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Abstract. Field-programmable gate arrays (FPGA) technology can offer significantly higher performance at much lower power consumption 
than is available from single and multicore CPUs and GPUs (graphics processing unit) in many computational problems. Unfortunately, the pure 
programming for FPGA using hardware description languages (HDL), like VHDL or Verilog, is a difficult and not-trivial task and is not intuitive 
for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty, the high level synthesis (HLS) approach is 
promoted by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but can also be 
successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for kernel density estimation (KDE) 
using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show that FPGA speedups, 
comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for FPGA devices is usually 
much less than typical power consumption of the present CPUs and GPUs.
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In the paper we are concerned with FPGA approach. In 
[10] the author considers a problem how to use FPGA for fast 
computing of PDFs using direct very high speed integrated 
circuits hardware description language (VHDL) programming 
approach. However, the problem we are concerning is of dif-
ferent nature, as we concentrate our attention for computing the 
optimal bandwidth for PDF (see Section 2).

To develop the final FPGA design we use the high level 
synthesis (HLS) approach [8, 16], in which no direct hardware 
description language (HDL) coding is needed (typically, VHDL 
or Verilog languagesa are used).

The remainder of the paper is organized as follows. In 
Section 2, we turn our attention to give the reader some prelimi-
nary information on KDE and bandwidth selection. In Section 3 
we provide detailed mathematical formulas for calculating op-
timal bandwidth using the PLUGIN method. In Section 4 we 
cover all the necessary details on our FPGA-based implemen-
tation. We also present practical experiments carried out and 
discuss the results. In Section 5, we conclude the paper.

2.	 Kernel density estimation  
and bandwidth selection

The univariate kernel density estimator f̂  for a random sample 
Xi (i = 1, 2, …, n), drawn from a common and usually un-
known density function f is given by

a�It is worth to note that OpenCL framework, which is commonly used by 
GPU programmers, also becomes available for FPGA devices. Nowadays, 
OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL 
applications for FPGA. Recently, Xilinx announced a similar solution, 
namely SDAccel Development Environment for OpenCL, C, and C++.

1.	 Introduction

The probability density function (PDF) is a key concept in sta-
tistics. with many practical applications, see for example [14] 
and many others. Constructing the most adequate PDF from 
the observed data is still an important and interesting research 
problem, especially for large datasets. PDFs are often calcu-
lated using nonparametric data-driven methods. One of the most 
popular nonparametric method is the kernel density estimation 
(KDE) [21–23, 28]. However, a very serious drawback of using 
KDE is the large number of calculations required to compute 
density estimates, as well as to find the optimal bandwidth 
(computational complexity O(n2)). 

In this paper we investigate the possibility of utilizing 
field-programmable gate arrays (FPGA) to accelerate finding 
of such the optimal bandwidth. Towards the needs of the paper 
we have selected one popular and often used algorithm called 
plug-in in literature [13, 28]. This work can be considered as 
a continuation and extension of the paper [1], where the authors 
utilize graphics processing units (GPU) for speeding up optimal 
bandwidth selection. One of the algorithms analysed in that 
paper was the above mentioned plug-in.

Generally, there are two methodologies for speeding up com-
plex numerical algorithms: software-based and hardware-based. 
In this paper we concentrate only on hardware-based methods. 
The commonly known approaches are as follows: (a) computing 
on general purpose single and multicore CPU microprocessors, 
(b) computing on distributed environments (e.g. clusers, grids, 
etc.), (c) computing on GPUs [25, 24, 20] (d) computing on dig-
ital signal processors (DSP) units and (e) computing on FPGA 
chips [11, 15, 17, 18, 27, 29].
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1. Introduction

The Probability Density Function (PDF) is a key concept in

statistics. with many practical applications, see for example

[14] and many others. Constructing the most adequate PDF

from the observed data is still an important and interesting re-

search problem, especially for large datasets. PDFs are often

calculated using nonparametric data-driven methods. One of

the most popular nonparametric method is the Kernel Density

Estimation (KDE) [21, 22, 23, 28]. However, a very serious

drawback of using KDE is the large number of calculations

required to compute density estimates, as well as to find the

optimal bandwidth (computational complexity O(n2)).
In this paper we investigate the possibility of utilizing Field-

Programmable Gate Arrays (FPGA) to accelerate finding of

such the optimal bandwidth. Towards the needs of the paper

we have selected one popular and often used algorithm called

in literature plug-in [13, 28]. This work can be considered

as a continuation and extension of the paper [1], where the

authors utilize Graphics Processing Units (GPU) for speeding

up optimal bandwidth selection. One of the algorithm analysed

in that paper was the above mentioned plug-in one.

Generally, there are two methodologies for speeding up

complex numerical algorithms: software-based and hardware-

based. In this paper we concentrate only on hardware-based

methods. The commonly known approaches are as follows:

(a) computing on general purpose single and multicore CPU

microprocessors, (b) computing on distributed environments

(e.g. clusers, grids, etc.), (c) computing on GPUs [25, 24, 20]

(d) computing on Digital Signal Processors (DSP) units and

(e) computing on FPGA chips [11, 15, 17, 18, 27, 29].

In the paper we are concerned with FPGA approach. In [10]

the author considers a problem how to use FPGA for fast com-

puting of PDFs using direct Very High Speed Integrated Cir-
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cuits Hardware Description Language (VHDL) programming

approach. However, the problem we are concerning is of dif-

ferent nature, as we concentrate our attention for computing

the optimal bandwidth for PDF (see Chapter 2).

To develop the final FPGA design we use the High Level

Synthesis (HLS) approach [8], [16], where no direct Hardware

Description Language (HDL) coding is needed (typically in

VHDL or Verilog languages1).

The remainder of the paper is organized as follows. In sec-

tion 2 we turn our attention to give the reader some prelimi-

nary information on KDE and bandwidth selection. In section

3 we give detailed mathematical formulas for calculating op-

timal bandwidth using the PLUGIN method. In section 4 we

cover all the necessary details on our FPGA-based implemen-

tation. We also present practical experiments we carried out

and discuss the results. In section 5 we conclude the paper.

2. Kernel Density Estimation and Bandwidth Se-

lection

The univariate kernel density estimator f̂ for a random sam-

ple Xi (i = 1,2, . . . ,n), drawn from a common and usually un-

known density function f is given by

f̂ (x) =
1

n

n

∑
i=1

Kh (x−Xi) , (1)

where

Kh(u) = h−1K
(

h−1u
)

. (2)

h is a positive real number called smoothing parameter or

bandwidth. K is the kernel function – a symmetric function

1It is worth to note that OpenCL framework, which is commonly used by

GPU programmers, becomes also available for FPGA devices. Nowadays,

OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL

applications for FPGA. Recently, Xilinx announced a similar solution, namely

SDAccel Development Environment for OpenCL, C, and C++.

1

,� (1)

where
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1. Introduction

The Probability Density Function (PDF) is a key concept in

statistics. with many practical applications, see for example

[14] and many others. Constructing the most adequate PDF

from the observed data is still an important and interesting re-

search problem, especially for large datasets. PDFs are often

calculated using nonparametric data-driven methods. One of

the most popular nonparametric method is the Kernel Density

Estimation (KDE) [21, 22, 23, 28]. However, a very serious

drawback of using KDE is the large number of calculations

required to compute density estimates, as well as to find the

optimal bandwidth (computational complexity O(n2)).
In this paper we investigate the possibility of utilizing Field-

Programmable Gate Arrays (FPGA) to accelerate finding of

such the optimal bandwidth. Towards the needs of the paper

we have selected one popular and often used algorithm called

in literature plug-in [13, 28]. This work can be considered

as a continuation and extension of the paper [1], where the

authors utilize Graphics Processing Units (GPU) for speeding

up optimal bandwidth selection. One of the algorithm analysed

in that paper was the above mentioned plug-in one.

Generally, there are two methodologies for speeding up

complex numerical algorithms: software-based and hardware-

based. In this paper we concentrate only on hardware-based

methods. The commonly known approaches are as follows:

(a) computing on general purpose single and multicore CPU

microprocessors, (b) computing on distributed environments

(e.g. clusers, grids, etc.), (c) computing on GPUs [25, 24, 20]

(d) computing on Digital Signal Processors (DSP) units and

(e) computing on FPGA chips [11, 15, 17, 18, 27, 29].

In the paper we are concerned with FPGA approach. In [10]

the author considers a problem how to use FPGA for fast com-

puting of PDFs using direct Very High Speed Integrated Cir-
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cuits Hardware Description Language (VHDL) programming

approach. However, the problem we are concerning is of dif-

ferent nature, as we concentrate our attention for computing

the optimal bandwidth for PDF (see Chapter 2).

To develop the final FPGA design we use the High Level

Synthesis (HLS) approach [8], [16], where no direct Hardware

Description Language (HDL) coding is needed (typically in

VHDL or Verilog languages1).

The remainder of the paper is organized as follows. In sec-

tion 2 we turn our attention to give the reader some prelimi-

nary information on KDE and bandwidth selection. In section

3 we give detailed mathematical formulas for calculating op-

timal bandwidth using the PLUGIN method. In section 4 we

cover all the necessary details on our FPGA-based implemen-

tation. We also present practical experiments we carried out

and discuss the results. In section 5 we conclude the paper.

2. Kernel Density Estimation and Bandwidth Se-

lection

The univariate kernel density estimator f̂ for a random sam-

ple Xi (i = 1,2, . . . ,n), drawn from a common and usually un-

known density function f is given by

f̂ (x) =
1

n

n

∑
i=1

Kh (x−Xi) , (1)

where

Kh(u) = h−1K
(

h−1u
)

. (2)

h is a positive real number called smoothing parameter or

bandwidth. K is the kernel function – a symmetric function

1It is worth to note that OpenCL framework, which is commonly used by

GPU programmers, becomes also available for FPGA devices. Nowadays,

OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL

applications for FPGA. Recently, Xilinx announced a similar solution, namely

SDAccel Development Environment for OpenCL, C, and C++.

1

.� (2)

h is a positive real number called smoothing parameter or band-
width. K is the kernel function – a symmetric function that in-
tegrates to one. The scaled (Kh) and unscaled (K ) kernels are 
related in Eq. (2). In most cases the kernel K has the form of 
a standard Gaussian normal density, that is

	

Artur Gramacki, Marek Sawerwain and Jarosław Gramacki

that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂ ) and standard deviation

(σ̂ ):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr ):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
( −2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8
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If we have the bandwidth h, we can determine the estimator f̂  
of the unknown density function f using (1). The bandwidth h 
is the parameter which exhibits a strong influence on the re-
sulting KDE.

As an example of how KDE works consider a toy dataset of 
eight data points: Xi = f0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5g. Three 
different KDEs based on these data are depicted in Fig. 1. It 
is easy to notice how the bandwidth h influences the shape of 
the KDE curve. Lines in bold show the estimated PDFs, while 
normal lines show the shapes of individual kernel functions K 
(Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate 
case. In the most general variant, the scalar bandwidth h is 
replaced by the unconstrained bandwidth matrix H (which is 
symmetric and positive definite). However, the multivariate 
case is not considered in the paper. The monographs [21, 28] 
provide an overview of the research in the area of multivariate 
KDE. Choosing the best value of H is not a trivial task and this 
problem was and still is extensively studied in literature [3–5].

Currently available selectors can be roughly divided into 
three classes [12, 28]. The first class uses very simple and easy 
to calculate mathematical formulas. They were developed to 
cover a wide range of situations, but do not guarantee being 
enough close to the optimal (under certain criteria) bandwidth. 
They are often called rules-of-thumb methods. The second class 
contains methods based on cross-validation ideas with more 
precise mathematical arguments, but they require much more 

computational effort. However, in reward for it, we get band-
widths more accurate for a wider range of density functions. 
The third class contains methods based on plugging in estimates 
of some unknown quantities that appear in formulas for the as-
ymptotically optimal bandwidth. They are often called plug-in.

One selected method from the third class (for the univar-
iate case) is investigated in the paper. The method is briefly 
presented in Section 3 and from now on it will abbreviated as 
the PLUGIN.

3.	 The PLUGIN method and data preprocessing

In Algorithm 1 we provide a recipe for calculation of the op-
timal bandwidth using the PLUGIN method (the symbols used 
are exactly such as in the book [28]). All the necessary details 
on the method, as well as details on deriving of particular math-
ematical formulas can be found in many source materials, see 
for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a 
strictly sequential computational process (see Fig. 2; parallel 
processing is possible only internally in Steps IV and VI) as 
every step depends on the results obtained in the previous steps. 
First we calculate the variance and the standard deviation es-
timators of the input data, see Step I in Algorithm 1. Then we 
calculate some more complex formulas from Step II to Step VI.  
Finally, we can substitute them into equation given in Step VII 
to get the searched optimal bandwidth value h.

Our implementation of the Algorithm 1 is carried out in 
fixed-point arithmetic (see section 4.2). Unfortunately, using the 
raw data while conducting the required calculations, threatens 
a potential problems with overflow, especially while calculating 
the value of Ψ̂8

NS, see Step II in Algorithm 1. Note that the es-
timate of standard deviation in Ψ̂8

NS is raised to the power of 
9. For large values of σ it results in extremely small values of 
Ψ̂8

NS. The above problems can be successfully overcome if the 
input datasets are standardized using the z-score formula, that is
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that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂ ) and standard deviation

(σ̂ ):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr ):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
( −2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8
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where μ and σ are mean and standard deviation of the original 
vector X respectively. Z-score guarantees that σ̂  = 1 in Ψ̂8

NS and, 
consequently, Ψ̂8

NS entity has simply a constant value.
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processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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where h is the bandwidth calculated for the standardized dataset 
and σ̂  is the standard deviation of the original vector X. The 
correctness of the above equation can be easily proofed alge-
braically.

To reduce the calculation burden we can also slightly change 
equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to notice 
a symmetry, that is
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+ nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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So, the double summations can be changed and, conse-
quently, the final formula for Ψ̂6(g1) has now the following form
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+ nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂ ) and standard deviation

(σ̂ ):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr ):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
( −2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8
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Fig. 2. Flowchart of the PLUGIN algorithm with optional data 
preprocessing (z-score standardization)
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+ nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages
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� (9)

where Tk = T1 + T2 + T3, and T1 represents computation time 
for the differences, T2 represents division time, and T3 represents 
time for computing K (6) and K (4) polynomials.

4.	 FPGA-based implementation

4.1. Xilinx’s high level synthesis. High level synthesis (HLS) 
is an automated design process that interprets an algorithmic 
description of a problem (given in high level languages C/C++) 
and translates this problem into a so called register-transfer 
level (RTL) HDL code. Then in turn this HDL code can be 
easily synthesized to the gate level by the use of a logic syn-
thesis tool, like for example Xilinx ISE Design Suite, Xilinx 
Vivado Design Suite, Altera Quartus II.

In this paper we discuss results obtained using a tool called 
Xilinx Vivado High Level Synthesis, a feature of Vivado 
Design Suite. This tool supports C / C++ inputs, and generates 
VHDL / Verilog / SystemC outputs. Other solutions are offered 
by Scala programming language [2] and a specialised high level 
synthesis language called Cx [26]. It should also be mentioned 
that a similar tool called A++ is also available for Altera FPGA 
devices.

4.2. Implementation preliminaries. Before implementing the 
PLUGIN Algorithm 1 it is important to take some assumptions 
affecting both performance and resource consumption.

The first assumption is about a proper arithmetic used. 
The floating-point one gives very good range and precision. 
Unfortunately, from FPGA’s point of view, this representation is 
very resource demanding. In contrast, the fixed-point arithmetic 
is much less resource demanding but its range and precision 
are more limited.

Hence, the exact fixed point representation was determined 
based on a careful analysis of the particular intermediate values 
taken during calculations. If the input dataset does not con-
tain extremely large outliers (which suggests that such dataset 
should be first carefully analysed before any statistical analysis 
taken) and if the z-score standardization is used, Q32.32 fixed 
point representation is sufficient for all calculations (that is: 
integer part length m = 31, fractional part length n = 32, word 
length N = 64 and the first bit represents the sign). Also, note 

that as a result of the z-score standardization, the vales of V̂ , 
σ̂ , Ψ̂8

NS are constant and this significantly simplifies the calcu-
lations. The fractional part does give the required precision. 
However, the integer part must also be sufficiently large, as n2 
factors are present in the PLUGIN algorithm.

The second assumption is about choosing the most adequate 
methods for calculating individual steps in Algorithm 1. Now 
it needs to be stressed that programming for FPGA devices 
differs considerably from programming for CPUs / GPUs de-
vices. FPGA devices are built from a large number of simple 
logical blocks like: look-up tables (LUT), flip-flops (FF), 
block RAM memory (BRAM), specialized DSP units (DSP). 
These blocks can be connected each other and can implement 
only relatively low-level logical functions (the so called gates 
level). As a consequence, even very basic operations, like for 
examples the adder for adding two numbers must be imple-
mented from scratch. In description of the PLUGIN Algorithm 
\ref{alg:plugin} one can easily indicate such operators like (a) 
addition, (b) subtraction, (c) multiplication, (d) division, (e) 
reciprocal, (f) exponent, (g) logarithmb, (h) power, (i) square 
roots, (j) higher order roots.

Our implementation utilizes the following methods: 
CORDIC [6, 7] for calculating exponents and logarithms, divi-
sions were replaced by multiplications and reciprocals, differ-
ence operators were replaced by addition of negative operands. 
Additionally, one extra implementation of the exponent function 
was used for calculations of K (6) and K (4) in Algorithm 1. This 
implementation is based on the Remez algorithm [9, 19] and 
is open to pipelining. As a consequence, a significant speedup 
can be achieved during calculations of Steps IV and VI in 
Algorithm 1.

It is also worth to note that the authors’ implementation of 
the division operator (base on multiplications and reciprocals; 
the reciprocal is based on the Newton method) is significantly 
faster than the default division operator available in Vivado 
HLS. Moreover, the another advantage of using our own opera-
tors, is that intellectual property core IPCore (Xilinx’s library of 
many specialized functions available for FPGA projects) is not 
needed. As a consequence, the generated VHDL codes are more 
portable for FPGA chips from different than Xilinx vendors.

The third assumption during implementing of the PLUGIN 
algorithm was to enable the nominal clock frequency of an 
FPGA chip used (see chapter 4.4 for details). During experi-
ments it was turned out that the usage of the original division 
operator resulted in problems with reaching the required fre-
quency. The authors’ original implementation of the division 
operator (base on multiplications and reciprocals) solved this 
problem.

The forth assumption was that all the input datasets must be 
stored in the BRAM memory, which are available in almost all 
current FPGA chips. They have enough capacity to store truly 
large data, like even 500,000 elements or more.

b�Logarithm is not directly present in the PLUGIN mathematical formulas, 
but it is used while implementing higher order roots from the following 
definition x y = exp(y ln x).
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4.3. Implementation details. In Fig. 3 we show the scheme 
of the PLUGIN implementation where all the main compo-
nents are presented. They correspond literally to the seven steps 
shown in Algorithm 1.

Figure 4 presents general architecture of the functional unit 
for computing Ψ̂4(g2) (Step VI in Algorithm 1). It is worth to 
note that the proper architecture of this unit must be reached 
during careful coding in Vivado HLS, using techniques like 
listed in section 4.2.

We developed three different versions of the PLUGIN algo-
rithm. The complete source codes are available for download 
in [30].

The first implementation, called literal, is just a literal re-
writing of Algorithm 1 (with the improvements (7) and (8)). No 
additional actions were taken toward optimization of both ex-
ecution time and resource requirements. This version can op-

erate with any unscaled input data (assuming that all the inputs 
as well as all the internal results fulfil the fixed-point ranges 
that have been set). This version automatically (Vivado decides) 
utilizes pipelining. However, the pipelining doesn’t make the 
implementation enough fast and additionally, large number of 
DSP blocks is used. FFs and LUTs usage is also quite big (see 
Table 1).

The second implementation, called minimal, is written so 
that it is optimized for resource utilization, mainly the DSP 
units. To reduce the number of the DSP units some dedicated 
functions for addition and multiplication are required. Using 

Fig. 4. General architecture of the Ψ̂4(g2) unit at the block-level view. The extra frame called ul-part shows the part of the Step VI in Algorithm 1 
where loop unrolling can be used

Fig. 3. General overview of the main units for the FPGA-based 
PLUGIN algorithm implementation
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that it is optimized for resource utilization, mainly the DSP

units. To reduce the number of the DSP units some dedicated

functions for addition and multiplication are required. Using

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off )

pipelining can be disabled (on default, during translation of the

high level codes into HDL ones pipelining is enabled whenever

it is possible). As can be observed in Table 1, a significant

reduction of the DSP units was achieved. It confirms the fact

that Vivado HLS is very sensitive for the structure of the high

level codes being translated into HDL ones. So that, to achieve

good performance and resource usage many modifications of

the high level codes are required.

The third implementation, called fast, is written so that it

is optimized for time execution. Addition and multiplication

functions were implemented in two ways. In the first way (sim-

ilar as in minimal implementation) the pipelining is disabled,

while in the second way it is enabled. The pipelined versions

of the functions are used in Steps IV and VI in Algorithm 1

as these two steps are crucial for the final performance. Ad-

ditionally, in these two steps a dedicated implementation of

the exponent function was used (based on Remez algorithm

which is more likely to pipelining). Also, a technique known

as loop unrolling was used in a manual manner (see sample

codes in Figure 6). Although Vivado HLS uses automatic loop

unrolling, this feature doesn’t work correctly in our algorithm

(as it can operate with datasets of any size and the exact num-

ber of loops is not known in advance).

The forth and fifth implementations used during experiments

(called CPU and GPU respectively) are the ones implemented

and investigated in [1]. CPU implementation utilizes the SSE

(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results During all practical experiments the target Xil-

inx Virtex-7 xc7vx690tffg1761-2 device was used. Its nominal

working frequency is 200MHz (or 5 ns for a single clock tact).

CPU implementation was run on Intel Processor i7 4790k 4.0

GHz. Geforce 480GTX graphics card was used for GPU imple-

mentation. Vivado HLS ver. 2015.2 was used for developing

all the FPGA implementations.

The summary of the resource consumption is given in Ta-

ble 1. Additionally, power consumption is included. It is a

real power (in Watts) taken by the FPGA chip after physical

implementation of the PLUGIN algorithm using Vivado De-

sign Suite. This is an estimate value and is called Total On-

Chip Power; the power consumed internally within the FPGA,

equal to the sum of Device Static Power and Design Power. It
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that it is optimized for resource utilization, mainly the DSP

units. To reduce the number of the DSP units some dedicated

functions for addition and multiplication are required. Using

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off )

pipelining can be disabled (on default, during translation of the

high level codes into HDL ones pipelining is enabled whenever

it is possible). As can be observed in Table 1, a significant

reduction of the DSP units was achieved. It confirms the fact

that Vivado HLS is very sensitive for the structure of the high

level codes being translated into HDL ones. So that, to achieve

good performance and resource usage many modifications of

the high level codes are required.

The third implementation, called fast, is written so that it

is optimized for time execution. Addition and multiplication

functions were implemented in two ways. In the first way (sim-

ilar as in minimal implementation) the pipelining is disabled,

while in the second way it is enabled. The pipelined versions

of the functions are used in Steps IV and VI in Algorithm 1

as these two steps are crucial for the final performance. Ad-

ditionally, in these two steps a dedicated implementation of

the exponent function was used (based on Remez algorithm

which is more likely to pipelining). Also, a technique known

as loop unrolling was used in a manual manner (see sample

codes in Figure 6). Although Vivado HLS uses automatic loop

unrolling, this feature doesn’t work correctly in our algorithm

(as it can operate with datasets of any size and the exact num-

ber of loops is not known in advance).

The forth and fifth implementations used during experiments

(called CPU and GPU respectively) are the ones implemented

and investigated in [1]. CPU implementation utilizes the SSE

(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results During all practical experiments the target Xil-

inx Virtex-7 xc7vx690tffg1761-2 device was used. Its nominal

working frequency is 200MHz (or 5 ns for a single clock tact).

CPU implementation was run on Intel Processor i7 4790k 4.0

GHz. Geforce 480GTX graphics card was used for GPU imple-

mentation. Vivado HLS ver. 2015.2 was used for developing

all the FPGA implementations.

The summary of the resource consumption is given in Ta-

ble 1. Additionally, power consumption is included. It is a

real power (in Watts) taken by the FPGA chip after physical

implementation of the PLUGIN algorithm using Vivado De-

sign Suite. This is an estimate value and is called Total On-

Chip Power; the power consumed internally within the FPGA,

equal to the sum of Device Static Power and Design Power. It
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Table 1 
Resources usage for three different FPGA implementations of the 
PLUGIN algorithms as well as CPU and GPU implementations. 

Additionally power consumption is included. For FPGA 
implementations, this is an estimate value called  

total on-chip power; the power consumed internally within the 
FPGA, equal to the sum of device static power and design power. It 

is also known as thermal power

Method BRAM 18k DSP FF LUT Watts

literal 128 1164 80753 81995 3.938

minimal 128 240 15889 22895 1.153

fast 128 1880 85775 38050 6.963

CPU – – – – ¼ 88

GPU – – – – ¼ 250



826 Bull.  Pol.  Ac.:  Tech.  64(4)  2016

A. Gramacki, M. Sawerwain, and J. Gramacki

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off ) 
pipelining can be disabled (on default, during translation of the 
high level codes into HDL ones pipelining is enabled whenever 
it is possible). As can be observed in Table 1, a significant re-
duction of the DSP units was achieved. It confirms the fact that 
Vivado HLS is very sensitive for the structure of the high level 
codes being translated into HDL ones. So that, to achieve good 
performance and resource usage many modifications of the high 
level codes are required.

The third implementation, called fast, is written so that it is 
optimized for time execution. Addition and multiplication func-
tions were implemented in two ways. In the first way (similar 
as in minimal implementation) the pipelining is disabled, while 
in the second way it is enabled. The pipelined versions of the 
functions are used in Steps IV and VI in Algorithm 1 as these 
two steps are crucial for the final performance. Additionally, 
in these two steps a dedicated implementation of the exponent 
function was used (based on Remez algorithm which is more 
likely to pipelining). Also, a technique known as loop unrolling 

was used in a manual manner (see sample codes in Fig. 6). 
Although Vivado HLS uses automatic loop unrolling, this fea-
ture doesn’t work correctly in our algorithm (as it can operate 
with datasets of any size and the exact number of loops is not 
known in advance).

The fourth and fifth implementations used during experiments 
(called CPU and GPU respectively) are the ones implemented 
and investigated in [1]. CPU implementation utilizes the SSE 
(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results. During all practical experiments the target Xilinx 
Virtex-7 xc7vx690tffg1761‒2 device was used. Its nominal 
working frequency is 200MHz (or 5 ns for a single clock tact). 
CPU implementation was run on Intel Processor i7 4790k 
4.0 GHz. Geforce 480GTX graphics card was used for GPU 
implementation. Vivado HLS ver. 2015.2 was used for devel-
oping all the FPGA implementations.

The summary of the resource consumption is given in 
Table 1. Additionally, power consumption is included. It is 
a real power (in Watts) taken by the FPGA chip after phys-
ical implementation of the PLUGIN algorithm using Vivado 
Design Suite. This is an estimate value and is called total on-
chip power; the power consumed internally within the FPGA, 
equal to the sum of device static power and design power. It is 
also known as thermal power. The power consumption of the 
FPGA implementations is significantly smaller comparing with 
the power consumption of the CPU and GPU implementations. 
The power consumption for the CPU and GPU used in our 
experiments are an average (catalogue-like) values.

The summary of the execution times for three different 
implementations of the PLUGIN algorithm, as well as CPU 
and GPU ones is given in Table 2. The minimal and the fast 

Table 2 
Execution times (in sec.) for three different FPGA implementations 
of the PLUGIN algorithm and for CPU and GPU implementations. 
The literal implementation is just a literal rewriting of Algorithm 1 
(with the improvements (7) and (8)). The minimal implementation 
is written so that it is optimized for resource utilization, mainly the 
DSP units. The fast implementation is written so that it is optimized 
for time execution. More details on particular implementations can 

be found in the text

n literal minimal fast CPU GPU

128 0.0555 0.0324 0.000276 0.0210 0.00699

256 0.2266 0.1363 0.000560 0.0252 0.00788

384 0.5155 0.3152 0.000889 0.0322 0.00947

512 0.9112 0.5513 0.001257 0.0346 0.00962

640 1.4466 0.8968 0.001667 0.0361 0.01063

768 2.1023 1.3205 0.002114 0.0375 0.01172

896 2.8771 1.8232 0.002606 0.0405 0.01447

1024 3.7666 2.3926 0.003140 0.0427 0.01641

Fig. 6. Three fundamental methods of the for loop implementation used 
in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is implemnented 
in the same way). In the fast implementation the loop unrolling is used 
twice. fADD, fMUL functions do not utilize pipelining, while pfADD 

i pfMUL functions do it

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

Performance of the PLUGIN algorithm implementations

Dataset size

Ti
m

es
 in

 s
ec

.

●

●

●

●

●
●

●
●

128 256 384 512 640 768 896 1024

1e
−0
4

0.
00
1

0.
01

0.
1

1
10

●

FPGA literal
FPGA minimal
FPGA fast
CPU
GPU

Fig. 5. Performance and scalability of different PLUGIN algorithm implementations (for better readability log scale for Y axis is used)

Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06

256 0.227651247521862 0.227651285449348 1.67e-05

384 0.202433198224753 0.202433187549741 5.27e-06

512 0.242707096505910 0.242707026022425 2.9e-05

640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = s + k4( ( ( x[i] - x[j] ) / g2) );

}

}

// minimal implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = fADD( s, k4( fMUL( fADD( x[i], -x[j] ), rg2 ) ) );

}

}

// fast implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j+=2 ) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if( j == i+1 ) tmp = 0.0;

if( j<N ) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD( x[i], -x[j] );

tmpva = pfMUL( tmp1a, rg2 ); tmp1 = k4( tmpva );

}

psi4_f1_b1: {

if( (j+1) < N ) {

tmp1b = pfADD( x[i], -x[j+1] );

tmpvb = pfMUL( tmp1b, rg2 ); tmp2 = k4( tmpvb );

}

}

if( j<N ) {

tmp = pfADD( tmp, tmp1 ); tmp = pfADD( tmp, tmp2 );

}

if( j+2>=N ) s = pfADD (s, tmp );

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it
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implementations were run on 200MHz nominal clock while the 
literal implementation was run with 166 MHz nominal clock. 
This frequency degradation was caused mainly because of 
some limitations of the original division operator implemented 
in Vivado HLS.

Of course the best performance was achieved for the fast 
implementation (even compared to the CPU and to the GPU 

implementations). This is the result of combination of the fol-
lowing three optimization techniques used: (a) implementation 
of some dedicated arithmetic operators, (b) a proper exponential 
function approximation and (c) the loops unrolling.

A very significant speedup was achieved comparing the fast 
and the literal implementation (average speedup about 760, 
see Table 3). The fast implementation is faster then the CPU 
implementation (average speedup about 32, see Table 3). The 
fast implementation is also faster then the GPU implementation 
(average speedup about 10, see Table 3).

The summary of the accuracy for three different implemen-
tations of the PLUGIN algorithm is given in Table 4. href is the 
reference bandwidth calculated in double floating point arith-
metic (in C++ program, 15–17 significant decimal digits). It 
is worth to note that the relative errors for literal, minimal and 
fast implementations are very small (not more than 0.004%). In 
practical applications such small values can be in fact neglected.

The summary of the scalability of different PLUGIN al-
gorithm implementations is presented in Fig. 5. Scalability of 
the FPGA implementations is nearly linear, which is a very 
welcome behaviour. The corresponding results for CPU and 
GPU implementations can be found in [1]. The figure is in fact 
a graphical summary of data given in Table 2.

Simplified source codes of the three FPGA implementa-
tions are presented in Fig. 6. Complete source codes (C++ and 
resulted Vivado HLS translations into VHDL) are available in 
[30]. The first version is just the literal implementation of the 
step VI in Algorithm 1 in C language. Unfortunately, as can be 
observed in Table 2 and in Fig. 5 such implementation is very 
slow. In the second version multiplications and additions are 

Table 3 
Speedups for three different FPGA implementations of the PLUGIN 

algorithm and for CPU and GPU implementations. Also the mean 
values are calculated

n literal/fast minimal/fast CPU/fast GPU/fast

128 201 118 76 25

256 404 243 45 14

384 580 354 36 11

512 725 439 28 8

640 868 538 22 6

768 994 625 18 6

896 1104 700 16 6

1024 1200 762 14 5

mean value literal/fast minimal/fast CPU/fast GPU/fast

– 759.5 472.4 31.9 10.125
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Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06

256 0.227651247521862 0.227651285449348 1.67e-05

384 0.202433198224753 0.202433187549741 5.27e-06

512 0.242707096505910 0.242707026022425 2.9e-05

640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = s + k4( ( ( x[i] - x[j] ) / g2) );

}

}

// minimal implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = fADD( s, k4( fMUL( fADD( x[i], -x[j] ), rg2 ) ) );

}

}

// fast implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j+=2 ) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if( j == i+1 ) tmp = 0.0;

if( j<N ) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD( x[i], -x[j] );

tmpva = pfMUL( tmp1a, rg2 ); tmp1 = k4( tmpva );

}

psi4_f1_b1: {

if( (j+1) < N ) {

tmp1b = pfADD( x[i], -x[j+1] );

tmpvb = pfMUL( tmp1b, rg2 ); tmp2 = k4( tmpvb );

}

}

if( j<N ) {

tmp = pfADD( tmp, tmp1 ); tmp = pfADD( tmp, tmp2 );

}

if( j+2>=N ) s = pfADD (s, tmp );

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it
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realized using dedicated functions ( fADD, MUL). Also a dedi-
cated function for reciprocal operator was implemented. In the 
third version much more modification was implemented. First, 
loop unrolling was used, second, Vivado HLS pragmas were 
used and third, multiplications and additions were realized using 
dedicated functions with pipelining enabled ( pfADD, pfMUL).

5.	 Conclusions

HLS tools are competitive with manual design techniques using 
HDLs. Implementation time of complex numerical algorithms 
can be essentially reduced (comparing to direct coding in HDL 
languages).

Unfortunately, to obtain efficient FPGA implementations, 
many changes to source codes are required, comparing to equiv-
alent implementations for CPUs and/or GPUs. This is because 
FPGA devices use specific primitives (DSP, BRAM, FF, LUT 
blocks) and programmers should control their utilization man-
ually. However, this control is performed on the level of C/C++ 
codes, not the HDL ones. It is also worth to stress that using 
the HLS approach allows to obtain implementations which are 
often faster than CPU and/or GPU counterparts.

Another crucial motivation for replacing GPU or CPU solu-
tions by their FPGA equivalents is power consumption. FPGA 
can settle for single Watts, while CPU or GPU counterparts 
typically take tens/hundreds of Watts or even more.

Another possible step toward fast implementations of nu-
merical algorithms could be considering of a direct HDL im-
plementation of the PLUGIN algorithm. This will definitely be 
much more difficult and will require much more time to com-
plete this work. From the other hand, this could be an excellent 
occasion to evaluate the quality and effectiveness of the codes 
generated by Vivado.

Last but not least, one could consider using modern DSP 
chips which offer many interesting possibilities and are poten-
tially interesting for implementing pure numerical algorithms.	
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Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06
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640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = s + k4( ( ( x[i] - x[j] ) / g2) );

}

}

// minimal implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j++ ) {

s = fADD( s, k4( fMUL( fADD( x[i], -x[j] ), rg2 ) ) );

}

}

// fast implementation

rg2 = reciprocal( g2 );

psi4_f1: for( i=0; i<N; i++ ) {

psi4_f2: for( j=i+1; j<N; j+=2 ) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if( j == i+1 ) tmp = 0.0;

if( j<N ) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD( x[i], -x[j] );

tmpva = pfMUL( tmp1a, rg2 ); tmp1 = k4( tmpva );

}

psi4_f1_b1: {

if( (j+1) < N ) {

tmp1b = pfADD( x[i], -x[j+1] );

tmpvb = pfMUL( tmp1b, rg2 ); tmp2 = k4( tmpvb );

}

}

if( j<N ) {

tmp = pfADD( tmp, tmp1 ); tmp = pfADD( tmp, tmp2 );

}

if( j+2>=N ) s = pfADD (s, tmp );

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it
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 * 100%  
where hmethod is hliteral, hminimal or hfast

	 n	 hliteral	 hre	 jδxj (%)

	 128	 0.304902711650357	 0.304902701728222	 3.25e-06

	 256	 0.227651247521862	 0.227651285449348	 1.67e-05

	 384	 0.202433198224753	 0.202433187549741	 5.27e-06

	 512	 0.242707096505910	 0.242707026022425	 2.9e-05

	 640	 0.190442902734503	 0.190443702342891	 0.00042

	 768	 0.175199386896566	 0.175199406819444	 1.14e-05

	 896	 0.172251554206014	 0.172251524317464	 1.74e-05

	 1024	 0.174044180661440	 0.174044236921001	 3.23e-05

	 n	 hminimal	 hre	 jδxj (%)

	 128	 0.304902980336919	 0.304902701728222	 9.14e-05

	 256	 0.227651586290449	 0.227651285449348	 0.000132

	 384	 0.202433346537873	 0.202433187549741	 7.85e-05

	 512	 0.242707266006619	 0.242707026022425	 9.89e-05

	 640	 0.190443017752841	 0.190443702342891	 0.000359

	 768	 0.175199396442622	 0.175199406819444	 5.92e-06

	 896	 0.172251742798835	 0.172251524317464	 0.000127

	 1024	 0.174044403014705	 0.174044236921001	 9.54e-05

	 n	 hfast	 href	 jδxj (%)

	 128	 0.304901758907363	 0.304902701728222	 0.000309

	 256	 0.227651913650334	 0.227651285449348	 0.000276

	 384	 0.202433891594410	 0.202433187549741	 0.000348

	 512	 0.242707268567756	 0.242707026022425	 9.99e-05

	 640	 0.190443484811112	 0.190443702342891	 0.000114

	 768	 0.175199736841023	 0.175199406819444	 0.000188

	 896	 0.172251721611246	 0.172251524317464	 0.000115

	 1024	 0.174044031649828	 0.174044236921001	 0.000118
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