 0.796 0.817 0.841 0.877 0.949
, 64 0.788 0.809 0.825 0.833 0.878 0.952

, 8 0.742 0.750 0.761 0.762 0.762 0.785
, 16 1.042 1.043 1.043 1.048 1.054 1.067
, 32 1.014 1.017 1.025 1.029 1.039 1.047
, 64 1.029 1.029 1.038 1.043 1.061 1.064

Table 3. Average pattern search times (in µs) in function of the HT
load factor α for the SA-hash algorithm (xxhash function used). Each
200-megabyte dataset name is followed with the pattern length (m).

needed 20,782,043 ×(8/0.9) = 184,729,272 bytes, i.e., 88.1%
of the size of the text itself. Note that the overhead in the SA-
hash-dense variant with the same α is 66.1% of the text size.

Next, in Table 4 we present the overall space use for the four
non-compact SA variants: plain SA, SA-LUT2, SA-hash and
SA-hash-dense, plus SA-allHT(-dense), which is a (not imple-
mented) structure comprising a suffix array, a LUT2 and one
hash table for each k ∈ {3,4, . . . ,mmin}. The space is expressed
as a multiple of the text length n (including the text), which
is for example 5.000 for the plain suffix array. We note that
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Table 2 
The number of distinct k-grams (1 … 10) in the 200 MB datasets. 

The number of distinct 12-grams for dna is 13,752,341

with a rundown of the achieved speedups, where the plain suffix 
array is the baseline index and its speed is denoted with 1.00.

The SA-hash index has two drawbacks: it requires signifi-
cantly more space than the standard SA and we assume (at con-
struction time) a minimal pattern length mmin. The latter issue 
may be eliminated, but for the price of even more space use; 
namely, we can build one hash table for each pattern length up 
to mmin (note that counting queries for those short patterns are 
handled without any binary search).

We have not implemented this “all-HT” variant, but it 
is easy to estimate the memory use for each dataset. To this 
end, one needs to know the number of distinct k-grams for 
k ∙ mmin (Table 2). Note that the alphabet size, i.e., the number 
of 1-grams, for the DNA and proteins datasets is 16 and 25, 
respectively. These surprisingly large values are explained by 
the content of the files in the corpus, “polluted” slightly with 
textual headers, End-of-Line symbols, etc.

An obvious space-time factor in a hash table with open ad-
dressing is its load factor α. We checked several values of α 
on two datasets (Table 3) to conclude that using α = 90% is 
a reasonable alternative to α = 50%, as the pattern search times 
grow by only about 10% or less.

The number of bytes for one hash table with z entries and 
0 < α ∙ 1 load factor is, in our implementation of SA-hash, 
z£8£(1/α), since each entry contains two 4-byte integers.  
For example, the hash table for english200 with α = 90% 
needed 20,782,043£(8/0.9) = 184,729,272 bytes, i.e., 88.1% 
of the size of the text itself. Note that the overhead in the  
SA-hash-dense variant with the same α is 66.1% of the text size.

Next, in Table 4 we present the overall space use for the 
four non-compact SA variants: plain SA, SA-LUT2, SA-hash 
and SA-hash-dense, plus SA-allHT(-dense), which is a (not im-
plemented) structure comprising a suffix array, a LUT2 and one 
hash table for each k 2 {3, 4, …, mmin}. The space is expressed 
as a multiple of the text length n (including the text), which 
is for example 5.000 for the plain suffix array. We note that 
the lookup table structures become a relatively smaller fraction 
when larger texts are indexed. For the variants with hash tables 
we take two load factors: 50% and 90%.

• the proposed suffix array with deep buckets, with hashing
the prefixes of length k = 8 (only for k = 12 and for

k = 5 is used); the load factor α in the hash table
was set to 90% (SA-hash, shortened in the figure legends to
SA-h),

• a more compact variant of SA-hash, with 6 bytes rather than
8 bytes per entry in the hash table (SA-hash-dense, shortened
in the figure legends to SA-hd),

• the proposed fixed block based compact suffix array
(FBCSA),

• FBCSA with a lookup table over the first 2 symbols
(FBCSA-LUT2),

• FBCSA with a hash of prefixes of length k = 8 (only for
k = 12 and for k = 5 is used); the load factor in
the hash table was set to 90% (FBCSA-hash, shortened in
the figure legends to FBCSA-h),

• a more compact variant of FBCSA-hash, with 6 bytes rather
than 8 bytes per entry in the hash table (FBCSA-hash-dense,
shortened in the figure legends to FBCSA-hd).

• a hybrid of the standard FBCSA and an evenly sampled SA,
with approximately n/32 sampled suffixes (FBCSA-hyb),

• MakCSA [6],
• LCSA [23],
• FM-V5, a fast FM-index variant with uncompressed

rank [1].

The results of the faster indexes are presented in Fig. 7. As
expected, SA-hash is the fastest index among the tested ones,
followed rather closely by its somewhat more memory frugal
variation, SA-hash-dense. The reader may also look at Table 1
with a rundown of the achieved speedups, where the plain suf-
fix array is the baseline index and its speed is denoted with
1.00.

The SA-hash index has two drawbacks: it requires signifi-
cantly more space than the standard SA and we assume (at con-
struction time) a minimal pattern length mmin. The latter issue
may be eliminated, but for the price of even more space use;
namely, we can build one hash table for each pattern length up
to mmin (note that counting queries for those short patterns are
handled without any binary search).

We have not implemented this “all-HT” variant, but it is easy
to estimate the memory use for each dataset. To this end, one
needs to know the number of distinct k-grams for k ≤mmin (Ta-
ble 2). Note that the alphabet size, i.e., the number of 1-grams,
for the DNA and proteins datasets is 16 and 25, respectively.
These surprisingly large values are explained by the content of
the files in the corpus, “polluted” slightly with textual headers,
End-of-Line symbols, etc.

An obvious space-time factor in a hash table with open ad-
dressing is its load factor α . We checked several values of α
on two datasets (Table 3) to conclude that using α = 90% is a
reasonable alternative to α = 50%, as the pattern search times
grow by only about 10% or less.

The number of bytes for one hash table with z entries and
0 < α ≤ 1 load factor is, in our implementation of SA-hash,
z× 8× (1/α), since each entry contains two 4-byte integers.
For example, the hash table for with α = 90%

m = 16
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.42 1.37
SA-hash 3.33 2.83 2.78 2.77 2.16
SA-hash-dense 2.80 2.66 2.68 2.66 2.02
m = 64
SA 1.00 1.00 1.00 1.00 1.00
SA-LUT2 1.20 1.36 1.36 1.41 1.35
SA-hash 3.41 2.86 2.84 2.81 1.80
SA-hash-dense 2.83 2.71 2.73 2.69 1.77

Table 1. Speedups with regard to the search speed of the plain SA, for
the five 200 MB datasets and pattern lengths m ∈ {16,64}

k
1 16 225 25 230 96
2 152 10,829 607 9,525 7,054
3 683 102,666 11,607 253,831 141,783
4 2,222 589,230 224,132 1,719,387 908,131
5 5,892 2,150,525 3,623,281 5,252,826 2,716,438
6 12,804 5,566,993 36,525,895 10,669,627 5,555,190
7 28,473 11,599,445 94,488,651 17,826,241 8,957,209
8 80,397 20,782,043 112,880,347 26,325,724 12,534,152
9 279,680 33,143,032 117,199,335 35,666,486 16,212,609

10 1,065,613 48,061,001 119,518,691 45,354,280 20,018,262

Table 2. The number of distinct k-grams (1 . . .10) in the 200 MB
datasets. The number of distinct 12-grams for is 13,752,341.

HT load factor (%)
25 50 70 80 90 95

, 12 0.625 0.635 0.648 0.692 0.722 0.792
, 16 0.820 0.825 0.861 0.865 0.901 0.977
, 32 0.786 0.796 0.817 0.841 0.877 0.949
, 64 0.788 0.809 0.825 0.833 0.878 0.952

, 8 0.742 0.750 0.761 0.762 0.762 0.785
, 16 1.042 1.043 1.043 1.048 1.054 1.067
, 32 1.014 1.017 1.025 1.029 1.039 1.047
, 64 1.029 1.029 1.038 1.043 1.061 1.064

Table 3. Average pattern search times (in µs) in function of the HT
load factor α for the SA-hash algorithm (xxhash function used). Each
200-megabyte dataset name is followed with the pattern length (m).

needed 20,782,043 ×(8/0.9) = 184,729,272 bytes, i.e., 88.1%
of the size of the text itself. Note that the overhead in the SA-
hash-dense variant with the same α is 66.1% of the text size.

Next, in Table 4 we present the overall space use for the four
non-compact SA variants: plain SA, SA-LUT2, SA-hash and
SA-hash-dense, plus SA-allHT(-dense), which is a (not imple-
mented) structure comprising a suffix array, a LUT2 and one
hash table for each k ∈ {3,4, . . . ,mmin}. The space is expressed
as a multiple of the text length n (including the text), which
is for example 5.000 for the plain suffix array. We note that
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Table 3 
Average pattern search times (in μ) in function of the HT 
load factor α for the SA-hash algorithm (xxhash function 
used). Each 200-megabyte dataset name is followed with 

the pattern length (m)

SA 5.000 5.000 5.000 5.000 5.000
SA-LUT2 5.001 5.001 5.001 5.001 5.001
SA-hash-50 6.050 6.587 5.278 7.010 5.958
SA-hash-90 5.583 5.882 5.154 6.117 5.532
SA-hash-dense-90 5.438 5.661 5.116 5.838 5.399
SA-allHT-50 6.472 8.114 5.296 9.736 7.353
SA-allHT-90 5.818 6.730 5.164 7.631 6.307
SA-allHT-dense-90 5.613 6.298 5.123 6.973 5.980

Table 4. Space use for the non-compact data structures as a multi-
ple of the indexed text size (including the text), with the assumption
that text symbols are represented in 1 B each and SA offsets are repre-
sented in 4 B. The datasets have 200 MB in size. The value of mmin for
SA-hash-50 and SA-hash-90, used in the construction of these struc-
tures and affecting their size, is like in the experiments from Fig. 7.
The index SA-allHT-* contains LUT2 and one hash table for each
k ∈ {3,4, . . . ,mmin}, when mmin depends on the current dataset. The
-50 and -90 suffixes in the names denote the hash load factors (in per-
cent).

the lookup table structures become a relatively smaller frac-
tion when larger texts are indexed. For the variants with hash
tables we take two load factors: 50% and 90%.

It may also be interesting to see how the SA-hash search
performance and space usage change with varying the param-
eter k (Fig. 10). We assumed the load factor 90% and the
timings are given for the pattern length m = 32. The results
for each dataset are presented as separate series. From the
right figure we can notice, for example, that the number of
distinct k-grams for is rather small for k up to 10
or 11, but then suddenly starts to grow fast. An opposite
phenomenon is observed for . This is related to the
fact that for DNA data even a high-order entropy is not much
less than 2, while for natural language (and XML) data it is
about 4–5 in order-0, but may drop even below 1 in high-
order models (cf. the Pizza & Chili text statistics, available at

).
The performance of SA-hash depends on the variance of in-

terval widths. If the frequency of the k-grams from a given text
tends to be more or less the same, we can expect a good time-
space tradeoff, which is the case of (note the
small overhead for this dataset in Table 4). In natural language
texts, however, the frequency of k-grams varies significantly.
It should be also noted that if the patterns are uniformly ran-
domly selected from the text, it is more likely to draw out a
pattern starting with a frequent k-gram (and thus gaining rela-
tively little from the SA-hash idea) than a pattern starting with
a rare k-gram. It is easy to underestimate this effect, therefore
a reader is recommended to study Table 1 in [29]. For exam-
ple, for and pattern length 16, the median pattern
frequency in the text is about 3, while the mean frequency is as
large as 156 (for the gaps are even more striking). To
combat this effect, we made up a SA-hash variant with dou-
ble hashing, dividing the suffix array into intervals based on
prefixes of varying lengths. More precisely, we set three in-
teger values, b, k1 and k2, and examine all strings from the

text starting with a given substring of length k1: if and only if
the interval width is more than b and the successor strings of
length k2 have large enough order-0 entropy, we use a second
hash over the strings of length k1 +k2. The entropy criterion is
natural in this application; low entropy means that the follow-
ing k2 symbols in the given context of length k1 are not very
diverse and splitting the interval into subintervals should not be
profitable, considering both speed and space use. On the other
hand, a high enough entropy implies a significant diversity of
the following k2 symbols and encourages to split the interval.

Unfortunately, this variant gives little in practice, as briefly
reported in Fig. 9 on three datasets. The possible speed im-
provement of a few percent also implies space usage by a few
percent greater than of the baseline SA-hash version. Worse,
the trends are not very clear (frequent ‘spikes’).

In the next set of experiments we evaluated the FBCSA in-
dex variants, considering the space use, pattern search times
(Figs 8 and 11), times to access (extract) one random SA cell
(Fig. 12), times to access (extract) multiple consecutive SA
cells (Fig. 13).

In Fig. 8 we vary the pattern length m for fixed bs (set to 32)
and ss (set to 5). As we can see, both the hash-based and the
hybrid variants boost significantly the performance of the stan-
dard FBCSA, with some penalty in the space (clearly smaller
for the case of FBCSA-hyb).

We also compared FBCSA variants against MakCSA and
LCSA. Alas, it was possible to use MakCSA only for 50-
megabyte datasets (LCSA could be run on the 200-megabyte
datasets, yet it crashes in all tests on and in several
tests on some other datasets, as mentioned later). The results
of our comparison in count queries are shown in Fig. 11. (for
m = 16 and bs = 32, while ss varies from 3 to 32). MakCSA is
slow on and , needs relatively large space on

yet obtains decent space-time tradeoffs on the remain-
ing two datasets. It is generally not competitive with FBCSA-
hyb though. LCSA, on the other hand, is a much stronger
competitor, in most cases easily winning in the used space, yet
FBCSA-hyb can be faster by a factor of 2 or more, if we agree
to a significantly larger memory requirements. FBCSA-hash
(denoted as FBCSA-h in the figures) is sometimes even faster
than FBCSA-hyb, but uses even more space.

We tried to compare FBCSA against its competitors in ex-
tract queries (Figs 12–13). In this experiment, ss varies from
3 to 32, and for bs we set the values 32 and 64. Using
bs = 64 results in better compression but decoding a cell is
also slightly slower (see Fig. 12). Unfortunately, MakCSA [6]
cannot (directly) access single SA cells and we were unable to
run LCSA [23] in this kind of queries (despite discussing this
issue with the LCSA authors). From the comparison with the
results presented in [23, Sect. 4] we conclude that FBCSA is a
few times faster in single cell access than the other related al-
gorithms, MakCSA [6] (augmented with a compressed bitmap
from [30] to extract arbitrary ranges of the suffix array) and
LCSA [23]. Extracting c consecutive cells is not however an
efficient operation for FBCSA (as opposed to MakCSA and
LCSA, see Figs 5–7 in [23]), yet for small ss the time growth
is slower than linear, due to a few sampled (and thus written
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Table 4 
Space use for the non-compact data structures as a multiple  

of the indexed text size (including the text), with the 
assumption that text symbols are represented in 1 B each 
and SA offsets are represented in 4 B. The datasets have 
200 MB in size. The value of mmin for SA-hash-50 and 
SA-hash-90, used in the construction of these structures 
and affecting their size, is like in the experiments from 

Fig. 7. The index SA-allHT-* contains LUT2 and one hash 
table for each k 2 {3, 4, …, mmin}, when mmin depends on 
the current dataset. The -50 and -90 suffixes in the names 

denote the hash load factors (in percent)
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It may also be interesting to see how the SA-hash search 
performance and space usage change with varying the parameter 
k (Fig. 8). We assumed the load factor 90% and the timings are 
given for the pattern length m = 32. The results for each dataset 
are presented as separate series. From the right figure we can no-
tice, for example, that the number of distinct k-grams for dna200 
is rather small for k up to 10 or 11, but then suddenly starts to 
grow fast. An opposite phenomenon is observed for xml200. This 
is related to the fact that for DNA data even a high-order entropy 
is not much less than 2, while for natural language (and XML) 
data it is about 4–5 in order-0, but may drop even below 1 in 
high-order models (cf. the Pizza & Chili text statistics, available 
at http://pizzachili.dcc.uchile.cl/texts.html).

The performance of SA-hash depends on the variance of 
interval widths. If the frequency of the k-grams from a given 
text tends to be more or less the same, we can expect a good 
time-space tradeoff, which is the case of proteins200 (note the 
small overhead for this dataset in Table 4). In natural language 
texts, however, the frequency of k-grams varies significantly. 
It should be also noted that if the patterns are uniformly ran-
domly selected from the text, it is more likely to draw out 
a pattern starting with a frequent k-gram (and thus gaining 
relatively little from the SA-hash idea) than a pattern starting 
with a rare k-gram. It is easy to underestimate this effect, there-

fore a reader is recommended to study Table 1 in [29]. For ex-
ample, for english200 and pattern length 16, the median pattern 
frequency in the text is about 3, while the mean frequency is 
as large as 156 (for xml200 the gaps are even more striking). 
To combat this effect, we made up a SA-hash variant with 
double hashing, dividing the suffix array into intervals based 
on prefixes of varying lengths. More precisely, we set three 
integer values, b, k1 and k2, and examine all strings from the 
text starting with a given substring of length k1: if and only if 
the interval width is more than b and the successor strings of 
length k2 have large enough order-0 entropy, we use a second 
hash over the strings of length k1 + k2. The entropy criterion 
is natural in this application; low entropy means that the fol-
lowing k2 symbols in the given context of length k1 are not 
very diverse and splitting the interval into subintervals should 
not be profitable, considering both speed and space use. On 
the other hand, a high enough entropy implies a significant 
diversity of the following k2 symbols and encourages to split 
the interval.

Unfortunately, this variant gives little in practice, as briefly 
reported in Fig. 9 on three datasets. The possible speed im-
provement of a few percent also implies space usage by a few 
percent greater than of the baseline SA-hash version. Worse, 
the trends are not very clear (frequent ‘spikes՚).

Fig. 8. SA-hash performance with varying k in {3, 4, …, 24}. Left figure: count times, right figure: space usage as a multiple of the text size. 
All times are averages over 500K random patterns of the same length m = 32. The patterns were extracted from the respective texts

Fig. 10. SA-hash performance with varying k in {3,4, . . . ,24}. Left figure: count times, right figure: space usage as a multiple of the text size.
All times are averages over 500K random patterns of the same length m = 32. The patterns were extracted from the respective texts.

Fig. 11. Pattern search time (count query) for FBCSA-related indexes. The different results in a series are obtained from varying the sampling
parameter ss in {3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 500K random patterns of the same length m = 16. The
patterns were extracted from the respective texts. Note the logarithmic scale for the and datasets.

Fig. 12. FBCSA index sizes and cell access times with varying ss parameter ({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figure)
or 64 (right figure). The times are averages over 10M random cell accesses.
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Fig. 9. Index sizes and pattern search times for a SA-hash variant with intervals based on prefixes of varying lengths. The interval width threshold 
b was set to 128 in all cases, the parameters k1 and k2 are shown at the top of the figures. Each series is obtained with changing the entropy 

threshold from 5.0 down to 0.5, with step 0.1
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Fig. 9. Index sizes and pattern search times for a SA-hash variant with intervals based on prefixes of varying lengths. The interval width
threshold b was set to 128 in all cases, the parameters k1 and k2 are shown at the top of the figures. Each series is obtained with changing the
entropy threshold from 5.0 down to 0.5, with step 0.1.

explicitly) SA offsets in a typical block (Fig. 13). Therefore,
in extracting only 5 or 10 successive cells our index is still
competitive.

So far, we tested count and extract queries. In Figs 14
and 15 we present the locate results for the fast (SA-related)
and more compact (FBCSA-related) indexes, respectively. The
available LCSA implementation crashes on (m = 12),

and (m = 8). We point out that in partic-
ular LCSA was targeted as a compact SA variant with fast lo-
cate, a property unavailable for most compressed indexes, e.g.,
from the FM-index family. For this reason, comparison of our
variants against LCSA may be interesting. We can see that the
compressed solution, FM-V5, although most succinct, in lo-
cate queries is slower not only than SA-based indexes (which
take much more space, but are faster by at least an order of
magnitude), but also than FBCSA variants. LCSA is a practi-
cal choice, yet FBCSA may win in speed for the price of using
more space. We also note that full evaluation of LCSA is hard
because of the mentioned crashes of the existing implementa-
tion.

7. Conclusions
We presented two simple full-text indexes. One, called SA-
hash, speeds up standard suffix array searches with reducing
significantly the initial search range, thanks to a hash table
storing range boundaries of all intervals sharing a prefix of a
specified length. The expected speedup by a factor around 3,
compared to a standard SA, may be worth the extra space in
many applications.

The other presented data structure is a compact variant of the
suffix array, related to Mäkinen’s compact SA [6]. Our solution
works on blocks of fixed size, which provides int32 alignment
of the layout. This index is rather fast in single cell access, but
not competitive if many (e.g., 100) consecutive cells are to be
extracted.

Several aspects of the presented indexes require further
study. In case of plain text, the standard suffix array component
may be replaced with a suffix array on words [10], with pos-
sibly new interesting space-time tradeoffs. The idea of deep
buckets may be incorporated into some compressed indexes,
e.g., to save on the several first LF-mapping steps in the FM-

index.
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In the next set of experiments we evaluated the FBCSA index 
variants, considering the space use, pattern search times (Figs 10 

and 11), times to access (extract) one random SA cell (Fig. 12), 
times to access (extract) multiple consecutive SA cells (Fig. 13).

Fig. 11. Pattern search time (count query) for FBCSA-related indexes. The different results in a series are obtained from varying the sampling 
parameter ss in {3, 4, 5, 8, 12, 16, 32}, while bs is set to 32. All times are averages over 500K random patterns of the same length m = 16. The 

patterns were extracted from the respective texts. Note the logarithmic scale for the sources50 and xml50 datasets

Fig. 10. SA-hash performance with varying k in {3,4, . . . ,24}. Left figure: count times, right figure: space usage as a multiple of the text size.
All times are averages over 500K random patterns of the same length m = 32. The patterns were extracted from the respective texts.

Fig. 11. Pattern search time (count query) for FBCSA-related indexes. The different results in a series are obtained from varying the sampling
parameter ss in {3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 500K random patterns of the same length m = 16. The
patterns were extracted from the respective texts. Note the logarithmic scale for the and datasets.

Fig. 12. FBCSA index sizes and cell access times with varying ss parameter ({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figure)
or 64 (right figure). The times are averages over 10M random cell accesses.
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Fig. 10. Pattern search time (count query) for FBCSA-related indexes. All times are averages over 500K random patterns of the same length 
m = {mmin, 16, 32, 64}, where mmin is 8 for most datasets except for dna (12) and proteins (5). The numbers in parentheses are the space uses 

of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts
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Fig. 7. Pattern search time (count query) for SA-related indexes. All times are averages over 500K random patterns of the same length
m = {mmin,16,32,64}, where mmin is 8 for most datasets except for (12) and (5). The numbers in parentheses are the space
uses of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts.

Fig. 8. Pattern search time (count query) for FBCSA-related indexes. All times are averages over 500K random patterns of the same length
m = {mmin,16,32,64}, where mmin is 8 for most datasets except for (12) and (5). The numbers in parentheses are the space
uses of the respective indexes (including the text) as multiples of the text length n. The patterns were extracted from the respective texts.
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In Fig. 10 we vary the pattern length m for fixed bs (set 
to 32) and ss (set to 5). As we can see, both the hash-based 
and the hybrid variants boost significantly the performance of 
the standard FBCSA, with some penalty in the space (clearly 
smaller for the case of FBCSA-hyb).

We also compared FBCSA variants against MakCSA and 
LCSA. Alas, it was possible to use MakCSA only for 50-mega-
byte datasets (LCSA could be run on the 200-megabyte datasets, 
yet it crashes in all tests on dna200 and in several tests on some 
other datasets, as mentioned later). The results of our comparison 
in count queries are shown in Fig. 11. (for m = 16 and bs = 32, 

while ss varies from 3 to 32). MakCSA is slow on sources50 and 
xml50, needs relatively large space on dna50 yet obtains decent 
space-time tradeoffs on the remaining two datasets. It is generally 
not competitive with FBCSA-hyb though. LCSA, on the other 
hand, is a much stronger competitor, in most cases easily winning 
in the used space, yet FBCSA-hyb can be faster by a factor of 2 or 
more, if we agree to a significantly larger memory requirements. 
FBCSA-hash (denoted as FBCSA-h in the figures) is sometimes 
even faster than FBCSA-hyb, but uses even more space.

We tried to compare FBCSA against its competitors in 
extract queries (Figs 12, 13). In this experiment, ss varies 

Fig. 13. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive cells, with varying ss parameter 
({3, 4, 5, 8, 12, 16, 32}). The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 1M random cell run 

extractions
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Fig. 13. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive cells, with varying ss parameter
({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 1M random cell
run extractions.

Fig. 14. Pattern locate time for SA-related indexes. All times are averages over 10K random patterns. The patterns were extracted from the
respective texts. Note the logarithmic scale on the Y-axis.

Fig. 15. Pattern locate time for FBCSA-related indexes. The different results in a series are obtained from varying the sampling parameter ss in
{3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 10K random patterns. The patterns were extracted from the respective
texts. Note the logarithmic scale on the Y-axis.
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Fig. 12. FBCSA index sizes and cell access times with varying ss parameter ({3, 4, 5, 8, 12, 16, 32}). The parameter bs was set to 32 (left figure) 
or 64 (right figure). The times are averages over 10M random cell accesses

Fig. 10. SA-hash performance with varying k in {3,4, . . . ,24}. Left figure: count times, right figure: space usage as a multiple of the text size.
All times are averages over 500K random patterns of the same length m = 32. The patterns were extracted from the respective texts.

Fig. 11. Pattern search time (count query) for FBCSA-related indexes. The different results in a series are obtained from varying the sampling
parameter ss in {3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 500K random patterns of the same length m = 16. The
patterns were extracted from the respective texts. Note the logarithmic scale for the and datasets.

Fig. 12. FBCSA index sizes and cell access times with varying ss parameter ({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figure)
or 64 (right figure). The times are averages over 10M random cell accesses.
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Fig. 13. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive cells, with varying ss parameter
({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 1M random cell
run extractions.

Fig. 14. Pattern locate time for SA-related indexes. All times are averages over 10K random patterns. The patterns were extracted from the
respective texts. Note the logarithmic scale on the Y-axis.

Fig. 15. Pattern locate time for FBCSA-related indexes. The different results in a series are obtained from varying the sampling parameter ss in
{3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 10K random patterns. The patterns were extracted from the respective
texts. Note the logarithmic scale on the Y-axis.
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from 3 to 32, and for bs we set the values 32 and 64. Using 
bs = 64 results in better compression but decoding a cell is 
also slightly slower (see Fig. 12). Unfortunately, MakCSA [6] 
cannot (directly) access single SA cells and we were unable 
to run LCSA [23] in this kind of queries (despite discussing 
this issue with the LCSA authors). From the comparison with 
the results presented in [23] we conclude that FBCSA is a few 
times faster in single cell access than the other related algo-
rithms, MakCSA [6] (augmented with a compressed bitmap 
from [30] to extract arbitrary ranges of the suffix array) and 
LCSA [23]. Extracting c consecutive cells is not however an 
efficient operation for FBCSA (as opposed to MakCSA and 
LCSA, see Figs 5–7 in [23]), yet for small ss the time growth 
is slower than linear, due to a few sampled (and thus written 
explicitly) SA offsets in a typical block (Fig. 13). Therefore, 
in extracting only 5 or 10 successive cells our index is still 
competitive.

So far, we tested count and extract queries. In Figs 14 and 15 
we present the locate results for the fast (SA-related) and more 
compact (FBCSA-related) indexes, respectively. The available 
LCSA implementation crashes on dna200 (m = 12), sources200 
and xml200 (m = 8). We point out that in particular LCSA was 

targeted as a compact SA variant with fast locate, a property un-
available for most compressed indexes, e.g., from the FM-index 
family. For this reason, a comparison of our variants against 
LCSA may be interesting. We can see that the compressed solu-
tion, FM-V5, although most succinct, in locate queries is slower 
not only than SA-based indexes (which take much more space, 
but are faster by at least an order of magnitude), but also than 
FBCSA variants. LCSA is a practical choice, yet FBCSA may 
win in speed for the price of using more space. We also note that 
full evaluation of LCSA is difficult because of the mentioned 
crashes of the existing implementation.

7.	 Conclusions

We presented two simple full-text indexes. One, called SA-
hash, speeds up standard suffix array searches by reducing sig-
nificantly the initial search range, thanks to a hash table storing 
range boundaries of all intervals sharing a prefix of a specified 
length. The expected speedup by a factor around 3, compared 
to a standard SA, may be worth the extra space in many ap-
plications.

Fig. 14. Pattern locate time for SA-related indexes. All times are averages over 10K random patterns. The patterns were extracted from the 
respective texts. Note the logarithmic scale on the Y-axis
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Fig. 13. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive cells, with varying ss parameter
({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 1M random cell
run extractions.

Fig. 14. Pattern locate time for SA-related indexes. All times are averages over 10K random patterns. The patterns were extracted from the
respective texts. Note the logarithmic scale on the Y-axis.

Fig. 15. Pattern locate time for FBCSA-related indexes. The different results in a series are obtained from varying the sampling parameter ss in
{3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 10K random patterns. The patterns were extracted from the respective
texts. Note the logarithmic scale on the Y-axis.
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Fig. 15. Pattern locate time for FBCSA-related indexes. The different results in a series are obtained from varying the sampling parameter ss in 
{3, 4, 5, 8, 12, 16, 32}, while bs is set to 32. All times are averages over 10K random patterns. The patterns were extracted from the respective 
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Fig. 13. FBCSA, extraction time for c = 5 (top figures) and c = 10 (bottom figures) consecutive cells, with varying ss parameter
({3,4,5,8,12,16,32}). The parameter bs was set to 32 (left figures) or 64 (right figures). The times are averages over 1M random cell
run extractions.

Fig. 14. Pattern locate time for SA-related indexes. All times are averages over 10K random patterns. The patterns were extracted from the
respective texts. Note the logarithmic scale on the Y-axis.

Fig. 15. Pattern locate time for FBCSA-related indexes. The different results in a series are obtained from varying the sampling parameter ss in
{3,4,5,8,12,16,32}, while bs is set to 32. All times are averages over 10K random patterns. The patterns were extracted from the respective
texts. Note the logarithmic scale on the Y-axis.
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The other presented data structure is a compact variant of 
the suffix array, related to Mäkinen՚s compact SA [6]. Our 
solution works on blocks of fixed size, which provides int32 
alignment of the layout. This index is rather fast in single cell 
access, but not competitive if many (e.g., 100) consecutive cells 
are to be extracted.

Several aspects of the presented indexes require further 
study. In case of plain text, the standard suffix array component 
may be replaced with a suffix array on words [10], with possibly 
new interesting space-time tradeoffs. The idea of deep buckets 
may be incorporated into some compressed indexes, e.g., to save 
on the several first LF-mapping steps in the FM-index.
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