
821Bull. Pol. Ac.: Tech. 64(4) 2016

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 64, No. 4, 2016
DOI: 10.1515/bpasts-2016-0091

*e-mail: a.gramacki@issi.uz.zgora.pl

Abstract. Field-programmable gate arrays (FPGA) technology can offer significantly higher performance at much lower power consumption
than is available from single and multicore CPUs and GPUs (graphics processing unit) in many computational problems. Unfortunately, the pure
programming for FPGA using hardware description languages (HDL), like VHDL or Verilog, is a difficult and not-trivial task and is not intuitive
for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty, the high level synthesis (HLS) approach is
promoted by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but can also be
successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for kernel density estimation (KDE)
using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show that FPGA speedups,
comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for FPGA devices is usually
much less than typical power consumption of the present CPUs and GPUs.

Key words: FPGA, high level synthesis, kernel density estimation, bandwidth selection, plug-in selector.

FPGA-based bandwidth selection for kernel density estimation using
high level synthesis approach

A. GRAMACKI1*, M. SAWERWAIN1, and J. GRAMACKI2

1Institute of Control and Computation Engineering, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland
2Computer Center, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland

In the paper we are concerned with FPGA approach. In
[10] the author considers a problem how to use FPGA for fast
computing of PDFs using direct very high speed integrated
circuits hardware description language (VHDL) programming
approach. However, the problem we are concerning is of dif-
ferent nature, as we concentrate our attention for computing the
optimal bandwidth for PDF (see Section 2).

To develop the final FPGA design we use the high level
synthesis (HLS) approach [8, 16], in which no direct hardware
description language (HDL) coding is needed (typically, VHDL
or Verilog languagesa are used).

The remainder of the paper is organized as follows. In
Section 2, we turn our attention to give the reader some prelimi-
nary information on KDE and bandwidth selection. In Section 3
we provide detailed mathematical formulas for calculating op-
timal bandwidth using the PLUGIN method. In Section 4 we
cover all the necessary details on our FPGA-based implemen-
tation. We also present practical experiments carried out and
discuss the results. In Section 5, we conclude the paper.

2.	 Kernel density estimation
and bandwidth selection

The univariate kernel density estimator f̂ for a random sample
Xi (i = 1, 2, …, n), drawn from a common and usually un-
known density function f is given by

a�It is worth to note that OpenCL framework, which is commonly used by
GPU programmers, also becomes available for FPGA devices. Nowadays,
OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL
applications for FPGA. Recently, Xilinx announced a similar solution,
namely SDAccel Development Environment for OpenCL, C, and C++.

1.	 Introduction

The probability density function (PDF) is a key concept in sta-
tistics. with many practical applications, see for example [14]
and many others. Constructing the most adequate PDF from
the observed data is still an important and interesting research
problem, especially for large datasets. PDFs are often calcu-
lated using nonparametric data-driven methods. One of the most
popular nonparametric method is the kernel density estimation
(KDE) [21–23, 28]. However, a very serious drawback of using
KDE is the large number of calculations required to compute
density estimates, as well as to find the optimal bandwidth
(computational complexity O(n2)).

In this paper we investigate the possibility of utilizing
field-programmable gate arrays (FPGA) to accelerate finding
of such the optimal bandwidth. Towards the needs of the paper
we have selected one popular and often used algorithm called
plug-in in literature [13, 28]. This work can be considered as
a continuation and extension of the paper [1], where the authors
utilize graphics processing units (GPU) for speeding up optimal
bandwidth selection. One of the algorithms analysed in that
paper was the above mentioned plug-in.

Generally, there are two methodologies for speeding up com-
plex numerical algorithms: software-based and hardware-based.
In this paper we concentrate only on hardware-based methods.
The commonly known approaches are as follows: (a) computing
on general purpose single and multicore CPU microprocessors,
(b) computing on distributed environments (e.g. clusers, grids,
etc.), (c) computing on GPUs [25, 24, 20] (d) computing on dig-
ital signal processors (DSP) units and (e) computing on FPGA
chips [11, 15, 17, 18, 27, 29].

822 Bull. Pol. Ac.: Tech. 64(4) 2016

A. Gramacki, M. Sawerwain, and J. Gramacki

	

BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. XX, No. Y, 2016

DOI: 10.1515/bpasts-2016-00ZZ

FPGA-Based Bandwidth Selection for Kernel Density Estimation

Using High Level Synthesis Approach

A. GRAMACKI1∗, M. SAWERWAIN1, and J. GRAMACKI2

1 Institute of Control and Computation Engineering, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland
2 Computer Center, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland

Abstract. Field-Programmable Gate Arrays (FPGA) technology can offer significantly higher performance at much lower power consumption

than is available from single and multicore CPUs and GPUs (Graphics Processing Unit) in many computational problems. Unfortunately, the

pure programming for FPGA using Hardware Description Languages (HDL), like VHDL or Verilog, is a difficult and not-trivial task and is not

intuitive for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty, the High Level Synthesis (HLS)

approach is promoting by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but

can also be successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for Kernel Density

Estimation (KDE) using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show

that FPGA speedups, comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for

FPGA devices is usually much less than typical power consumption of the present CPUs and GPUs.

Key words: FPGA, high level synthesis, kernel density estimation, bandwidth selection, plug-in selector

1. Introduction

The Probability Density Function (PDF) is a key concept in

statistics. with many practical applications, see for example

[14] and many others. Constructing the most adequate PDF

from the observed data is still an important and interesting re-

search problem, especially for large datasets. PDFs are often

calculated using nonparametric data-driven methods. One of

the most popular nonparametric method is the Kernel Density

Estimation (KDE) [21, 22, 23, 28]. However, a very serious

drawback of using KDE is the large number of calculations

required to compute density estimates, as well as to find the

optimal bandwidth (computational complexity O(n2)).
In this paper we investigate the possibility of utilizing Field-

Programmable Gate Arrays (FPGA) to accelerate finding of

such the optimal bandwidth. Towards the needs of the paper

we have selected one popular and often used algorithm called

in literature plug-in [13, 28]. This work can be considered

as a continuation and extension of the paper [1], where the

authors utilize Graphics Processing Units (GPU) for speeding

up optimal bandwidth selection. One of the algorithm analysed

in that paper was the above mentioned plug-in one.

Generally, there are two methodologies for speeding up

complex numerical algorithms: software-based and hardware-

based. In this paper we concentrate only on hardware-based

methods. The commonly known approaches are as follows:

(a) computing on general purpose single and multicore CPU

microprocessors, (b) computing on distributed environments

(e.g. clusers, grids, etc.), (c) computing on GPUs [25, 24, 20]

(d) computing on Digital Signal Processors (DSP) units and

(e) computing on FPGA chips [11, 15, 17, 18, 27, 29].

In the paper we are concerned with FPGA approach. In [10]

the author considers a problem how to use FPGA for fast com-

puting of PDFs using direct Very High Speed Integrated Cir-

∗e-mail: a.gramacki@issi.uz.zgora.pl

cuits Hardware Description Language (VHDL) programming

approach. However, the problem we are concerning is of dif-

ferent nature, as we concentrate our attention for computing

the optimal bandwidth for PDF (see Chapter 2).

To develop the final FPGA design we use the High Level

Synthesis (HLS) approach [8], [16], where no direct Hardware

Description Language (HDL) coding is needed (typically in

VHDL or Verilog languages1).

The remainder of the paper is organized as follows. In sec-

tion 2 we turn our attention to give the reader some prelimi-

nary information on KDE and bandwidth selection. In section

3 we give detailed mathematical formulas for calculating op-

timal bandwidth using the PLUGIN method. In section 4 we

cover all the necessary details on our FPGA-based implemen-

tation. We also present practical experiments we carried out

and discuss the results. In section 5 we conclude the paper.

2. Kernel Density Estimation and Bandwidth Se-

lection

The univariate kernel density estimator f̂ for a random sam-

ple Xi (i = 1,2, . . . ,n), drawn from a common and usually un-

known density function f is given by

f̂ (x) =
1

n

n

∑
i=1

Kh (x−Xi) , (1)

where

Kh(u) = h−1K
(

h−1u
)

. (2)

h is a positive real number called smoothing parameter or

bandwidth. K is the kernel function – a symmetric function

1It is worth to note that OpenCL framework, which is commonly used by

GPU programmers, becomes also available for FPGA devices. Nowadays,

OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL

applications for FPGA. Recently, Xilinx announced a similar solution, namely

SDAccel Development Environment for OpenCL, C, and C++.

1

,� (1)

where

	

BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. XX, No. Y, 2016

DOI: 10.1515/bpasts-2016-00ZZ

FPGA-Based Bandwidth Selection for Kernel Density Estimation

Using High Level Synthesis Approach

A. GRAMACKI1∗, M. SAWERWAIN1, and J. GRAMACKI2

1 Institute of Control and Computation Engineering, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland
2 Computer Center, University of Zielona Góra, Licealna 9 St., 65-417 Zielona Góra, Poland

Abstract. Field-Programmable Gate Arrays (FPGA) technology can offer significantly higher performance at much lower power consumption

than is available from single and multicore CPUs and GPUs (Graphics Processing Unit) in many computational problems. Unfortunately, the

pure programming for FPGA using Hardware Description Languages (HDL), like VHDL or Verilog, is a difficult and not-trivial task and is not

intuitive for C/C++/Java programmers. To bring the gap between programming effectiveness and difficulty, the High Level Synthesis (HLS)

approach is promoting by main FPGA vendors. Nowadays, time-intensive calculations are mainly performed on GPU/CPU architectures, but

can also be successfully performed using HLS approach. In the paper we implement a bandwidth selection algorithm for Kernel Density

Estimation (KDE) using HLS and show techniques which were used to optimize the final FPGA implementation. We are also going to show

that FPGA speedups, comparing to highly optimized CPU and GPU implementations, are quite substantial. Moreover, power consumption for

FPGA devices is usually much less than typical power consumption of the present CPUs and GPUs.

Key words: FPGA, high level synthesis, kernel density estimation, bandwidth selection, plug-in selector

1. Introduction

The Probability Density Function (PDF) is a key concept in

statistics. with many practical applications, see for example

[14] and many others. Constructing the most adequate PDF

from the observed data is still an important and interesting re-

search problem, especially for large datasets. PDFs are often

calculated using nonparametric data-driven methods. One of

the most popular nonparametric method is the Kernel Density

Estimation (KDE) [21, 22, 23, 28]. However, a very serious

drawback of using KDE is the large number of calculations

required to compute density estimates, as well as to find the

optimal bandwidth (computational complexity O(n2)).
In this paper we investigate the possibility of utilizing Field-

Programmable Gate Arrays (FPGA) to accelerate finding of

such the optimal bandwidth. Towards the needs of the paper

we have selected one popular and often used algorithm called

in literature plug-in [13, 28]. This work can be considered

as a continuation and extension of the paper [1], where the

authors utilize Graphics Processing Units (GPU) for speeding

up optimal bandwidth selection. One of the algorithm analysed

in that paper was the above mentioned plug-in one.

Generally, there are two methodologies for speeding up

complex numerical algorithms: software-based and hardware-

based. In this paper we concentrate only on hardware-based

methods. The commonly known approaches are as follows:

(a) computing on general purpose single and multicore CPU

microprocessors, (b) computing on distributed environments

(e.g. clusers, grids, etc.), (c) computing on GPUs [25, 24, 20]

(d) computing on Digital Signal Processors (DSP) units and

(e) computing on FPGA chips [11, 15, 17, 18, 27, 29].

In the paper we are concerned with FPGA approach. In [10]

the author considers a problem how to use FPGA for fast com-

puting of PDFs using direct Very High Speed Integrated Cir-

∗e-mail: a.gramacki@issi.uz.zgora.pl

cuits Hardware Description Language (VHDL) programming

approach. However, the problem we are concerning is of dif-

ferent nature, as we concentrate our attention for computing

the optimal bandwidth for PDF (see Chapter 2).

To develop the final FPGA design we use the High Level

Synthesis (HLS) approach [8], [16], where no direct Hardware

Description Language (HDL) coding is needed (typically in

VHDL or Verilog languages1).

The remainder of the paper is organized as follows. In sec-

tion 2 we turn our attention to give the reader some prelimi-

nary information on KDE and bandwidth selection. In section

3 we give detailed mathematical formulas for calculating op-

timal bandwidth using the PLUGIN method. In section 4 we

cover all the necessary details on our FPGA-based implemen-

tation. We also present practical experiments we carried out

and discuss the results. In section 5 we conclude the paper.

2. Kernel Density Estimation and Bandwidth Se-

lection

The univariate kernel density estimator f̂ for a random sam-

ple Xi (i = 1,2, . . . ,n), drawn from a common and usually un-

known density function f is given by

f̂ (x) =
1

n

n

∑
i=1

Kh (x−Xi) , (1)

where

Kh(u) = h−1K
(

h−1u
)

. (2)

h is a positive real number called smoothing parameter or

bandwidth. K is the kernel function – a symmetric function

1It is worth to note that OpenCL framework, which is commonly used by

GPU programmers, becomes also available for FPGA devices. Nowadays,

OpenCL is offered by Altera SDK for OpenCL to easily implement OpenCL

applications for FPGA. Recently, Xilinx announced a similar solution, namely

SDAccel Development Environment for OpenCL, C, and C++.

1

.� (2)

h is a positive real number called smoothing parameter or band-
width. K is the kernel function – a symmetric function that in-
tegrates to one. The scaled (Kh) and unscaled (K) kernels are
related in Eq. (2). In most cases the kernel K has the form of
a standard Gaussian normal density, that is

	

Artur Gramacki, Marek Sawerwain and Jarosław Gramacki

that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂) and standard deviation

(σ̂):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
(−2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

.� (3)

If we have the bandwidth h, we can determine the estimator f̂
of the unknown density function f using (1). The bandwidth h
is the parameter which exhibits a strong influence on the re-
sulting KDE.

As an example of how KDE works consider a toy dataset of
eight data points: Xi = f0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5g. Three
different KDEs based on these data are depicted in Fig. 1. It
is easy to notice how the bandwidth h influences the shape of
the KDE curve. Lines in bold show the estimated PDFs, while
normal lines show the shapes of individual kernel functions K
(Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate
case. In the most general variant, the scalar bandwidth h is
replaced by the unconstrained bandwidth matrix H (which is
symmetric and positive definite). However, the multivariate
case is not considered in the paper. The monographs [21, 28]
provide an overview of the research in the area of multivariate
KDE. Choosing the best value of H is not a trivial task and this
problem was and still is extensively studied in literature [3–5].

Currently available selectors can be roughly divided into
three classes [12, 28]. The first class uses very simple and easy
to calculate mathematical formulas. They were developed to
cover a wide range of situations, but do not guarantee being
enough close to the optimal (under certain criteria) bandwidth.
They are often called rules-of-thumb methods. The second class
contains methods based on cross-validation ideas with more
precise mathematical arguments, but they require much more

computational effort. However, in reward for it, we get band-
widths more accurate for a wider range of density functions.
The third class contains methods based on plugging in estimates
of some unknown quantities that appear in formulas for the as-
ymptotically optimal bandwidth. They are often called plug-in.

One selected method from the third class (for the univar-
iate case) is investigated in the paper. The method is briefly
presented in Section 3 and from now on it will abbreviated as
the PLUGIN.

3.	 The PLUGIN method and data preprocessing

In Algorithm 1 we provide a recipe for calculation of the op-
timal bandwidth using the PLUGIN method (the symbols used
are exactly such as in the book [28]). All the necessary details
on the method, as well as details on deriving of particular math-
ematical formulas can be found in many source materials, see
for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a
strictly sequential computational process (see Fig. 2; parallel
processing is possible only internally in Steps IV and VI) as
every step depends on the results obtained in the previous steps.
First we calculate the variance and the standard deviation es-
timators of the input data, see Step I in Algorithm 1. Then we
calculate some more complex formulas from Step II to Step VI.
Finally, we can substitute them into equation given in Step VII
to get the searched optimal bandwidth value h.

Our implementation of the Algorithm 1 is carried out in
fixed-point arithmetic (see section 4.2). Unfortunately, using the
raw data while conducting the required calculations, threatens
a potential problems with overflow, especially while calculating
the value of Ψ̂8

NS, see Step II in Algorithm 1. Note that the es-
timate of standard deviation in Ψ̂8

NS is raised to the power of
9. For large values of σ it results in extremely small values of
Ψ̂8

NS. The above problems can be successfully overcome if the
input datasets are standardized using the z-score formula, that is

	

Artur Gramacki, Marek Sawerwain and Jarosław Gramacki

that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂) and standard deviation

(σ̂):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
(−2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

� (4)

where μ and σ are mean and standard deviation of the original
vector X respectively. Z-score guarantees that σ̂  = 1 in Ψ̂8

NS and,
consequently, Ψ̂8

NS entity has simply a constant value.

Fig. 1. An example of using kernel density estimators for determining the probability density function

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

823Bull. Pol. Ac.: Tech. 64(4) 2016

FPGA-based bandwidth selection for kernel density estimation using high level synthesis approach

Applying the data standardization requires an extra opera-
tion on the h value in Step VII in Algorithm 1, that is

	

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

,� (5)

where h is the bandwidth calculated for the standardized dataset
and σ̂ is the standard deviation of the original vector X. The
correctness of the above equation can be easily proofed alge-
braically.

To reduce the calculation burden we can also slightly change
equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to notice
a symmetry, that is

	

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+ nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

.� (6)

So, the double summations can be changed and, conse-
quently, the final formula for Ψ̂6(g1) has now the following form

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+ nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (7)

(note that for different summation ranges, the 2 before sums
an extra factor added, that is nK (6)(0)). Obviously, the same
concerns K (4) and Ψ̂4(g2)

Artur Gramacki, Marek Sawerwain and Jarosław Gramacki

that integrates to one. The scaled (Kh) and unscaled (K) ker-

nels are related in Eq. (2). In most cases the kernel K has the

form of a standard Gaussian normal density, that is

K(u) =
1√
2π

exp

(

−1

2
u2

)

. (3)

If we have the bandwidth h, we can determine the estimator f̂

of the unknown density function f using Eq. (1). The band-

width h is the parameter which exhibits a strong influence on

the resulting KDE.

As an example of how KDE works consider a toy dataset

of eight data points: Xi = {0, 1, 1.1, 1.5, 1.9, 2.8, 2.9, 3.5}.
Three different KDEs based on these data are depicted in Fig-

ure 1. It is easy to notice how the bandwidth h influences the

shape of the KDE curve. Lines in bold show the estimated

PDFs, while normal lines show the shapes of individual kernel

functions K (Gaussians). Dots represent the data points Xi.

Eq. (1) can be obviously extended to the multivariate case.

In the most general variant, the scalar bandwidth h is replaced

by the unconstrained bandwidth matrix H (which is symmet-

ric and positive definite). However, the multivariate case is

not considered in the paper. The monographs [21, 28] provide

an overview of the research in the area of multivariate KDE.

Choosing the best value of H is not a trivial task and this prob-

lem was and still is extensively studied in literature [3, 4, 5].

Currently available selectors can be roughly divided into

three classes [12, 28]. The first class uses very simple and easy

to calculate mathematical formulas. They were developed to

cover a wide range of situations, but do not guarantee being

enough close to the optimal (under certain criteria) bandwidth.

They are often called rules-of-thumb methods. The second

class contains methods based on cross-validation ideas with

more precise mathematical arguments, but they require much

more computational effort. However, in reward for it, we get

bandwidths more accurate for a wider range of density func-

tions. The third class contains methods based on plugging in

estimates of some unknown quantities that appear in formu-

las for the asymptotically optimal bandwidth. They are often

called plug-in.

One selected method from the third class (for the univariate

case) is investigated in the paper. The method is briefly pre-

sented in Chapter 3 and from now on it will abbreviated as the

PLUGIN.

3. The PLUGIN Method and Data Preprocessing

In Algorithm 1 we give recipe for calculation of the optimal

bandwidth using the PLUGIN method (the symbols used are

exactly such as in the book [28]). All the necessary details on

the method, as well as details on deriving of particular math-

ematical formulas can be found in many source materials, see

for example books [13, 28].

It is important to stress that the PLUGIN algorithm is a

strictly sequential computational process (see Figure 2; par-

allel processing is possible only internally in Steps IV and VI)

as every step depends on the results obtained in the previous

steps. First we calculate the variance and the standard devi-

ation estimators of the input data, see Step I in Algorithm 1.

Then we calculate some more complex formulas from Step II

to Step VI. Finally, we can substitute them into equation given

in Step VII to get the searched optimal bandwidth value h.

Data: data set X , contains n elements

Result: value h represents the optimal bandwidth for kernel density

estimation

Step I: Calculate the estimates of variance (V̂) and standard deviation

(σ̂):

V̂ ← 1

n−1

n

∑
i=1

X2
i − 1

n(n−1)

(

n

∑
i=1

Xi

)2

, σ̂ ←
√

V̂ .

Step II: Calculate the estimate Ψ̂NS
8 of functional Ψ8:

Ψ̂NS
8 ← 105

32
√

πσ̂9
.

Step III: Calculate the bandwidth of the kernel estimator of function

f (4) (4th derivative of function f , that is f (r) = dr f
dxr):

g1 ←
(

−2K6(0)

µ2(K)Ψ̂NS
8 n

)1/9

, K6(0) =− 15√
2π

, µ2(K) = 1

Step IV: Calculate the estimate Ψ̂6(g1) of functional Ψ6:

Ψ̂6(g1)←
1

n2g7
1

[

n

∑
i=1

n

∑
j=1

K(6)

(

Xi −Xj

g1

)

]

,

K6(x) =
1√
2π

(

x6 −15x4 +45x2 −15
)

e−
1
2

x2
.

Step V: Calculate the bandwidth of the kernel estimator of function f (2):

g2 ←
(−2K4(0)

µ2(K)Ψ̂6(g1)n

)1/7

, K4(0) =
3√
2π

, µ2(K) = 1

Step VI: Calculate the estimate Ψ̂4(g2) of functional Ψ4:

Ψ̂4(g2)←
1

n2g5
2

[

n

∑
i=1

n

∑
j=1

K(4)

(

Xi −Xj

g2

)

]

,

K4(x) =
1√
2π

(

x4 −6x2 +3
)

e−
1
2 x2

.

Step VII: Calculate the final value of the bandwidth h:

h ←
(

R(K)

µ2(K)2Ψ̂4(g2)n

)1/5

, R(K) =
1

2
√

π
, µ2(K) = 1

Algorithm 1: Main computational steps of the PLUGIN

algorithm

Our implementation of the Algorithm 1 is carried out in

fixed-point arithmetic (see section 4.2). Unfortunately, using

the raw data while conducting the required calculations, threat-

ens a potential problems with overflow, especially while calcu-

lating the value of Ψ̂NS
8 , see Step II in Algorithm 1. Note that

the estimate of standard deviation in Ψ̂NS
8 is raised to the power

of 9. For large values of σ it results in extremely small values

of Ψ̂NS
8 . The above problems can be successfully overcome if

the input datasets are standardized using the z-score formula,

that is

Zi =
Xi − µ

σ
(4)

where µ and σ are mean and standard deviation of the original

vector X respectively. Z-score guarantees that σ̂ = 1 in Ψ̂NS
8

2 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 2. Flowchart of the PLUGIN algorithm with optional data
preprocessing (z-score standardization)

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

Algorithm 1: Main computational steps of the PLUGIN algorithm

824 Bull. Pol. Ac.: Tech. 64(4) 2016

A. Gramacki, M. Sawerwain, and J. Gramacki

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+ nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (8)

Computation complexity of Steps IV and VI (double sum-
mations), where the symmetry property is used, still belongs to
O(n2) complexity class

	

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

−1 0 1 2 3 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

h = 0.15

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0
0

.3
0

h = 0.4

−1 0 1 2 3 4

0
.0

0
0

.1
0

0
.2

0

h = 0.8

Fig. 1. An example of using kernel density estimators for determining the probability density function.

START

STOP

data set X

z-score

calculate V̂ and σ̂

calculate Ψ̂NS
8

calculate g1

calculate Ψ̂6(g1)

calculate g2

calculate Ψ̂4(g2)

h calcualtion

YES

NO

hfinal = h · σ̂
YES

NO

preprocessing?

possible

standardization

parallelization

possible
parallelization

preprocessing?

σ̂ = 1
V̂ = 1

Fig. 2. Flowchart of the PLUGIN algorithm with optional data pre-

processing (z-score standardization)

and, consequently, Ψ̂NS
8 entity has simply a constant value.

Applying the data standardization requires an extra opera-

tion on the h value in Step VII in Algorithm 1, that is

hfinal = h · σ̂ . (5)

where h is the bandwidth calculated for the standardized

dataset and σ̂ is the standard deviation of the original vector

X . The correctness of the above equation can be easily proofed

algebraically.

To reduce the calculation burden we can also slightly change

equations Ψ̂6(g1) and Ψ̂4(g2) in Algorithm 1. It is easy to

notice a symmetry, that is

K(6)

(

Xi − Xj

g1

)

= K(6)

(

Xj − Xi

g1

)

. (6)

So, the double summations can be changed and, conse-

quently, the final formula for Ψ̂6(g1) has now the following

form

Ψ̂6(g1)←
1

n2g7
1

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(6)

(

Xi −Xj

g1

)

)

+nK(6)(0)

]

(7)

(note for different summation ranges, the „2” before sums and

an extra factor added, that is nK(6)(0)). Obviously, the same

concerns K(4) and Ψ̂4(g2)

Ψ̂4(g2)←
1

n2g5
2

[

2

(

n

∑
i=1

n

∑
j=1,i< j

K(4)

(

Xi −Xj

g2

)

)

+nK(4)(0)

]

.

(8)

Computation complexity of Steps IV and VI (double sum-

mations), where the symmetry property is used, still belongs to

O(n2) complexity class

T (n) =
n

∑
i=1

n

∑
j=i

Tk =
1

2
(n2 +n)Tk (9)

where Tk = T1 + T2 + T3, and T1 represents computation time

for the differences, T2 represents division time, and T3 repre-

sents time for computing K(6) and K(4) polynomials.

4. FPGA-based Implementation

4.1. Xilinx’s High Level Synthesis High Level Synthesis

(HLS) is an automated design process that interprets an algo-

rithmic description of a problem (given in high level languages

Bull. Pol. Ac.: Tech. XX(Y) 2016 3

� (9)

where Tk = T1 + T2 + T3, and T1 represents computation time
for the differences, T2 represents division time, and T3 represents
time for computing K (6) and K (4) polynomials.

4.	 FPGA-based implementation

4.1. Xilinx’s high level synthesis. High level synthesis (HLS)
is an automated design process that interprets an algorithmic
description of a problem (given in high level languages C/C++)
and translates this problem into a so called register-transfer
level (RTL) HDL code. Then in turn this HDL code can be
easily synthesized to the gate level by the use of a logic syn-
thesis tool, like for example Xilinx ISE Design Suite, Xilinx
Vivado Design Suite, Altera Quartus II.

In this paper we discuss results obtained using a tool called
Xilinx Vivado High Level Synthesis, a feature of Vivado
Design Suite. This tool supports C / C++ inputs, and generates
VHDL / Verilog / SystemC outputs. Other solutions are offered
by Scala programming language [2] and a specialised high level
synthesis language called Cx [26]. It should also be mentioned
that a similar tool called A++ is also available for Altera FPGA
devices.

4.2. Implementation preliminaries. Before implementing the
PLUGIN Algorithm 1 it is important to take some assumptions
affecting both performance and resource consumption.

The first assumption is about a proper arithmetic used.
The floating-point one gives very good range and precision.
Unfortunately, from FPGA’s point of view, this representation is
very resource demanding. In contrast, the fixed-point arithmetic
is much less resource demanding but its range and precision
are more limited.

Hence, the exact fixed point representation was determined
based on a careful analysis of the particular intermediate values
taken during calculations. If the input dataset does not con-
tain extremely large outliers (which suggests that such dataset
should be first carefully analysed before any statistical analysis
taken) and if the z-score standardization is used, Q32.32 fixed
point representation is sufficient for all calculations (that is:
integer part length m = 31, fractional part length n = 32, word
length N = 64 and the first bit represents the sign). Also, note

that as a result of the z-score standardization, the vales of V̂ ,
σ̂ , Ψ̂8

NS are constant and this significantly simplifies the calcu-
lations. The fractional part does give the required precision.
However, the integer part must also be sufficiently large, as n2
factors are present in the PLUGIN algorithm.

The second assumption is about choosing the most adequate
methods for calculating individual steps in Algorithm 1. Now
it needs to be stressed that programming for FPGA devices
differs considerably from programming for CPUs / GPUs de-
vices. FPGA devices are built from a large number of simple
logical blocks like: look-up tables (LUT), flip-flops (FF),
block RAM memory (BRAM), specialized DSP units (DSP).
These blocks can be connected each other and can implement
only relatively low-level logical functions (the so called gates
level). As a consequence, even very basic operations, like for
examples the adder for adding two numbers must be imple-
mented from scratch. In description of the PLUGIN Algorithm
\ref{alg:plugin} one can easily indicate such operators like (a)
addition, (b) subtraction, (c) multiplication, (d) division, (e)
reciprocal, (f) exponent, (g) logarithmb, (h) power, (i) square
roots, (j) higher order roots.

Our implementation utilizes the following methods:
CORDIC [6, 7] for calculating exponents and logarithms, divi-
sions were replaced by multiplications and reciprocals, differ-
ence operators were replaced by addition of negative operands.
Additionally, one extra implementation of the exponent function
was used for calculations of K (6) and K (4) in Algorithm 1. This
implementation is based on the Remez algorithm [9, 19] and
is open to pipelining. As a consequence, a significant speedup
can be achieved during calculations of Steps IV and VI in
Algorithm 1.

It is also worth to note that the authors’ implementation of
the division operator (base on multiplications and reciprocals;
the reciprocal is based on the Newton method) is significantly
faster than the default division operator available in Vivado
HLS. Moreover, the another advantage of using our own opera-
tors, is that intellectual property core IPCore (Xilinx’s library of
many specialized functions available for FPGA projects) is not
needed. As a consequence, the generated VHDL codes are more
portable for FPGA chips from different than Xilinx vendors.

The third assumption during implementing of the PLUGIN
algorithm was to enable the nominal clock frequency of an
FPGA chip used (see chapter 4.4 for details). During experi-
ments it was turned out that the usage of the original division
operator resulted in problems with reaching the required fre-
quency. The authors’ original implementation of the division
operator (base on multiplications and reciprocals) solved this
problem.

The forth assumption was that all the input datasets must be
stored in the BRAM memory, which are available in almost all
current FPGA chips. They have enough capacity to store truly
large data, like even 500,000 elements or more.

b�Logarithm is not directly present in the PLUGIN mathematical formulas,
but it is used while implementing higher order roots from the following
definition x y = exp(y ln x).

825Bull. Pol. Ac.: Tech. 64(4) 2016

FPGA-based bandwidth selection for kernel density estimation using high level synthesis approach

4.3. Implementation details. In Fig. 3 we show the scheme
of the PLUGIN implementation where all the main compo-
nents are presented. They correspond literally to the seven steps
shown in Algorithm 1.

Figure 4 presents general architecture of the functional unit
for computing Ψ̂4(g2) (Step VI in Algorithm 1). It is worth to
note that the proper architecture of this unit must be reached
during careful coding in Vivado HLS, using techniques like
listed in section 4.2.

We developed three different versions of the PLUGIN algo-
rithm. The complete source codes are available for download
in [30].

The first implementation, called literal, is just a literal re-
writing of Algorithm 1 (with the improvements (7) and (8)). No
additional actions were taken toward optimization of both ex-
ecution time and resource requirements. This version can op-

erate with any unscaled input data (assuming that all the inputs
as well as all the internal results fulfil the fixed-point ranges
that have been set). This version automatically (Vivado decides)
utilizes pipelining. However, the pipelining doesn’t make the
implementation enough fast and additionally, large number of
DSP blocks is used. FFs and LUTs usage is also quite big (see
Table 1).

The second implementation, called minimal, is written so
that it is optimized for resource utilization, mainly the DSP
units. To reduce the number of the DSP units some dedicated
functions for addition and multiplication are required. Using

Fig. 4. General architecture of the Ψ̂4(g2) unit at the block-level view. The extra frame called ul-part shows the part of the Step VI in Algorithm 1
where loop unrolling can be used

Fig. 3. General overview of the main units for the FPGA-based
PLUGIN algorithm implementation

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

op

A

6432.32

8

Variance

Unit

StdDev

Unit

g1

Unit

Ψ̂NS
8

Unit

Ψ̂6

Unit

g2

Unit

Ψ̂4

Unit

Final h

Unit

Ψ̂6

Unit

g2

Unit

Ψ̂4

Unit

Final h

Unit

BRAM

RSLT

6432.32

CORDIC
ln and exptemporary

and auxiliary data

FSM

UNITs

Fig. 3. General overview of the main units for the FPGA-based PLUGIN algorithm implementation

Xi Xj

SUB

g2

Reciprocal

K4 routine

ADD
g5n2

n

MUL

Reciprocal

MUL

MUL

rslt

MUL

ADD

nK(4)(0)

Internal FSM

done signal

connections for all

other subunits

ul-part

Fig. 4. General architecture of the Ψ̂4(g2) unit at the block-level view. The extra frame called ul-part shows the part of the Step VI in

Algorithm 1 where loop unrolling can be used

that it is optimized for resource utilization, mainly the DSP

units. To reduce the number of the DSP units some dedicated

functions for addition and multiplication are required. Using

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off)

pipelining can be disabled (on default, during translation of the

high level codes into HDL ones pipelining is enabled whenever

it is possible). As can be observed in Table 1, a significant

reduction of the DSP units was achieved. It confirms the fact

that Vivado HLS is very sensitive for the structure of the high

level codes being translated into HDL ones. So that, to achieve

good performance and resource usage many modifications of

the high level codes are required.

The third implementation, called fast, is written so that it

is optimized for time execution. Addition and multiplication

functions were implemented in two ways. In the first way (sim-

ilar as in minimal implementation) the pipelining is disabled,

while in the second way it is enabled. The pipelined versions

of the functions are used in Steps IV and VI in Algorithm 1

as these two steps are crucial for the final performance. Ad-

ditionally, in these two steps a dedicated implementation of

the exponent function was used (based on Remez algorithm

which is more likely to pipelining). Also, a technique known

as loop unrolling was used in a manual manner (see sample

codes in Figure 6). Although Vivado HLS uses automatic loop

unrolling, this feature doesn’t work correctly in our algorithm

(as it can operate with datasets of any size and the exact num-

ber of loops is not known in advance).

The forth and fifth implementations used during experiments

(called CPU and GPU respectively) are the ones implemented

and investigated in [1]. CPU implementation utilizes the SSE

(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results During all practical experiments the target Xil-

inx Virtex-7 xc7vx690tffg1761-2 device was used. Its nominal

working frequency is 200MHz (or 5 ns for a single clock tact).

CPU implementation was run on Intel Processor i7 4790k 4.0

GHz. Geforce 480GTX graphics card was used for GPU imple-

mentation. Vivado HLS ver. 2015.2 was used for developing

all the FPGA implementations.

The summary of the resource consumption is given in Ta-

ble 1. Additionally, power consumption is included. It is a

real power (in Watts) taken by the FPGA chip after physical

implementation of the PLUGIN algorithm using Vivado De-

sign Suite. This is an estimate value and is called Total On-

Chip Power; the power consumed internally within the FPGA,

equal to the sum of Device Static Power and Design Power. It

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

op

A

6432.32

8

Variance

Unit

StdDev

Unit

g1

Unit

Ψ̂NS
8

Unit

Ψ̂6

Unit

g2

Unit

Ψ̂4

Unit

Final h

Unit

Ψ̂6

Unit

g2

Unit

Ψ̂4

Unit

Final h

Unit

BRAM

RSLT

6432.32

CORDIC
ln and exptemporary

and auxiliary data

FSM

UNITs

Fig. 3. General overview of the main units for the FPGA-based PLUGIN algorithm implementation

Xi Xj

SUB

g2

Reciprocal

K4 routine

ADD
g5n2

n

MUL

Reciprocal

MUL

MUL

rslt

MUL

ADD

nK(4)(0)

Internal FSM

done signal

connections for all

other subunits

ul-part

Fig. 4. General architecture of the Ψ̂4(g2) unit at the block-level view. The extra frame called ul-part shows the part of the Step VI in

Algorithm 1 where loop unrolling can be used

that it is optimized for resource utilization, mainly the DSP

units. To reduce the number of the DSP units some dedicated

functions for addition and multiplication are required. Using

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off)

pipelining can be disabled (on default, during translation of the

high level codes into HDL ones pipelining is enabled whenever

it is possible). As can be observed in Table 1, a significant

reduction of the DSP units was achieved. It confirms the fact

that Vivado HLS is very sensitive for the structure of the high

level codes being translated into HDL ones. So that, to achieve

good performance and resource usage many modifications of

the high level codes are required.

The third implementation, called fast, is written so that it

is optimized for time execution. Addition and multiplication

functions were implemented in two ways. In the first way (sim-

ilar as in minimal implementation) the pipelining is disabled,

while in the second way it is enabled. The pipelined versions

of the functions are used in Steps IV and VI in Algorithm 1

as these two steps are crucial for the final performance. Ad-

ditionally, in these two steps a dedicated implementation of

the exponent function was used (based on Remez algorithm

which is more likely to pipelining). Also, a technique known

as loop unrolling was used in a manual manner (see sample

codes in Figure 6). Although Vivado HLS uses automatic loop

unrolling, this feature doesn’t work correctly in our algorithm

(as it can operate with datasets of any size and the exact num-

ber of loops is not known in advance).

The forth and fifth implementations used during experiments

(called CPU and GPU respectively) are the ones implemented

and investigated in [1]. CPU implementation utilizes the SSE

(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results During all practical experiments the target Xil-

inx Virtex-7 xc7vx690tffg1761-2 device was used. Its nominal

working frequency is 200MHz (or 5 ns for a single clock tact).

CPU implementation was run on Intel Processor i7 4790k 4.0

GHz. Geforce 480GTX graphics card was used for GPU imple-

mentation. Vivado HLS ver. 2015.2 was used for developing

all the FPGA implementations.

The summary of the resource consumption is given in Ta-

ble 1. Additionally, power consumption is included. It is a

real power (in Watts) taken by the FPGA chip after physical

implementation of the PLUGIN algorithm using Vivado De-

sign Suite. This is an estimate value and is called Total On-

Chip Power; the power consumed internally within the FPGA,

equal to the sum of Device Static Power and Design Power. It

Bull. Pol. Ac.: Tech. XX(Y) 2016 5

Table 1
Resources usage for three different FPGA implementations of the
PLUGIN algorithms as well as CPU and GPU implementations.

Additionally power consumption is included. For FPGA
implementations, this is an estimate value called

total on-chip power; the power consumed internally within the
FPGA, equal to the sum of device static power and design power. It

is also known as thermal power

Method BRAM 18k DSP FF LUT Watts

literal 128 1164 80753 81995 3.938

minimal 128 240 15889 22895 1.153

fast 128 1880 85775 38050 6.963

CPU – – – – ¼ 88

GPU – – – – ¼ 250

826 Bull. Pol. Ac.: Tech. 64(4) 2016

A. Gramacki, M. Sawerwain, and J. Gramacki

Vivado HLS compiler’s pragmas (#pragma HLS INLINE off)
pipelining can be disabled (on default, during translation of the
high level codes into HDL ones pipelining is enabled whenever
it is possible). As can be observed in Table 1, a significant re-
duction of the DSP units was achieved. It confirms the fact that
Vivado HLS is very sensitive for the structure of the high level
codes being translated into HDL ones. So that, to achieve good
performance and resource usage many modifications of the high
level codes are required.

The third implementation, called fast, is written so that it is
optimized for time execution. Addition and multiplication func-
tions were implemented in two ways. In the first way (similar
as in minimal implementation) the pipelining is disabled, while
in the second way it is enabled. The pipelined versions of the
functions are used in Steps IV and VI in Algorithm 1 as these
two steps are crucial for the final performance. Additionally,
in these two steps a dedicated implementation of the exponent
function was used (based on Remez algorithm which is more
likely to pipelining). Also, a technique known as loop unrolling

was used in a manual manner (see sample codes in Fig. 6).
Although Vivado HLS uses automatic loop unrolling, this fea-
ture doesn’t work correctly in our algorithm (as it can operate
with datasets of any size and the exact number of loops is not
known in advance).

The fourth and fifth implementations used during experiments
(called CPU and GPU respectively) are the ones implemented
and investigated in [1]. CPU implementation utilizes the SSE
(Streaming SIMD Extensions) of the current multicore CPUs.

4.4. Results. During all practical experiments the target Xilinx
Virtex-7 xc7vx690tffg1761‒2 device was used. Its nominal
working frequency is 200MHz (or 5 ns for a single clock tact).
CPU implementation was run on Intel Processor i7 4790k
4.0 GHz. Geforce 480GTX graphics card was used for GPU
implementation. Vivado HLS ver. 2015.2 was used for devel-
oping all the FPGA implementations.

The summary of the resource consumption is given in
Table 1. Additionally, power consumption is included. It is
a real power (in Watts) taken by the FPGA chip after phys-
ical implementation of the PLUGIN algorithm using Vivado
Design Suite. This is an estimate value and is called total on-
chip power; the power consumed internally within the FPGA,
equal to the sum of device static power and design power. It is
also known as thermal power. The power consumption of the
FPGA implementations is significantly smaller comparing with
the power consumption of the CPU and GPU implementations.
The power consumption for the CPU and GPU used in our
experiments are an average (catalogue-like) values.

The summary of the execution times for three different
implementations of the PLUGIN algorithm, as well as CPU
and GPU ones is given in Table 2. The minimal and the fast

Table 2
Execution times (in sec.) for three different FPGA implementations
of the PLUGIN algorithm and for CPU and GPU implementations.
The literal implementation is just a literal rewriting of Algorithm 1
(with the improvements (7) and (8)). The minimal implementation
is written so that it is optimized for resource utilization, mainly the
DSP units. The fast implementation is written so that it is optimized
for time execution. More details on particular implementations can

be found in the text

n literal minimal fast CPU GPU

128 0.0555 0.0324 0.000276 0.0210 0.00699

256 0.2266 0.1363 0.000560 0.0252 0.00788

384 0.5155 0.3152 0.000889 0.0322 0.00947

512 0.9112 0.5513 0.001257 0.0346 0.00962

640 1.4466 0.8968 0.001667 0.0361 0.01063

768 2.1023 1.3205 0.002114 0.0375 0.01172

896 2.8771 1.8232 0.002606 0.0405 0.01447

1024 3.7666 2.3926 0.003140 0.0427 0.01641

Fig. 6. Three fundamental methods of the for loop implementation used
in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is implemnented
in the same way). In the fast implementation the loop unrolling is used
twice. fADD, fMUL functions do not utilize pipelining, while pfADD

i pfMUL functions do it

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

Performance of the PLUGIN algorithm implementations

Dataset size

Ti
m

es
 in

 s
ec

.

●

●

●

●

●
●

●
●

128 256 384 512 640 768 896 1024

1e
−0
4

0.
00
1

0.
01

0.
1

1
10

●

FPGA literal
FPGA minimal
FPGA fast
CPU
GPU

Fig. 5. Performance and scalability of different PLUGIN algorithm implementations (for better readability log scale for Y axis is used)

Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06

256 0.227651247521862 0.227651285449348 1.67e-05

384 0.202433198224753 0.202433187549741 5.27e-06

512 0.242707096505910 0.242707026022425 2.9e-05

640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = s + k4(((x[i] - x[j]) / g2));

}

}

// minimal implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = fADD(s, k4(fMUL(fADD(x[i], -x[j]), rg2)));

}

}

// fast implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j+=2) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if(j == i+1) tmp = 0.0;

if(j<N) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD(x[i], -x[j]);

tmpva = pfMUL(tmp1a, rg2); tmp1 = k4(tmpva);

}

psi4_f1_b1: {

if((j+1) < N) {

tmp1b = pfADD(x[i], -x[j+1]);

tmpvb = pfMUL(tmp1b, rg2); tmp2 = k4(tmpvb);

}

}

if(j<N) {

tmp = pfADD(tmp, tmp1); tmp = pfADD(tmp, tmp2);

}

if(j+2>=N) s = pfADD (s, tmp);

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

827Bull. Pol. Ac.: Tech. 64(4) 2016

FPGA-based bandwidth selection for kernel density estimation using high level synthesis approach

implementations were run on 200MHz nominal clock while the
literal implementation was run with 166 MHz nominal clock.
This frequency degradation was caused mainly because of
some limitations of the original division operator implemented
in Vivado HLS.

Of course the best performance was achieved for the fast
implementation (even compared to the CPU and to the GPU

implementations). This is the result of combination of the fol-
lowing three optimization techniques used: (a) implementation
of some dedicated arithmetic operators, (b) a proper exponential
function approximation and (c) the loops unrolling.

A very significant speedup was achieved comparing the fast
and the literal implementation (average speedup about 760,
see Table 3). The fast implementation is faster then the CPU
implementation (average speedup about 32, see Table 3). The
fast implementation is also faster then the GPU implementation
(average speedup about 10, see Table 3).

The summary of the accuracy for three different implemen-
tations of the PLUGIN algorithm is given in Table 4. href is the
reference bandwidth calculated in double floating point arith-
metic (in C++ program, 15–17 significant decimal digits). It
is worth to note that the relative errors for literal, minimal and
fast implementations are very small (not more than 0.004%). In
practical applications such small values can be in fact neglected.

The summary of the scalability of different PLUGIN al-
gorithm implementations is presented in Fig. 5. Scalability of
the FPGA implementations is nearly linear, which is a very
welcome behaviour. The corresponding results for CPU and
GPU implementations can be found in [1]. The figure is in fact
a graphical summary of data given in Table 2.

Simplified source codes of the three FPGA implementa-
tions are presented in Fig. 6. Complete source codes (C++ and
resulted Vivado HLS translations into VHDL) are available in
[30]. The first version is just the literal implementation of the
step VI in Algorithm 1 in C language. Unfortunately, as can be
observed in Table 2 and in Fig. 5 such implementation is very
slow. In the second version multiplications and additions are

Table 3
Speedups for three different FPGA implementations of the PLUGIN

algorithm and for CPU and GPU implementations. Also the mean
values are calculated

n literal/fast minimal/fast CPU/fast GPU/fast

128 201 118 76 25

256 404 243 45 14

384 580 354 36 11

512 725 439 28 8

640 868 538 22 6

768 994 625 18 6

896 1104 700 16 6

1024 1200 762 14 5

mean value literal/fast minimal/fast CPU/fast GPU/fast

– 759.5 472.4 31.9 10.125

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

Performance of the PLUGIN algorithm implementations

Dataset size

Ti
m

es
 in

 s
ec

.

●

●

●

●

●
●

●
●

128 256 384 512 640 768 896 1024

1e
−0
4

0.
00
1

0.
01

0.
1

1
10

●

FPGA literal
FPGA minimal
FPGA fast
CPU
GPU

Fig. 5. Performance and scalability of different PLUGIN algorithm implementations (for better readability log scale for Y axis is used)

Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06

256 0.227651247521862 0.227651285449348 1.67e-05

384 0.202433198224753 0.202433187549741 5.27e-06

512 0.242707096505910 0.242707026022425 2.9e-05

640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = s + k4(((x[i] - x[j]) / g2));

}

}

// minimal implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = fADD(s, k4(fMUL(fADD(x[i], -x[j]), rg2)));

}

}

// fast implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j+=2) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if(j == i+1) tmp = 0.0;

if(j<N) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD(x[i], -x[j]);

tmpva = pfMUL(tmp1a, rg2); tmp1 = k4(tmpva);

}

psi4_f1_b1: {

if((j+1) < N) {

tmp1b = pfADD(x[i], -x[j+1]);

tmpvb = pfMUL(tmp1b, rg2); tmp2 = k4(tmpvb);

}

}

if(j<N) {

tmp = pfADD(tmp, tmp1); tmp = pfADD(tmp, tmp2);

}

if(j+2>=N) s = pfADD (s, tmp);

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

Fig. 5. Performance and scalability of different PLUGIN algorithm implementations (for better readability log scale for Y axis is used)

Performance of the PLUGIN algorithm implementations

Dataset size

Ti
m

es
 in

 s
ec

.

828 Bull. Pol. Ac.: Tech. 64(4) 2016

A. Gramacki, M. Sawerwain, and J. Gramacki

realized using dedicated functions (fADD, MUL). Also a dedi-
cated function for reciprocal operator was implemented. In the
third version much more modification was implemented. First,
loop unrolling was used, second, Vivado HLS pragmas were
used and third, multiplications and additions were realized using
dedicated functions with pipelining enabled (pfADD, pfMUL).

5.	 Conclusions

HLS tools are competitive with manual design techniques using
HDLs. Implementation time of complex numerical algorithms
can be essentially reduced (comparing to direct coding in HDL
languages).

Unfortunately, to obtain efficient FPGA implementations,
many changes to source codes are required, comparing to equiv-
alent implementations for CPUs and/or GPUs. This is because
FPGA devices use specific primitives (DSP, BRAM, FF, LUT
blocks) and programmers should control their utilization man-
ually. However, this control is performed on the level of C/C++
codes, not the HDL ones. It is also worth to stress that using
the HLS approach allows to obtain implementations which are
often faster than CPU and/or GPU counterparts.

Another crucial motivation for replacing GPU or CPU solu-
tions by their FPGA equivalents is power consumption. FPGA
can settle for single Watts, while CPU or GPU counterparts
typically take tens/hundreds of Watts or even more.

Another possible step toward fast implementations of nu-
merical algorithms could be considering of a direct HDL im-
plementation of the PLUGIN algorithm. This will definitely be
much more difficult and will require much more time to com-
plete this work. From the other hand, this could be an excellent
occasion to evaluate the quality and effectiveness of the codes
generated by Vivado.

Last but not least, one could consider using modern DSP
chips which offer many interesting possibilities and are poten-
tially interesting for implementing pure numerical algorithms.	

Acknowledgements. We would like to thank for useful discus-
sions with colleagues at the Institute of Control and Computation
Engineering (ISSI) of the University of Zielona Góra, Poland.
We would like also to thank to anonymous referees for useful
comments on the preliminary version of this paper. The numer-
ical results were done using the hardware and software available
at the “FPGA/GPU μ-Lab” located at the ISSI.

References
	 [1]	 W. Andrzejewski, A. Gramacki and J. Gramacki, “Graphics pro-

cessing units in acceleration of bandwidth selection for kernel
density estimation”, Int. J. Appl. Math. Comput. Sci. 23(4),
869–885 (2013).

	 [2]	 J. Bachrach, H. Vo, B. Richards, Y. Lee, A.Waterman, R.
Avizienis, J. Wawrzynek and K. Asanovi, “Chisel: constructing
hardware in a scala embedded language”, Design Automation
Conference IEEE, 1212–1221 (2012).

	 [3]	 J. E. Chacón and T. Duong, “Multivariate plug-in bandwidth
selection with unconstrained pilot bandwidth matrices”, TEST
(Springer) 19(2), 375–398 (2010).

	 [4]	 J. E. Chacón and T. Duong, “Unconstrained pilot selectors for
smoothed cross validation”, Australian & New Zealand Journal
of Statistics 53, 331–351 (2011).

	 [5]	 J. E. Chacón and T. Duong, “Efficient recursive algorithms for
functionals based on higher order derivatives of the multivar-
iate Gaussian density”, Statistics and Computing 25, 959–974
(2015).

	 [6]	 J. E. Volder, “The CORDIC trigonometric computing technique”,
IRE Transactions on Electronic Computers EC-8, 330– 334,
(1959).

	 [7]	 J. S. Walther, “A unified algorithm for elementary functions”,
Proc. of Spring Joint Computer Conference, 379–385 (1971).

	 [8]	 P. Coussy and A. Morawiec, High-Level Synthesis From
Algorithm to Digital Circuit, Springer, Heidelberg (2008).

Table 4
Accuracy (relative error) for three different FPGA implementations

of the PLUGIN algorithms. href was calculated in C++ direct
implementation of Algorithm 1 in floating point double arithmetic

(15–17 significant decimal digits). jδxj = 

FPGA-Based Bandwidth Selection for Kernel Density Estimation Using High Level Synthesis Approach

Performance of the PLUGIN algorithm implementations

Dataset size

Ti
m

es
 in

 s
ec

.

●

●

●

●

●
●

●
●

128 256 384 512 640 768 896 1024

1e
−0
4

0.
00
1

0.
01

0.
1

1
10

●

FPGA literal
FPGA minimal
FPGA fast
CPU
GPU

Fig. 5. Performance and scalability of different PLUGIN algorithm implementations (for better readability log scale for Y axis is used)

Table 4. Accuracy (relative error) for three different FPGA imple-

mentations of the PLUGIN algorithms. hre f was calculated in C++

direct implementation of Algorithm 1 in floating point double arith-

metic (15–17 significant decimal digits). |δx| = |hmethod−hre f |
|hre f | ∗ 100%

where hmethod is hliteral , hminimal or h f ast

n hliteral hre f |δx| (%)

128 0.304902711650357 0.304902701728222 3.25e-06

256 0.227651247521862 0.227651285449348 1.67e-05

384 0.202433198224753 0.202433187549741 5.27e-06

512 0.242707096505910 0.242707026022425 2.9e-05

640 0.190442902734503 0.190443702342891 0.00042

768 0.175199386896566 0.175199406819444 1.14e-05

896 0.172251554206014 0.172251524317464 1.74e-05

1024 0.174044180661440 0.174044236921001 3.23e-05

n hminimal hre f |δx| (%)

128 0.304902980336919 0.304902701728222 9.14e-05

256 0.227651586290449 0.227651285449348 0.000132

384 0.202433346537873 0.202433187549741 7.85e-05

512 0.242707266006619 0.242707026022425 9.89e-05

640 0.190443017752841 0.190443702342891 0.000359

768 0.175199396442622 0.175199406819444 5.92e-06

896 0.172251742798835 0.172251524317464 0.000127

1024 0.174044403014705 0.174044236921001 9.54e-05

n hf ast hre f |δx| (%)

128 0.304901758907363 0.304902701728222 0.000309

256 0.227651913650334 0.227651285449348 0.000276

384 0.202433891594410 0.202433187549741 0.000348

512 0.242707268567756 0.242707026022425 9.99e-05

640 0.190443484811112 0.190443702342891 0.000114

768 0.175199736841023 0.175199406819444 0.000188

896 0.172251721611246 0.172251524317464 0.000115

1024 0.174044031649828 0.174044236921001 0.000118

// literal implementation

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = s + k4(((x[i] - x[j]) / g2));

}

}

// minimal implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j++) {

s = fADD(s, k4(fMUL(fADD(x[i], -x[j]), rg2)));

}

}

// fast implementation

rg2 = reciprocal(g2);

psi4_f1: for(i=0; i<N; i++) {

psi4_f2: for(j=i+1; j<N; j+=2) {

#pragma HLS EXPRESSION_BALANCE

#pragma HLS PIPELINE

if(j == i+1) tmp = 0.0;

if(j<N) { tmp1 = 0.0; tmp2 = 0.0; }

psi4_f1_b0: {

tmp1a = pfADD(x[i], -x[j]);

tmpva = pfMUL(tmp1a, rg2); tmp1 = k4(tmpva);

}

psi4_f1_b1: {

if((j+1) < N) {

tmp1b = pfADD(x[i], -x[j+1]);

tmpvb = pfMUL(tmp1b, rg2); tmp2 = k4(tmpvb);

}

}

if(j<N) {

tmp = pfADD(tmp, tmp1); tmp = pfADD(tmp, tmp2);

}

if(j+2>=N) s = pfADD (s, tmp);

}

}

Fig. 6. Three fundamental methods of the for loop implementation

used in Ψ̂4(g2) calculation (step VI in Algorithm 1, step IV is im-

plemnented in the same way). In the fast implementation the loop

unrolling is used twice. fADD, fMUL functions don’t utilize pipelin-

ing, while pfADD i pfMUL functions do it

Bull. Pol. Ac.: Tech. XX(Y) 2016 7

 * 100%
where hmethod is hliteral, hminimal or hfast

	 n	 hliteral	 hre	 jδxj (%)

	 128	 0.304902711650357	 0.304902701728222	 3.25e-06

	 256	 0.227651247521862	 0.227651285449348	 1.67e-05

	 384	 0.202433198224753	 0.202433187549741	 5.27e-06

	 512	 0.242707096505910	 0.242707026022425	 2.9e-05

	 640	 0.190442902734503	 0.190443702342891	 0.00042

	 768	 0.175199386896566	 0.175199406819444	 1.14e-05

	 896	 0.172251554206014	 0.172251524317464	 1.74e-05

	 1024	 0.174044180661440	 0.174044236921001	 3.23e-05

	 n	 hminimal	 hre	 jδxj (%)

	 128	 0.304902980336919	 0.304902701728222	 9.14e-05

	 256	 0.227651586290449	 0.227651285449348	 0.000132

	 384	 0.202433346537873	 0.202433187549741	 7.85e-05

	 512	 0.242707266006619	 0.242707026022425	 9.89e-05

	 640	 0.190443017752841	 0.190443702342891	 0.000359

	 768	 0.175199396442622	 0.175199406819444	 5.92e-06

	 896	 0.172251742798835	 0.172251524317464	 0.000127

	 1024	 0.174044403014705	 0.174044236921001	 9.54e-05

	 n	 hfast	 href	 jδxj (%)

	 128	 0.304901758907363	 0.304902701728222	 0.000309

	 256	 0.227651913650334	 0.227651285449348	 0.000276

	 384	 0.202433891594410	 0.202433187549741	 0.000348

	 512	 0.242707268567756	 0.242707026022425	 9.99e-05

	 640	 0.190443484811112	 0.190443702342891	 0.000114

	 768	 0.175199736841023	 0.175199406819444	 0.000188

	 896	 0.172251721611246	 0.172251524317464	 0.000115

	 1024	 0.174044031649828	 0.174044236921001	 0.000118

829Bull. Pol. Ac.: Tech. 64(4) 2016

FPGA-based bandwidth selection for kernel density estimation using high level synthesis approach

	 [9]	 N. Daili and A. Guesmia, “Remez algorithm applied to the best
uniform polynomial approximations”, Gen. Math. Notes 17(1),
16–31 (2013).

	[10]	 S. A. Fahmy and A. R. Mohan, “Architecture for real-time
nonparametric probability density function estimation”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems
21(5), 910–920 (2013).

	[11]	 I. Grobelna, R. Wiśniewski, M. Grobelny and M. Wiśniewska,
“Design and verification of real-life processes with appli-
cation of Petri nets”, IEEE Transactions on Systems, Man,
and Cybernetics: Systems PP(99), 1–14, DOI: http://dx.doi.
org/10.1109/TSMC.2016.2531673 (2016).

	[12]	 M. C. Jones, J. S. Marron and S. J. Sheather, “A brief survey
of bandwidth selection for density estimation”, Journal of the
American Statistical Association 91(433), 401–407 (1996).

	[13]	 P. Kulczycki, Kernel Estimators in Systems Analysis,
Wydawnictwo Naukowo-Techniczne, Warsaw, 2005 [in Polish].

	[14]	 P. Kulczycki and M. Charytanowicz, “A complete gradient clus-
tering algorithm formed with kernel estimators”, Int. J. Appl.
Math. Comput. Sci. 20(1), 123–134 (2010).

	[15]	 Y. Lei, Y. Dou, Y. Dong, J. Zhou and F. Xia, “FPGA implementa-
tion of an exact dot product and its application in variablepreci-
sion floating-point arithmetic”, J. Supercomput. 64(2), 580– 605
(2013).

	[16]	 J. Matai, D. Richmond, D. Leey and R. Kastner, “Enabling
FPGAs for the masses”, 1st Int. Workshop on FPGAs for
Software Programmers, Munich, arXiv:1408.5870 (2014).

	[17]	 E. P. Ferlin, H. S. Lopes, C. R. Erig Lima and M. Perretto,
“PRADA: a high-performance reconfigurable parallel architec-
ture based on the dataflow model”, Int. J. of High Performance
Systems Architecture 3(1), 41–55 (2011).

	[18]	 A. Pułka and A. Milik, “An efficient hardware implementation of
smith-waterman algorithm based on the incremental approach”,

International Journal of Electronics and Telecommunications
57(4), 489–496 (2011).

	[19]	 E. Y. Remez, “Sur la détermination des polynômes d’approxi-
mation de degré donnée”, Comm. Soc. Math. Kharkov 10, 41–63
(1934) [in French].

	[20]	 M. Sawerwain and R. Gielerak, “GPGPU based simulations for
one and two dimensional quantum walks”, Computer Networks:
17th Conference, Ustroń, 29–38 (2010).

	[21]	 D.W. Scott, Multivariate Density Estimation: Theory, Practice,
and Visualization, John Wiley & Sons, Inc. (1992).

	[22]	 B. W. Silverman, Density Estimation For Statistics And Data
Analysis, Chapman & Hall (1986).

	[23]	 J. S. Simonoff, Smoothing Methods in Statistics, Springer, 1996.
	[24]	 J. Spiechowicz, M. Kostur and L. Machura, “GPU accelerated

Monte Carlo simulation of Brownian motors dynamics with
CUDA”, Computer Physics Communications 191, 140–149
(2015).

	[25]	 P. Steffen, R. Giegerich and M. Giraud, “GPU parallelization
of algebraic dynamic programming”, PPAM 2009, LNCS 6068,
290–299 (2010).

	[26]	 “Synflow Cx”, www.synflow.com, last access April 2015.
	[27]	 S. Taherkhani, E. Ever and O. Gemikonakli, “Implementation of

non-pipelined and pipelined data encryption standard (DES) using
Xilinx Virtex-6 FPGA technology”, IEEE 10th International
Conference on Computer and Information Technology, 1257–
1262, (2010).

	[28]	 M. P.Wand and M. C. Jones, Kernel Smoothing, Chapman & Hall
(1995).

	[29]	 B. Wyrwoł and E. Hryniewicz, “Decomposition of the fuzzy
inference system for implementation in the FPGA structure”,
Int. J. Appl. Math. Comput. Sci. 23(2), 473–483 (2013).

	[30]	 “The PLUGIN source codes”, https://github.com/qMSUZ/ plugin
(2016).

