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Abstract. In the paper, a new method for solution of linear discrete-time fractional-order state equation is presented. The proposed method is 
simpler than other methods using directly discrete-time version of the Grünwald-Letnikov operator. The method is dedicated to use with any 
approximator to the operator expressed by a discrete transfer function, e.g. CFE-based Al-Alaoui approximation. A simulation example confirms 
the usefulness of the method.
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respectively, thus supporting the efficiency of the approach. 
Example of Section 7 illustrates the usefulness of the method-
ology and Section 8 summarizes the achievements of the paper.

2.	 Preliminaries

A presentation of elementary ideas begins with a definition of 
a noninteger-order, integro-differential operator. It is expressed 
as follows (see for example [8]):

Definition 1. The noninteger-order integro-differential operator 
is defined as
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1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
pressed as follows (see for example [11]):

DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =




dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).

1

� (1)

where a and t denote time limits for calculation of the operator, 
α 2 
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with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
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ple [12]) can be given:
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described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
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DEFINITION 4. The Riemann-Liouville definition of the FO
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0
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 denotes the noninteger order of the operation.
Next, an idea of the Gamma (Euler) function (see for ex-

ample [5]) can be given:

Definition 2. The Gamma function is defined as 
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1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
pressed as follows (see for example [11]):

DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =




dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).

1

.� (2)

The fractional-order, integro-differential operator (1) can 
be described by different definitions, given by Grünvald and 
Letnikov (GL definition), Riemann and Liouville (RL defini-
tion) and Caputo (C definition). All these definitions are given 

1.	 Introduction

One of the main areas of application of the fractional order cal-
culus is modeling of processes or plants whose dynamics can not 
be effectively described by integer-order differential/difference 
equations. The usefulness of the noninteger-order approach has 
been presented by many authors, see e.g. [1–6].

Many real applications, to mention model-based control, 
model-based fault detection, require to implement a noninte-
ger-order model at a digital platform like PLC or FPGA. Known 
discrete-time state space models of noninteger-order systems 
are typically based on the Grünvald-Letnikov (GL) definition. 
An accurate implementation of this model, in particular at the 
bounded resource platforms, requires a long-length approxima-
tion of the GL-based system [7].

The purpose of this paper is to propose a new, discrete-time 
state space model of a noninteger-order system, constructed 
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in 
that the memory length is quite low. This advocates for its use 
at industrial digital platforms.

The paper is organized as follows. Having recalled the 
background of the paper in Section 1, Section 2 outlines the 
fundamentals of fractional-order calculus and introduces a com-
mensurate fractional-order state-space system representation. 
Section 3 presents various CFE-based approximators to the 
discretized operator sα. Section 4 presents the main results of 
the paper in terms of solutions to the CFE-aproximated dis-
crete-time noninteger-order state equation. Sections 5 and 6 pro-
vide the steady state error and stability analyses for the solution, 
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below. With respect to particular additional assumptions, these 
definitions can be considered equivalent.

Definition 3. The Grünvald-Letnikov definition of the FO op-
erator ([1, 9]) is as follows:
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1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
pressed as follows (see for example [11]):

DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =




dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).

1

.� (3)

In (3), (αj) is a generalization of the Newton symbol into 
real numbers:

	

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. XX, No. Y, 2016
DOI: 10.1515/bpasts-2016-00ZZ

A new algorithm for a CFE-approximated solution of
a discrete-time noninteger-order state equation

Abstract. In the paper, a new method for solution of linear discrete-time fractional-order state equation is presented. The proposed method
is simpler than other methods using directly discrete-time version of the Grünwald-Letnikov operator. The method is dedicated to use with
any approximator to the operator expressed by a discrete transfer function, e.g. CFE-based Al-Alaoui approximation. A simulation example
confirms the usefulness of the method.

Key words: fractional order calculus, discrete-time noninteger-order state equation, Continuous Fraction Expansion, Al-Alaoui operator.

1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
pressed as follows (see for example [11]):

DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =




dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).

1

� (4)

Definition 4. The Riemann-Liouville definition of the FO op-
erator is as follows:
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1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
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DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =




dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).
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DEFINITION 5. The Caputo definition of the FO operator is
as follows:

C
0 Dα

t f (t) =
1

Γ(N −α)

∞∫

0

f (N)(τ)
(t − τ)α+1−N dτ. (6)

If the RL or C definitions are considered, the Laplace trans-
form can also be given (see for example [11]) as a generaliza-
tion of the Laplace transform for the integer-order case:

DEFINITION 6. The Laplace transform for the Riemann-
Liouville operator is as follows:

L (RL
0 Dα

t f (t)) = sα F(s), α < 0

L (RL
0 Dα

t f (t)) = sα F(s)−
n−1

∑
k=0

sk
0Dα−k−1

t f (0)

α > 0, n−1 < α < n ∈ N

. (7)

DEFINITION 7. The Laplace transform for the Caputo op-
erator is as follows:

L (C0 Dα
t f (t)) = sα F(s), α < 0

L (C0 Dα
t f (t)) = sα F(s)−

n−1

∑
k=0

sα−k−1
0Dk

t f (0)

α > 0, n−1 < α < n ∈ N

. (8)

Consequently, the inverse Laplace transform can be given as
(see for example [12] p.15):

L −1[sα F(s)] =0 Dα
t f (t)+

n−1

∑
k=0

tk−1

Γ(k−α +1)
f (k)(0+)

n−1 < α < n, n ∈ Z
. (9)

A fractional-order linear state space system is described as:

0Dα
t x(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
. (10)

where α ∈ (0,1) denotes the fractional order of the state equa-
tion, x(t) ∈ RN , u(t) ∈ RL, y(t) ∈ RP are the state, control and
output vectors, respectively, A,B,C are the state, control and
output matrices, respectively.
The discrete time integro-differential operator is based on the
(forward) shifted Grünvald-Letnikov definition (3) (see [9]):

DEFINITION 8. The shifted Grünvald-Letnikov definition of
the FO operator is as follows

SGL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h+1]

∑
j=0

(−1) j
(

α
j

)
f (t − ( j−1)h). (11)

Next, the (forward) shifted fractional order difference can be
defined (see [9]):

DEFINITION 9. The shifted FO difference is as follows:

∆α fk+1 =
k+1

∑
j=0

(−1) j
(

α
j

)
fk− j+1. (12)

and consequently the discrete-time fractional-order linear state
space system can be given:



∆α x(k+1) = Ax(k)+Bu(k)

x(k+1) = (hα A+αI)x(k)−
k+1
∑
j=2

(−1) j
(α

j

)
x(k− j+1)+hα Bu(k)

y(k) =Cx(k).
(13)

3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
(see for example [4], [25] p.119):

(
ω(z−1)

)α
=
( 1+a

h

)α
CFE{

(
1−z−1

1+az−1

)α
}M,M =

= PαM(z−1)
QαM(z−1)

=
( 1+a

h

)α CFEN(z−1,α)
CFED(z−1,α)

=

M
∑

m=0
wmz−m

M
∑

m=0
vmz−m

. (14)

where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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where α ∈ (0,1) denotes the fractional order of the state equa-
tion, x(t) ∈ RN , u(t) ∈ RL, y(t) ∈ RP are the state, control and
output vectors, respectively, A,B,C are the state, control and
output matrices, respectively.
The discrete time integro-differential operator is based on the
(forward) shifted Grünvald-Letnikov definition (3) (see [9]):
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the FO operator is as follows
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Next, the (forward) shifted fractional order difference can be
defined (see [9]):

DEFINITION 9. The shifted FO difference is as follows:
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and consequently the discrete-time fractional-order linear state
space system can be given:
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3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
(see for example [4], [25] p.119):

(
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)α
=
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CFE{
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. (14)

where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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1. Introduction

One of the main areas of application of the fractional order
calculus is modeling of processes or plants whose dynam-
ics can not be effectively described by integer-order differen-
tial/difference equations. The usefulness of the noninteger-
order approach has been presented by many authors, see e.g.
[3], [5],[6],[9], [12], [18].

Many real applications, to mention model-based con-
trol, model-based fault detection, require to implement a
noninteger-order model at a digital platform like PLC or
FPGA. Known discrete-time state space models of noninteger-
order systems are typically based on the Grünvald-Letnikov
(GL) definition. An accurate implementation of this model, in
particular at the bounded resource platforms, requires a (very)
long-length approximation of the GL-based system [33].

The purpose of this paper is to propose a new, discrete-time
state space model of a noninteger-order system, constructed
with the use of the continuous fraction expansion (CFE) im-
plemented for the Al-Alaoui operator. The use of such an ap-
proximant enables to obtain a much more effective model in
that the memory length is quite low. This recommends its use
at industrial digital platforms.

The paper is organized as follows. Heaving recalled the
background of the paper in Section 1, Section 2 outlines the
fundamentals of fractional-order calculus and introduces a
commensurate fractional-order state-space system representa-
tion. Section 3 presents various CFE-based approximators to
the discretized operator sα . Section 4 presents the main re-
sults of the paper in terms of solutions to the CFE-aproximated
discrete-time noninteger-order state equation. Sections 5 and
6 provide the steady state error and stability analyses for the
solution, respectively, thus supporting the efficiency of the
approach. Example of Section 7 illustrates the value of the
methodology and Section 8 summarizes the achievements of
the paper.

2. Preliminaries

A presentation of elementary ideas is started with a definition
of a noninteger-order, integro-differential operator. It is ex-
pressed as follows (see for example [11]):

DEFINITION 1. The noninteger-order integro-differential

operator is defined as

0Dα
t f (t) =





dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)

where a and t denote time limits for calculation of the operator,
α ∈ R denotes the noninteger order of the operation.

Next, an idea of the Gamma (Euler) function (see for exam-
ple [12]) can be given:

DEFINITION 2. The Gamma function is defined as

Γ(x) =
∞∫

0

tx−1e−tdt. (2)

The fractional-order, integro-differential operator (1) can be
described by different definitions, given by Grünvald and Let-
nikov (GL definition), Riemann and Liouville (RL definition)
and Caputo (C definition). All these definitions are given be-
low. With respect to particular additional assumptions these
definitions can be considered equivalent.

DEFINITION 3. The Grünvald-Letnikov definition of the FO
operator ([3],[20]) is as follows:

GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
the operation and Γ(.) is the Gamma function as in (2).
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2. Preliminaries
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DEFINITION 1. The noninteger-order integro-differential
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0Dα
t f (t) =





dα f (t)
dtα α > 0

1 α = 0
t∫

a
f (τ)(dτ)−α α < 0

. (1)
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∞∫

0

tx−1e−tdt. (2)
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DEFINITION 3. The Grünvald-Letnikov definition of the FO
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GL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h ]

∑
j=0

(−1) j
(

α
j

)
f (t − jh). (3)

In (3),
(α

j

)
is a generalization of the Newton symbol into real

numbers: (
α
j

)
=

{
1, j = 0

α(α−1)...(α− j+1)
j! , j > 0.

(4)

DEFINITION 4. The Riemann-Liouville definition of the FO
operator is as follows:

RL
0 Dα

t f (t) =
1

Γ(N −α)

dN

dtN

∞∫

0

(t − τ)N−α−1 f (τ)dτ. (5)

where N − 1 < α < N denotes the noninteger order of
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1

P are the state, control and 
output vectors, respectively, A, B, C are the state, control and 
output matrices, respectively.

The discrete time integro-differential operator is based on 
the (forward) shifted Grünvald-Letnikov definition (3) (see [9]):
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FO operator is as follows

DEFINITION 5. The Caputo definition of the FO operator is
as follows:

C
0 Dα

t f (t) =
1

Γ(N −α)

∞∫

0

f (N)(τ)
(t − τ)α+1−N dτ. (6)

If the RL or C definitions are considered, the Laplace trans-
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L (RL
0 Dα

t f (t)) = sα F(s), α < 0

L (RL
0 Dα

t f (t)) = sα F(s)−
n−1

∑
k=0

sk
0Dα−k−1

t f (0)

α > 0, n−1 < α < n ∈ N

. (7)
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L (C0 Dα
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n−1

∑
k=0

sα−k−1
0Dk

t f (0)

α > 0, n−1 < α < n ∈ N

. (8)

Consequently, the inverse Laplace transform can be given as
(see for example [12] p.15):

L −1[sα F(s)] =0 Dα
t f (t)+

n−1

∑
k=0

tk−1

Γ(k−α +1)
f (k)(0+)

n−1 < α < n, n ∈ Z
. (9)

A fractional-order linear state space system is described as:

0Dα
t x(t) = Ax(t)+Bu(t)

y(t) =Cx(t)
. (10)

where α ∈ (0,1) denotes the fractional order of the state equa-
tion, x(t) ∈ RN , u(t) ∈ RL, y(t) ∈ RP are the state, control and
output vectors, respectively, A,B,C are the state, control and
output matrices, respectively.
The discrete time integro-differential operator is based on the
(forward) shifted Grünvald-Letnikov definition (3) (see [9]):

DEFINITION 8. The shifted Grünvald-Letnikov definition of
the FO operator is as follows

SGL
0 Dα

t f (t) = lim
h→0

h−α
[ t

h+1]

∑
j=0

(−1) j
(

α
j

)
f (t − ( j−1)h). (11)

Next, the (forward) shifted fractional order difference can be
defined (see [9]):

DEFINITION 9. The shifted FO difference is as follows:

∆α fk+1 =
k+1

∑
j=0

(−1) j
(

α
j

)
fk− j+1. (12)

and consequently the discrete-time fractional-order linear state
space system can be given:



∆α x(k+1) = Ax(k)+Bu(k)

x(k+1) = (hα A+αI)x(k)−
k+1
∑
j=2

(−1) j
(α

j

)
x(k− j+1)+hα Bu(k)

y(k) =Cx(k).
(13)

3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
(see for example [4], [25] p.119):

(
ω(z−1)

)α
=
( 1+a

h

)α
CFE{

(
1−z−1

1+az−1

)α
}M,M =

= PαM(z−1)
QαM(z−1)

=
( 1+a

h

)α CFEN(z−1,α)
CFED(z−1,α)

=

M
∑

m=0
wmz−m

M
∑

m=0
vmz−m

. (14)

where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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with the use of the so called generating function s ≈ ω(z−1).
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3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
(see for example [4], [25] p.119):

(
ω(z−1)

)α
=
( 1+a

h

)α
CFE{

(
1−z−1

1+az−1

)α
}M,M =

= PαM(z−1)
QαM(z−1)

=
( 1+a

h

)α CFEN(z−1,α)
CFED(z−1,α)

=

M
∑

m=0
wmz−m

M
∑

m=0
vmz−m

. (14)

where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
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where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time
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3. Discrete-time approximations of FO operator
An implementation of operator (1) at each digital platform
(PLC, microcontroller) requires to apply an integer-order
finite-length discrete-time approximators. The well known ap-
proximators are based on PSE (Power Series Expansion) and
CFE (Continuous Fraction Expansion). They allow to approx-
imate a noninteger-order element with the use of digital FIR
or IIR filters. The PSE approximators is based directly on
discrete-time version of the GL definition (3) and it has the
form of an FIR filter containg only zeros. However its digital,
high quality implementation requires to apply a long memory
buffer (high order of the filter). The CFE approximator has
the form of an IIR filter containing both poles and zeros. It is
faster covergent and easier to implement because its order is
relatively low, typically not higher that 5.
The discretization of fractional order element sα can be done
with the use of the so called generating function s ≈ ω(z−1).
The new operator raised to the power α has the following form
(see for example [4], [25] p.119):
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where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and
various values of the parameter a can be calculated for example
with the use of the MATLAB function given in [24].

In Eqn. (14), a is the coefficient depending on an ap-
proximation type. For a = 0 and a = 1 we obtain the Euler
and Tustin approximations, respectively. For a ∈ (0,1) we
arrive at the Al-Alaoui-based approximation, which is a lin-
ear combination of the Euler and Tustin approaches. Note
that in this case the parameter a in Eqn. (14) is equal to
a = 1−β

1+β , with β being the Al-Alaoui weighting coefficient
(see [1, 33]). If the Tustin approximation is considered (a=1)
then CFED(z−1,α) = CFEN(z−1,−α) and the polynomial
CFED(z−1,α) can be given in the direct form (see [4]). Ex-
amples for the polynomial CFED(z−1,α) for M = 1,3,5 are
given in Table 1. The approximator using the Muir recursion
is presented for example in [36]. The detailed analysis of vari-
ous forms of the CFE approximators has been given in [33].

4. Main results
The approach close to the one proposed here was given in [7],
where the use of CFE approximator to solve the discrete time

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

.
� (14)

where h denotes the sampling time and M is the order of ap-
proximation. Numerical values of coefficients wm and vm and 
various values of the parameter a can be calculated for example 
with the use of the MATLAB function given in [12].

In Eqn. (14), a is the coefficient depending on an approx-
imation type. For a = 0 and a = 1 we obtain the Euler and 
Tustin approximations, respectively. For α 2 (0, 1) we ar-
rive at the Al-Alaoui-based approximation, which is a linear 
combination of the Euler and Tustin approaches. Note that 
in this case the parameter a in Eqn. (14) is equal to a = 1¡β1+β ,  
with β being the Al-Alaoui weighting coefficient (see [7, 
13]). If the Tustin approximation is considered (a = 1) 
then CFED(z–1, α) = CFEN(z–1, –α) and the polynomial 

CFED(z–1, α) can be given in the direct form (see [10]). Ex-
amples for the polynomial CFED(z–1, α) for M = 1, 3, 5 are 
given in Table 1. The approximator using the Muir recursion is 
presented for example in [14]. The detailed analysis of various 
forms of the CFE approximators has been given in [7].

4.	 Main results

The approach close to the one proposed here was given in [15], 
where the use of CFE approximator to solve the discrete time 
FO state equation was also presented.

Applying the Laplace transform to the continuous-time frac-
tional-order state equation (10) yields:
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 



u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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where x0 denotes the initial condition. It is important to notice 
that it needs to be given for all previous steps (number of steps 
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα 
by its generating function (backward difference):
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:




Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 



u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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−α
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FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
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w4 =
α2

5 v4 =
α2
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w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
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The generating function is expressed by the CFE approximator
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Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:
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∑
m=0
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for the kth time step:
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0
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The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:
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x+1 (k)

x+2 (k)

...

x+M(k)



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where: 
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...
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The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:
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by its generating function (backward difference):
(
I(ω(z−1))α −A

)
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∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:
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The equation (20) with respect to (21) - (24) at the time step
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Table1 
Coefficients of CFE polynomials CFEN, D(z–1, α) for Tustin 

approximation [4]

Order M wm vm

M = 1 w1 = ¡α v1 = α

w0 = 1 v0 = 1

M = 3 w3 = ¡α3 v3 = α3

w2 = α
2

3 v2 = α
2

3

w1 = ¡α v1 = α

w0 = 1 v0 = 1

M = 5 w5 = ¡α5 v5 = α5

w4 = α
2

5 v4 = α
2

5

w3 = ¡(α5  + 2α3

35 ) v3 = ¡(¡α5  + ¡2α3

35 )

w2 = 2α2

5 v2 = 2α2

5

w1 = ¡α v1 = α

w0 = 1 v1 = α
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The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.
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u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2
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w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]
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FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑
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The generating function is expressed by the CFE approximator
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Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:
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m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M
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M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:



Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 


u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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Table 1. Coefficients of CFE polynomials CFEN,D(z−1,α) for Tustin
approximation [4]

Order M wm vm

M=1 w1 =−α v1 = α
w0 = 1 v0 = 1

M=3 w3 =−α
3 v3 =

α
3

w2 =
α2

3 v2 =
α2

3
w1 =−α v1 = α
w0 = 1 v0 = 1

M=5 w5 =−α
5 v5 =

α
5

w4 =
α2

5 v4 =
α2

5

w3 =−
(

α
5 + 2α3

35

)
v3 =−

(
−α
5 + −2α3

35

)

w2 =
2α2

5 v2 =
2α2

5
w1 =−α v1 = α
w0 = 1 v0 = 1

FO state equation was also presented.

The application to the Laplace transform to the continuous-
time fractional-order state equation (10) yields:
sα X(s)− sα−1x0 = AX(s)+BU(s) ⇐⇒
⇐⇒ (sα I −A)X(s) = BU(s)+ sα−1x0.
where x0 denotes the initial condition. It is important to notice
that it needs to be given for all previous steps (number of steps
depends on memory length required by a specific algorithm).

Next we shift to a discrete system by replacing the factor sα

by its generating function (backward difference):
(
I(ω(z−1))α −A

)
X+(z−1) = BU+(z−1)+

0
∑

m=−M
x0(m).

The generating function is expressed by the CFE approximator
(14):

(
I
CFEN(z−1)

CFED(z−1)
−A

)
X+(z−1) = BU+(z−1)+

0

∑
m=−M

x0(m).

(15)
The equation (15) takes the following equivalent form with re-
spect to (14):

(
I

M

∑
m=0

wmz−m −
M

∑
m=0

vmz−mA

)
X+(z−1) =

=
M

∑
m=0

vmz−mBU+(z−1)+
0

∑
m=−M

x0(m)

. (16)

Next let us introduce the following matrices Em and Fm:




Em = wmIN×N − vmA.
Fm = vmB.
m = 0,1, ...,M.

(17)

After use of (17) the equation (16) can be expressed as:

M

∑
m=0

Emz−mX(z−1) =
M

∑
m=0

Fmz−mU(z−1)+
0

∑
m=−M

x0(m). (18)

The equation (18) can be rewritten in the discrete-time domain
for the kth time step:

M

∑
m=0

Emx+(k−m) =
M

∑
m=0

Fmu+(k−m)+
0

∑
m=−M

x0(m). (19)

From (19) the state vector x+ can be directly calculated as fol-
lows:

x+(k) =−E−1
0

M

∑
m=1

Emx+(k−m)+E−1
0

M

∑
m=0

Fmu+(k−m)+

+E−1
0

0

∑
m=−M

x0(m).

(20)
The equation (20) allows to solve the discrete-time FO state
equation with the use of the CFE approximant. It has the form
of the Mth order difference equation. A solution of it requires
to know M previous steps of state and control signals.

Further analysis and particular implementations will be eas-
ier to perform, if equation (20) will be rewritten as an equiva-
lent 1st order difference equation of order MN. This approach
has been applied by many Authors, for example: [10], [13],
[14], [23]. To do it let us introduce extended state and control
vectors, denoted by xq and uq, respectively:

x+q (k) =




x+1 (k)

x+2 (k)

...

x+M(k)




MN×1

. (21)

where: 


x+1 (k) = x(k)
x+2 (k) = x(k−1)
...

x+M(k) = x(k+1−M)

. (22)

and the control vector is expressed as:

u+q (k) =




u+1 (k)

u+2 (k)

...

u+M+1(k)




M+1×1

. (23)

where: 



u+1 (k) = u(k)
u+2 (k) = u(k−1)
...

u+M+1(k) = u(k−M)

. (24)

The equation (20) with respect to (21) - (24) at the time step
(k+1) turns to the following form:

{
x+q (k+1) = A+

q x+q (k)+B+
q u+q (k)

y+q (k) =C+
q x+q (k)

. (25)
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where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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The initial condition for state equation (25) turns to:

	

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

.� (29)

The input signal vector can be obtained as an output from the 
state space system:

	

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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with the system matrices Ai 2 ℜM£M, Bi 2 ℜM£1, Ci 2 ℜ(M +1)£M 
and Di 2 ℜ(M +1)£1 as follows:

	

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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Finally, the whole SISO CFE-based state space approximation 
of (10) can be obtained as a serial connection of the systems 
(30) and (25):

	

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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� (32)

with the system matrices A–q
+2 ℜM(N +1)£M(N +1), B–q

+2 ℜM(N +1)£1 
and C–q

+2 ℜN£M(N +1) as follows:

	

,

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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IN×N ,0,0, ...,0
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0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0


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.

Ci =


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0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...
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...
...
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
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1
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...
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
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.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=



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(33)

B+
q =

[
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q Di
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]
=
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
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...
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(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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q =


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0 F0, ...,E−1
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0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:

A+
q =




−E−1
0 E1, ...,−E−1
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IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0


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. (26)
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q =


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E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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...

x+(k−M)


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MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...
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(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=
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(33)

B+
q =

[
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]
=
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C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =


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1
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Ci =
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
.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1
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0 F1 ... −E−1
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...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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[
C+,0, ...,0

]
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. (28)

The initial condition for state equation (25) turns to:

x+q0 =
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x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
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0
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Ci =
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...
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...
...
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.Di =
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1
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...
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

.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1
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0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=


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
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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q =

[
C+,0, ...,0

]
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. (28)

The initial condition for state equation (25) turns to:

x+q0 =
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x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0


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Ci =


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1 0 0 ... 0
0 1 0 ... 0
...

...
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...
...
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.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=



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0 ... 0 1 ... 0
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...
0 ... 0 0 ... 0
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(33)

B+
q =

[
B+

q Di

Bi

]
=
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
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Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=
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C+
q =

[
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q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:
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.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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5.	 Steady state error

The steady-state error of the proposed approximation method 
can be estimated with the use of the following proposition:

Proposition 1. Let the steady-state error for the CFE-based 
discrete-time state space model of (32) with respect to the con-
tinuous-time one of (10) be defined as:

	

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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and assume that the matrix A is nonsingular. Then:

	

where:

A+
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IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
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
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. (26)

B+
q =


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0 F0, ...,E−1
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0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =


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1 0 0 ... 0
0 1 0 ... 0
...

...
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...
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

.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=



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0 E1 ... E−1
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...
0 ... 0 0 ... 0
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(33)

B+
q =

[
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q Di

Bi

]
=
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where uss is the steady state input and

	

where:
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The initial condition for state equation (25) turns to:
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...
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. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...
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
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(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=



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(33)

B+
q =

[
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]
=
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. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for continu-
ous-time and discrete-time systems, respectively

	

where:
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The initial condition for state equation (25) turns to:

x+q0 =
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...
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. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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.

where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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where:

A+
q =




−E−1
0 E1, ...,−E−1

0 EM

IN×N ,0,0, ...,0
0, IN×N ,0, ...,0
.., .., .., .., ..

0, ..., IN×N ,0




MN×MN

. (26)

B+
q =




E−1
0 F0, ...,E−1

0 FM

0,0,0, ...,0
.., .., .., .., ..

0,0,0, ...,0




MN×M+1

. (27)

C+
q =

[
C+,0, ...,0

]
N×MN

. (28)

The initial condition for state equation (25) turns to:

x+q0 =




x+(k−1)
x+(k−2)

...

x+(k−M)




MN×1

. (29)

The input signal vector can be obtained as an output from the
state space system:

xuq(k+1) = Aixuq(k)+Biu(k).

u+q (k) = Cixuq(k)+Diu(k). (30)

with the system matrices Ai ∈ ℜM×M , Bi ∈ ℜM×1, Ci ∈
ℜ(M+1)×M and Di ∈ ℜ(M+1)×1 as follows:

Ai =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Bi =




1
0
0
...
0



.

Ci =




0 0 0 ... 0
1 0 0 ... 0
0 1 0 ... 0
...

...
. . .

...
...

0 0 0 ... 0



.Di =




1
0
0
...
0



.

(31)

Finally, the whole SISO CFE-based state space approximation
of (10) can be obtained as a cascaded connection of the systems
(30) and (25):

x+q (k+1) = A+
q x+q (k)+B+

q u(k).

y+q (k) = C+
q x+q (k). (32)

with the system matrices A+
q ∈ ℜM(N+1)×M(N+1), B+

q ∈

ℜM(N+1)×1 and C+
q ∈ ℜN×M(N+1) as follows:

A+
q =

[
A+

q B+
q Ci

0 Ai

]
=

=




−E−1
0 E1 ... E−1

0 EM −E−1
0 F1 ... −E−1

0 FM

IN×N ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0
0 ... 0 1 ... 0
...

. . .
...

...
. . .

...
0 ... 0 0 ... 0




.

(33)

B+
q =

[
B+

q Di

Bi

]
=




−E−1
0 F0

0
...
0
1
0
...
0




. (34)

C+
q =

[
C+

q 0
]
. (35)

5. Steady state error
The steady-state error of the proposed approximation method
can be estimated with the use of the following proposition:

PROPOSITION 1. Let the steady-state error for the CFE-
based discrete-time state space model of Eqn. (32) with respect
to the continuous-time one of Eqn. (10) be defined as:

εss = lim
k→∞

y+q (k)− lim
t→∞

y(t). (36)

and assume that the matrix A is nonsingular. Then:

εss =C
(

F −A
)−1

FA−1Buss. (37)

where uss is the steady state input and

F =
∑M

m=0 wm

∑M
m=0 vm

. (38)

with wm and vm are as in Eqn. (17).

Proof. Denote steady-state values of the outputs for
continuous-time and discrete-time systems, respectively

lim
t→∞

y(t) =−CA−1Buss. (39)

lim
k→∞

y+q (k) =C(
∑M

m=0 wm

∑M
m=0 vm

−A)−1Buss =

=C
[
−A+

(
∑M

m=0 wm

∑M
m=0 vm

−A
)−1 ∑M

m=0 wm

∑M
m=0 vm

A−1
]

Buss

. (40)

Taking into account definition (36) and Eqns. (39) and (40) we
arrive at (37).
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�(40)

Taking into account definition (36) and Eqns. (36) and (40) we 
arrive at (37).� □

6.	 Stability analysis

A fundamental tool to analyze the stability for noninteger-order 
continuous-time systems is the Matignon theorem, given for 
example in [1]. The stability analysis of discrete time approx-
imations to fractional-order systems is usually based on the 
analysis of stability/instability areas with respect to eigenvalues 
of the state matrix of the actual system, or poles of its charac-
teristic equation (see e.g. [20–23]). In this paper we will present 
a similar solution.

Consider the state-space system of (10), with λi, i = 1, …, M, 
being the eigenvalues of the state matrix A. The system is ap-
proximated by the discrete-time state-space model (32) in-
corporating the CFE-based approximation as in (14). Assume 
that 1) the approximation ω(z–1) of (14) is stable and 2) the term 
ω(e–jφ), φ 2 [¡π, π], constitutes a simply closed curve in the 
complex plane. Then the stability/instability areas with respect 
to λi, i = 1, …, M, are separated from each other by the contour 
defined as (compare [22]):
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6. Stability analysis
A fundamental tool to analyze the stability for noninteger-
order continuous-time systems is the Matignon theorem, given
for example in [3]. The stability analysis of discrete time ap-
proximations to fractional-order systems are usually based on
the analysis of stability/instability areas with respect to eigen-
values of the state matrix of the actual system, or poles of its
characteristic equation (see e.g. [21, 29, 31, 32]). In this paper
we will present a similar solution.

Consider the state-space system of Eqn. (10), with λi,
i = 1, ...,M, being the eigenvalues of the system matrix A. The
system is approximated by the discrete-time state-space model
of Eqn. (32) incorporating the CFE-based approximation as in
Eqn. (14). Assume that 1) the approximation ω(z−1) of Eqn.
(14) is stable and 2) the term ω(e− jϕ), ϕ ∈ [−π,π], consti-
tutes a simply closed curve in the complex plane. Then the
stability/instability areas with respect to λi, i = 1, ...,M, are
separated from each other by the contour defined as (compare
[31]):

S =
{

ω(e− jϕ),ϕ ∈ [−π,π]
}
. (41)

where

ω(e− jϕ) =

M
∑

m=0
wm(e− jϕ)m

M
∑

m=0
vm(e− jϕ)m

. (42)

The existence of stability areas for CFE-based approxima-
tions to fractional-order systems has been proven in Ref. [29].
The stability/instability areas for the discrete-time approxima-
tor (14) for various fractional orders α , weighting coefficients
β and approximation orders M are presented in Fig. 1.

It can be seen from Fig. 1 that the system is asymptotically
stable if and only if the eigenvalues of the matrix A are outside
the instability area. The instability areas can be quite different
for various implementation lengths M and different values of
α (as can be seen for α = 0.5, α = 0.7 and α = 0.9 ). For
higher values of α the stability areas are quite similar irrespec-
tively of the approximation order M. Moreover, Fig. 1 shows
that decreasing a value of the weighting coefficient β leads to
the increase of the instability region. Quite similar results for
CFE-based Tustin and PSE-based approximations have been
presented in Refs. [29, 31].

7. Example
As an example let us consider the dynamic FO system similar
to that analyzed in [21], Ex. 7.3 p. 166, with

A =




0 1 0
0 0 1

−a0 0 0


 B =




1
0
0


 C =




1 0 0
0 1 0
0 0 1


 .

(43)
Let us consider a0 = 0.05 and FO equation with orders of ap-
proximation equal to M = 3, M = 5 and non integer orders
equal to α = 0.5 and α = 0.78.
Let us firstly deal with the homogenous equation and inital
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Fig. 1. Stability/instability areas for Al-Alaoui approximator

conditions in the form:

x0 =




1 0.5 0 0 0
0 0 0 0 0
0 0 0 0 0


 . (44)
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conditions in the form:

x0 =



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The existence of stability areas for CFE-based approxima-
tions to fractional-order systems has been proven in [18]. The 
stability/instability areas for the discrete-time approximator (14) 
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for various fractional orders α, weighting coefficients β and 
approximation orders M are presented in Fig. 1.

It can be seen from Fig. 1 that the system is asymptotically 
stable if and only if the eigenvalues of the matrix A are outside 
the instability area. The instability areas can be different for 
various implementation lengths M and different values of α 
(as can be seen for α = 0.5, α = 0.7 and α = 0.9). For higher 
values of α the stability areas are quite similar irrespectively 
of the approximation order M. Moreover, Fig. 1 shows that 
decreasing a value of the weighting coefficient β leads to the 
increase of the instability region. Quite similar results for 
CFE-based Tustin and PSE-based approximations have been 
presented in [21, 22].

7.	 Example

As an example let us consider the dynamic FO system similar  
to that analyzed in [20], Ex. 7.3 p. 166, with
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6. Stability analysis
A fundamental tool to analyze the stability for noninteger-
order continuous-time systems is the Matignon theorem, given
for example in [3]. The stability analysis of discrete time ap-
proximations to fractional-order systems are usually based on
the analysis of stability/instability areas with respect to eigen-
values of the state matrix of the actual system, or poles of its
characteristic equation (see e.g. [21, 29, 31, 32]). In this paper
we will present a similar solution.

Consider the state-space system of Eqn. (10), with λi,
i = 1, ...,M, being the eigenvalues of the system matrix A. The
system is approximated by the discrete-time state-space model
of Eqn. (32) incorporating the CFE-based approximation as in
Eqn. (14). Assume that 1) the approximation ω(z−1) of Eqn.
(14) is stable and 2) the term ω(e− jϕ), ϕ ∈ [−π,π], consti-
tutes a simply closed curve in the complex plane. Then the
stability/instability areas with respect to λi, i = 1, ...,M, are
separated from each other by the contour defined as (compare
[31]):

S =
{

ω(e− jϕ),ϕ ∈ [−π,π]
}
. (41)

where

ω(e− jϕ) =

M
∑

m=0
wm(e− jϕ)m

M
∑

m=0
vm(e− jϕ)m

. (42)

The existence of stability areas for CFE-based approxima-
tions to fractional-order systems has been proven in Ref. [29].
The stability/instability areas for the discrete-time approxima-
tor (14) for various fractional orders α , weighting coefficients
β and approximation orders M are presented in Fig. 1.

It can be seen from Fig. 1 that the system is asymptotically
stable if and only if the eigenvalues of the matrix A are outside
the instability area. The instability areas can be quite different
for various implementation lengths M and different values of
α (as can be seen for α = 0.5, α = 0.7 and α = 0.9 ). For
higher values of α the stability areas are quite similar irrespec-
tively of the approximation order M. Moreover, Fig. 1 shows
that decreasing a value of the weighting coefficient β leads to
the increase of the instability region. Quite similar results for
CFE-based Tustin and PSE-based approximations have been
presented in Refs. [29, 31].
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As an example let us consider the dynamic FO system similar
to that analyzed in [21], Ex. 7.3 p. 166, with
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Let us consider a0 = 0.05 and FO equation with orders of ap-
proximation equal to M = 3, M = 5 and non integer orders
equal to α = 0.5 and α = 0.78.
Let us firstly deal with the homogenous equation and inital
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A fundamental tool to analyze the stability for noninteger-
order continuous-time systems is the Matignon theorem, given
for example in [3]. The stability analysis of discrete time ap-
proximations to fractional-order systems are usually based on
the analysis of stability/instability areas with respect to eigen-
values of the state matrix of the actual system, or poles of its
characteristic equation (see e.g. [21, 29, 31, 32]). In this paper
we will present a similar solution.

Consider the state-space system of Eqn. (10), with λi,
i = 1, ...,M, being the eigenvalues of the system matrix A. The
system is approximated by the discrete-time state-space model
of Eqn. (32) incorporating the CFE-based approximation as in
Eqn. (14). Assume that 1) the approximation ω(z−1) of Eqn.
(14) is stable and 2) the term ω(e− jϕ), ϕ ∈ [−π,π], consti-
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stability/instability areas with respect to λi, i = 1, ...,M, are
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The existence of stability areas for CFE-based approxima-
tions to fractional-order systems has been proven in Ref. [29].
The stability/instability areas for the discrete-time approxima-
tor (14) for various fractional orders α , weighting coefficients
β and approximation orders M are presented in Fig. 1.

It can be seen from Fig. 1 that the system is asymptotically
stable if and only if the eigenvalues of the matrix A are outside
the instability area. The instability areas can be quite different
for various implementation lengths M and different values of
α (as can be seen for α = 0.5, α = 0.7 and α = 0.9 ). For
higher values of α the stability areas are quite similar irrespec-
tively of the approximation order M. Moreover, Fig. 1 shows
that decreasing a value of the weighting coefficient β leads to
the increase of the instability region. Quite similar results for
CFE-based Tustin and PSE-based approximations have been
presented in Refs. [29, 31].

7. Example
As an example let us consider the dynamic FO system similar
to that analyzed in [21], Ex. 7.3 p. 166, with
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Let us consider a0 = 0.05 and FO equation with orders of ap-
proximation equal to M = 3, M = 5 and non integer orders
equal to α = 0.5 and α = 0.78.
Let us firstly deal with the homogenous equation and inital
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Let us consider a0 = 0.05 and FO equation with orders of ap-
proximation equal to M = 3, M = 5 and non integer orders 
equal to α = 0.5 and α = 0.78.

Let us firstly deal with the homogenous equation and inital 
conditions in the form:
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A fundamental tool to analyze the stability for noninteger-
order continuous-time systems is the Matignon theorem, given
for example in [3]. The stability analysis of discrete time ap-
proximations to fractional-order systems are usually based on
the analysis of stability/instability areas with respect to eigen-
values of the state matrix of the actual system, or poles of its
characteristic equation (see e.g. [21, 29, 31, 32]). In this paper
we will present a similar solution.

Consider the state-space system of Eqn. (10), with λi,
i = 1, ...,M, being the eigenvalues of the system matrix A. The
system is approximated by the discrete-time state-space model
of Eqn. (32) incorporating the CFE-based approximation as in
Eqn. (14). Assume that 1) the approximation ω(z−1) of Eqn.
(14) is stable and 2) the term ω(e− jϕ), ϕ ∈ [−π,π], consti-
tutes a simply closed curve in the complex plane. Then the
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The existence of stability areas for CFE-based approxima-
tions to fractional-order systems has been proven in Ref. [29].
The stability/instability areas for the discrete-time approxima-
tor (14) for various fractional orders α , weighting coefficients
β and approximation orders M are presented in Fig. 1.

It can be seen from Fig. 1 that the system is asymptotically
stable if and only if the eigenvalues of the matrix A are outside
the instability area. The instability areas can be quite different
for various implementation lengths M and different values of
α (as can be seen for α = 0.5, α = 0.7 and α = 0.9 ). For
higher values of α the stability areas are quite similar irrespec-
tively of the approximation order M. Moreover, Fig. 1 shows
that decreasing a value of the weighting coefficient β leads to
the increase of the instability region. Quite similar results for
CFE-based Tustin and PSE-based approximations have been
presented in Refs. [29, 31].
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As an example let us consider the dynamic FO system similar
to that analyzed in [21], Ex. 7.3 p. 166, with
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Let us consider a0 = 0.05 and FO equation with orders of ap-
proximation equal to M = 3, M = 5 and non integer orders
equal to α = 0.5 and α = 0.78.
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Consider the output equation for uss = 0 and uss = 10.
Stability/instability areas and system trajectories are pre-

sented in Figs. 2 to 9.
For α = 0.5 the system is stable (Figs. 2 to 5), and for 

α = 0.78 it is unstable (Figs. 6 to 9).
Table 2 shows the results of the calculation of the steady 

state error (only for uss = 10).

Fig. 1. Stability/instability areas for Al-Alaoui approximator
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Table 2 

Results for steady state error (uss = 10)

a = 0.5 
M = 3

a = 0.5 
M = 5

a = 0.78 
M = 3

a = 0.78 
M = 5

y1 –1.1429 –0.6270 –0.1290 –0.0383

y2 –0.0571 –0.0313 –0.0064 –0.0019

y3 –1.4857 –0.9404 –0.3250 –0.1586
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Fig. 2. Stability/instability areas and system trajectories α = 0.5, β = 1, M = 3, uss = 10
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Fig. 5. Stability/instability areas and system trajectories α = 0.5, β = 1, 
M = 5, uss = 0

Fig. 6. Stability/instability areas and system trajectories α = 0.78, 
β = 1, M = 3, uss = 10
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Fig. 4. Stability/instability areas and system trajectories α = 0.5, β = 1, 
M = 5, uss = 10

Fig. 3. Stability/instability areas and system trajectories α = 0.5, β = 1, 
M = 3, uss = 0
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8.	 Conclusions

Final conclusions from the paper can be formulated as follows:
●	 The proposed new method allows to solve a discrete non-

integer-order state equation with the use short-memory dis-
crete-time approximations, for example CFE-based approx-
imation of the Al-Alaoui operator.

●	 The memory length of the introduced discrete-time model of 
a noninteger-order state-space system is significantly lower 
than for other models obtained with the use of the PSE 
approximation. This is a crucial advantage of the proposed 
method from the point of view of implementation.

●	 The stability and steady-state error analyses for the new 
model can be easily performed.

●	 Further analysis of the presented model will include its 
implementation at a digital platform (e.g. PLC) using ob-
ject-oriented approach recommended by the IEC 61131 
standard.
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