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Abstract. In this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical 
reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations 
equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass 
flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. 
The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.
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field. Magnetic nanofluids are useful in nanocryosurgery, aero-
dynamics sensors, blood flow analysis, nuclear plants, artificial 
kidneys, and smartfluids for vibration damping. A number of 
researchers have discussed different models of hydromagnetic 
nanofluid flow over stretching surfaces [9–16].

Many biological fluids, as well as the fluids that are used 
in industrial applications such as printer inks, animal blood, 
detergents, paint, food stuff, polymer liquids, etc. change their 
flow characteristics when subjected to applied shear stress, and 
thus differ from Newtonian fluids. These materials are called 
non-Newtonian fluids. Researchers have discussed several 
non-Newtonian fluid flow models such as Maxwell fluid, power 
law fluid, second or third grade fluid, etc. Eringen [17, 18] in-
troduced the theory of micropolar fluids for the first time. This 
theory deals with the intrinsic motion and local microstructure 
of the fluid particles and can be valuable when investigating the 
impact of polymer suspensions, colloidal solutions, biological 
and muddy fluids, etc. Furthermore, the impact of mass and heat 
transfer, combined with the impact of chemical reaction, has in 
the last few years been investigated with regard to possible ap-
plications in hydrometallurgical and chemical plants, including 
fruit-processing methods, freeze damage of crops, temperature 
distribution and growth of trees, and heat and mass transfer in 
cooling towers. Heat transfer due to surface convection and zero 
mass flux at a stretching/shrinking surface has gained signifi-
cance in material dying, hot wiring, nuclear plants, transpiration 
process, production of glass fiber, heat exchangers, prevention 
of energy, etc.

The numerical solution of the problem of MHD stagnation 
point flow of micropolar fluid towards a moving sheet was pre-
sented by Ashraf and Bashir [19]. The extension of the above 
problem was performed by Rashidi et al. [20]. They added the 
term of mixed convection to the problem, and solved it ana-
lytically. Rauf et al. [21] numerically analyzed the MHD flow 
of micropolar fluid over a stretchable disk. The effects of a po-

1.	 Introduction

The analysis of fluid flow over stretching/shrinking surfaces has 
been of immense interest for the researchers in the fields of en-
gineering and chemical process [1–4]. Especially the fluid flow 
generated by the surface is important in the extrusion and manu-
facturing process of material polymers, cooling systems, plastic 
industry, petrochemical industry, paper production, geophysical 
systems, power stations, chemical plants, air conditioning, re-
frigeration, etc. Out of all the above-mentioned systems, most 
attention was given to enhancing the energy generation and 
transfer of heat. Several methods have been proposed in this 
regard, but the techniques they employ are not suitable, due to 
lesser thermal conductivity of heat transfer fluid. Therefore, 
energy materials are introduced. These energy materials, known 
as nanomaterials, contain tiny particles of the same size as the 
de Broglie wave [5]. Therefore, nanoparticles have attracted 
researchers because of the abundance of applications thereof 
in technological and engineering processes. Nanoparticles in 
the base fluid, known as nanofluids, display thermophoresis 
and Brownian motion properties, which enhance the thermal 
performance and thermal conductivity of base fluids [6, 7]. 
Ultra-high heat transfer rates and extreme stability are the two 
main features of nanofluids [8] and do not cause problems such 
as erosion, sedimentation, and pressure drop.

Magnetohydrodynamics (MHD) is significant for chemistry, 
mathematics, physics, and engineering, and is applied in biolog-
ical transportation, pumps, mixing of samples, cooling of strips, 
drug delivery, MHD generators, etc. External applied magnetic 
field is very helpful when controlling heat transfer and flow. As 
nanoparticles increase the thermal and electrical conductivity 
of nanofluids, making them liable to influence the magnetic 
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rous medium along with heat and mass transfer were studied. 
Ashraf and Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed porous disks with 
heat transfer characteristics. Shehzad et al. [23] applied an an-
alytical technique based on HAM to the problem of unsteady 
micropolar fluid and heat transfer influenced by a stretching 
sheet. Jalilpour et al. [24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in a porous me-
dium. Pal et al. [25] analyzed stagnation point radiative flow of 
nanofluid over a surface with porous medium. The above-men-
tioned problem was extended to mixed convective nanofluid 
flow with chemical reaction by Pal and Mandal [26]. Hayat et 
al. [27] considered the problem of mixed convective flow over 
a stretching surface with chemical reaction. They employed the 
convective-type boundary condition at the surface of a sheet. 
Kuznetsov and Nield [28] considered the problem of boundary 
layer flow of nanofluid past a vertical plate. They implemented 
boundary conditions which imply that the flux of nanoparticles 
is zero at the boundary. The problem of Maxwell nanofluid flow 
over a stretching surface was solved by Hayat et al. [29]. Here, 
the Kuznetsov and Nield condition [28] of zero mass flux at the 
surface of a sheet was employed. The different flow problems 
under convective surface conditions have been modeled and 
addressed by Hayat et al. [30‒32] and Imtiaz et al. [33].

Our main objective here is to find numerical solutions for 
MHD stagnation point flow of an incompressible, electrically 
conducting flow of micro nanofluid over a heated shrinking 
sheet. The sheet obeys the convective condition on tempera-
ture and the zero-mass condition. The variations of individual 
parameters of interest are examined.

2.	 Problem formulation

Here, two-dimensional laminar incompressible stagnation point 
flow of an electrically conducting micro nanofluid impinging 
in normal direction over a heated shrinking sheet is considered. 
We investigate the impact of magnetic field of strength B0. Mag-
netic field is utilized in transverse direction of the flow field. 
The governing equations are:

	

2

theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   

2. Problem formulation 
Here two dimensional laminar incompressible 
stagnation point flow of an electrically 
conducting micronano fluid impinging in normal 
direction over a heated shrinking sheet is 
considered. We investigate the impact of 
magnetic field of strength 0B . Magnetic field is 
utilized in transverse direction of the flow field. 
The governing equations are: 

0







y
v

x
u

,            (1) 

  2

2

y
uk

dx
dUU

y
uv

x
uu

















 

 uUB
y

k e 



 2
0

,          (2) 

2

2

yy
v

x
uj

















 













y
uk 2 ,           (3) 













2

2

y
T

y
Tv

x
Tu 

,
2
































 y
T

D
D

y
T

y
CD T

B            (4) 

2

2

2

2

y
T

T
D

y
CD

y
Cv

x
Cu T

B 
















  CCk1 .               (5) 
Here u  and v  are the velocity components in 
the x and y directions respectively, p  the 
pressure,   the microrotation,   the density, 
 the viscosity, k  the vortex viscosity, j  the 
microinertia density,   the spin gradient 

viscosity, e  the electrical conductivity of fluid, 
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microinertia density,   the spin gradient 
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theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   

2. Problem formulation 
Here two dimensional laminar incompressible 
stagnation point flow of an electrically 
conducting micronano fluid impinging in normal 
direction over a heated shrinking sheet is 
considered. We investigate the impact of 
magnetic field of strength 0B . Magnetic field is 
utilized in transverse direction of the flow field. 
The governing equations are: 
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Here u  and v  are the velocity components in 
the x and y directions respectively, p  the 
pressure,   the microrotation,   the density, 
 the viscosity, k  the vortex viscosity, j  the 
microinertia density,   the spin gradient 
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theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   

2. Problem formulation 
Here two dimensional laminar incompressible 
stagnation point flow of an electrically 
conducting micronano fluid impinging in normal 
direction over a heated shrinking sheet is 
considered. We investigate the impact of 
magnetic field of strength 0B . Magnetic field is 
utilized in transverse direction of the flow field. 
The governing equations are: 
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Here u  and v  are the velocity components in 
the x and y directions respectively, p  the 
pressure,   the microrotation,   the density, 
 the viscosity, k  the vortex viscosity, j  the 
microinertia density,   the spin gradient 
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theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   

2. Problem formulation 
Here two dimensional laminar incompressible 
stagnation point flow of an electrically 
conducting micronano fluid impinging in normal 
direction over a heated shrinking sheet is 
considered. We investigate the impact of 
magnetic field of strength 0B . Magnetic field is 
utilized in transverse direction of the flow field. 
The governing equations are: 
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Here u  and v  are the velocity components in 
the x and y directions respectively, p  the 
pressure,   the microrotation,   the density, 
 the viscosity, k  the vortex viscosity, j  the 
microinertia density,   the spin gradient 

viscosity, e  the electrical conductivity of fluid, 2

theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   

2. Problem formulation 
Here two dimensional laminar incompressible 
stagnation point flow of an electrically 
conducting micronano fluid impinging in normal 
direction over a heated shrinking sheet is 
considered. We investigate the impact of 
magnetic field of strength 0B . Magnetic field is 
utilized in transverse direction of the flow field. 
The governing equations are: 
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Here u  and v  are the velocity components in 
the x and y directions respectively, p  the 
pressure,   the microrotation,   the density, 
 the viscosity, k  the vortex viscosity, j  the 
microinertia density,   the spin gradient 
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theory deals with the intrinsic motion and local 
microstructure of the fluid particles and can be 
valuable to investigate the impact of polymer 
suspensions, colloidal solutions, biological and 
muddy fluids etc. Further the impact of mass and 
heat transfer with chemical reaction impact have 
attracted many researchers in last few years in 
view of their applications in hydrometallurgical 
and chemical plants such as process method of 
fruits, crops damage because of freezing, 
temperature distribution and grove of trees, heat 
and mass transfer in cooling towers. Heat 
transfer due to surface convection and zero mass 
flux at the stretching/shrinking surface has gain 
significance in material dying, hot wiring, 
nuclear plants, transpiration process, production 
of glass fiber, heat exchangers, prevention of 
energy etc.  
The numerical solution of the problem of MHD 
stagnation point flow of micropolar fluid at 
stagnation point towards a moving sheet was 
presented by Ashraf and Bashir [19].  The 
extension of the above problem was made by 
Rashidi et al. [20]. They added mixed convection 
term to the problem and solved analytically. 
Rauf et.al [21] numerically analyzed the MHD 
flow of micropolar fluid flow due to a stretchable 
disk. Effects of porous medium along with heat 
and mass transfer are studied. Ashraf and 
Wehgal [22] solved the problem of MHD flow of 
micropolar fluid confined between two fixed 
porous disks with heat transfer characteristics. 
Shehzad et al. [23] applied an analytical 
technique based on HAM to the problem of 
unsteady micropolar fluid and heat transfer 
influenced by stretching sheet. Jalilpour et al. 
[24] applied HPM to the problem of MHD 
nanofluid flow over stretching sheet immersed in 
a porous medium. Pal et al. [25] analyzed 
stagnation point radiative flow of nanofluid over 
a surface with porous medium. The above 
mention problem was extended to mixed 
convective nanofluid flow with chemical 
reaction by Pal and Mandal [26]. Hayat et al. 
[27] considered the problem of mixed convective 
flow over a stretching surface with chemical 
reaction. They employed the convective type 
boundary condition at the surface of sheet. 
Kuznetsov and Nield [28] considered the 
problem of boundary layer flow of nanofluid by 
a vertical plate. They implemented boundary 
conditions which imply that the nanoparticles 
flux is zero at the boundary. The problem of 
Maxwell nanofluid flow passed over stretching 
surface was solved by Hayat et al. [29]. Here 
they employed Kuznetsov and Nield condition 

[28] of zero mass flux at surface of sheet. The 
different flow problems under convective surface 
conditions have been modeled and addressed by 
Hayat et al. [30-32] and Imtiaz et al. [33].  
Our main objective here is to find numerical 
solutions for MHD stagnation point flow of an 
incompressible electrically conducting flow of 
micro nanofluid over a heated shrinking sheet. 
The sheet obeys convective condition on 
temperature and zero mass condition. The 
variations of various parameters of interest are 
examined.   
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where: u and v are the velocity components in the x and y di-
rections respectively, p is the pressure, υ is the microrotation, ρ 
is the density, μ is the viscosity, k is the vortex viscosity, j is the 
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(ρc)f
 is the ratio of nanoparticle heat capacity and the 

base fluid heat capacity, DB is the Brownian diffusion coefficient, 
DT is the thermophoretic diffusion coefficient, and k1 is the re-
action coefficient. The boundary conditions are:
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where 0b  corresponds to the sheet shrinking 
rate and fh  the heat transfer coefficient. 
Considering similarity transformations: 

   

 

   































 ,,

,,

,,

2

C
CC

TT
TT

aygxaa

favfxau

f











   (7)   

equations (1)-(5) become 
   

,01
11

2

2
11





fff
fMgRfR

       (8) 

  02111  gfgfgfARgC , (9) 

0PrPrPr 2   tb NNf ,(10) 

01 







  Sc

N
N

fSc
B

t .  (11) 

Here 
a
B

M e


 2

0  denotes the magnetic 

parameter, 

kR 1  the vortex viscosity 

parameter, 
j

C



1  spin gradient viscosity, 

aj
A




1  microinertia density parameter, 

0

Pr
k
c p

  the Prandtl number, 

 
  



f

Bp
b c

CDc
N   the Brownian motion 

parameter, 
   

  




Tc
TTDc

N
f

fTp
t 


 the 

thermophoresis parameter, 
BD

Sc 
  the 

Schmidt number and 
a
k1

1   the chemical 

reaction parameter.  
The dimensionless boundary conditions are: 

     
    

   
   
   





















,0,0
,0,1

,000
,010

,00,00,0






gf
NbNt

Bi
gfNf

       (12) 

in which 
ak

h
Bi f 

   is the heat transfer 

Biot number and 
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bN   the shrinking 

parameter.  
3. Numerical solution 

The Runge-Kutta-Fehlberg (RFK45) method is 
very helpful to solve 
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involves suitable step size which guarantees the 
accurateness in solution of initial value problem. 
Every proper step contains two different type of 
approximations to the solution and are computed 
and compared. When answers match closely then 
approximation is valid. If answers are not close 
enough to required accuracy then the step size is 
decreased. If answers meet more than the 
significant digits then an increment is made in 
step size. In each step the following six steps are 
required:  
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Here, M =  σeB0
2

ρα  denotes the magnetic parameter, R1 =  k
μ   

the vortex viscosity parameter, C1 =  γ
μj  the spin gradient vis-

cosity, A1 =  μ
ρja  microinertia density parameter, Pr =  μcp

k0
  

the Prandtl number, Nb = (ρc)pDBC1

(ρc)fυ
 the Brownian motion param-

eter, Nt = (ρc)pDT(Tf ¡ T1)
(ρc)fυT1  the thermophoresis parameter, Sc =  υDB

 
the Schmidt number, and γ1 = k1

a  the chemical reaction param-
eter.
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where Bi = hf

k
υ
a  is the heat transfer Biot number and N =  b

a  is 
the shrinking parameter.

3.	 Numerical solution

The Runge-Kutta-Fehlberg (RKF45) method is very helpful 
when solving dy
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The approximation of order 4 to solution is: 
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A better approximation of order 5 to the solution 
is given by: 
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Finally dh  stands for optimal step size and is 
obtained by multiplying h  with a scalar d .
Here d  is determined by: 
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where tol  stands for the error tolerance.  
Finite difference technique based on RFK45 
method with shooting technique [34-36] is 
implemented to obtain the numerical solution of 

the systems (8)-(11) with corresponding 
boundary conditions (12). We set: 

,,,
,,,

,,,

987

654

321









zzz
zgzgz

fzfzfz
          (17) 

where prime stands for the derivative with 
respect to  . Using (17) into (8)-(11), we obtain 
the reduced first order system of differential 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
710 .
4. Results and discussion  

The present section is devoted to illustrate our 
findings in graphical as well as tabular forms. 
The dimensionless parameters of our interests 
are micropolar parameters 111 &, ACR ,
magnetic parameter M , shrinking parameter 
N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
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Finally, dh stands for optimal step size and is obtained by 
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where tol  stands for the error tolerance.  
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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The present section is devoted to illustrate our 
findings in graphical as well as tabular forms. 
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magnetic parameter M , shrinking parameter 
N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
parameters. We fix 
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where tol stands for the error tolerance.
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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4. Results and discussion  

The present section is devoted to illustrate our 
findings in graphical as well as tabular forms. 
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are micropolar parameters 111 &, ACR ,
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N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
parameters. We fix 
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Finally dh  stands for optimal step size and is 
obtained by multiplying h  with a scalar d .
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where tol  stands for the error tolerance.  
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
710 .
4. Results and discussion  

The present section is devoted to illustrate our 
findings in graphical as well as tabular forms. 
The dimensionless parameters of our interests 
are micropolar parameters 111 &, ACR ,
magnetic parameter M , shrinking parameter 
N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
parameters. We fix 

,5.0,4.0,2.0,2 111  MACR
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where prime stands for the derivative with respect to η. Using 
(17) into (8–11), we obtain the reduced first-order system of 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
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our model, we choose to describe shear and 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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The present section is devoted to illustrate our 
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N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,
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1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
parameters. We fix 
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are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
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N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
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The approximation of order 4 to solution is: 
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A better approximation of order 5 to the solution 
is given by: 
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Finally dh  stands for optimal step size and is 
obtained by multiplying h  with a scalar d .
Here d  is determined by: 
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where tol  stands for the error tolerance.  
Finite difference technique based on RFK45 
method with shooting technique [34-36] is 
implemented to obtain the numerical solution of 

the systems (8)-(11) with corresponding 
boundary conditions (12). We set: 
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where prime stands for the derivative with 
respect to  . Using (17) into (8)-(11), we obtain 
the reduced first order system of differential 
equations: 
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Boundary conditions (12) become: 
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Newton-Raphson algorithm and shooting method 
are used to guess the conditions 21 , aa  and 3a
in equation (22). Finally the problem is 
integrated to obtain the boundary conditions at 

0 . The convergence criteria is set to at least 
710 .
4. Results and discussion  

The present section is devoted to illustrate our 
findings in graphical as well as tabular forms. 
The dimensionless parameters of our interests 
are micropolar parameters 111 &, ACR ,
magnetic parameter M , shrinking parameter 
N , Prandtl number Pr , heat transfer Biot 
number iB , Schmidt number Sc ,

thermophoretic parameter Nt , Brownian motion 
parameter Nb  and chemical reaction parameter 

1 . To have a best knowledge of the physics of 
our model, we choose to describe shear and 
couple stresses, heat and mass transfer rate at the 
sheet considering different values of the physical 
parameters. We fix 

,5.0,4.0,2.0,2 111  MACR
,2.0,3.0Pr,25.0  ScN

� (22)

The Newton-Raphson algorithm and the shooting method 
are used to guess the conditions a1, a2, and a3 in (22). Finally, 
the problem is integrated to obtain the boundary conditions at 
η = 0. The convergence criteria are set to at least 10–7.

4.	 Results and discussion

This section is devoted to illustrating our findings in graph-
ical, as well as tabular forms. The dimensionless parameters 
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of our interests are the micropolar parameters R1, C1, and A1, 
magnetic parameter M, shrinking parameter N, Prandtl number 
Pr, heat transfer Biot number Bi, Schmidt number Sc, thermo-
phoretic parameter Nt, Brownian motion parameter Nb, and 
chemical reaction parameter γ1. To have the best knowledge 
of the physics of our model, we chose to describe shear and 
couple stresses and heat and mass transfer rates at the sheet, 
considering different values of the physical parameters. We 
fix R1 = 2, C1 = 0.2, A1 = 0.4, M = 0.5, N = –0.25, Pr = 0.3, 
Sc = 0.2, Nt = 0.3, Nb = 0.3, Bi = 0.4, and γ1 = 0.2 into our 
computation procedure, altering one parameter at a time, as dis-
cussed through graphs and tables. We adjusted η1 = 7, 10, 15 
in order to have asymptotic behavior of velocity, microrotation, 
temperature, and concentration profiles.

Figures 1–3 are drawn to explore the behavior of magnetic 
parameter M on velocity and microrotation. Here, M = 0 shows 
the hydrodynamic flow and M(>0) represents hydromagnetic 
flow. Increasing M results in an enhancement in normal ve-
locity profiles f(η) and streamwise velocity profiles f -A re .(η) ׳
verse flow region can be seen near the surface because of the 
shrinking of the sheet [19]. Fig. 1 shows that large M can be 

helpful to stop the reverse flow phenomenon. The imposed 
magnetic field produces a frictional force called the Lorentz 
force, which offers a resistance in a flow field, and due to its 
velocity, the boundary layer pushes towards the wall of the 
sheet, as shown in Fig. 2. An increase in the magnetic param-
eter causes a reduction in microrotation profiles, as described 
in Fig. 3.

Figures 4–6 are presented to investigate the impact of the 
shrinking parameter on f(η), f  and g(η). It is noted from ,(η) ׳
Figs. 4 and 5 that f(η) and f  decrease by enhancing N. The (η) ׳
reverse flow in the vicinity of surface of the sheet is also ob-
served for increased values in magnitude of N. Fig. 6 illustrates 
the influence of N on microrotation profiles g(η). The profiles 
are increased due to the enhanced values of magnitude of N. 
Fig. 7 explores the behavior of R1, C1, and A1 in microrotation. 
Influence of different values of micropolar parameters causes 
an enhancement in profiles g(η). Fig. 8 illustrates the effect of 
Prandtl number on temperature profiles. Physically, the Prandtl 
number is inversely proportional to the thermal diffusivity. 
Hence, larger values of Pr produce weaker thermal diffusivity. 
This corresponds to a reduction in both temperature and the 

Fig. 1. f(η) for different values of M

Fig. 4. f(η) for different values of N

f(
η)
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η)

η
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η

Fig. 2. f for different values of M (η) ׳

Fig. 5. f for different values of N (η) ׳
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η

η

Fig. 3. g(η) for different values of M

Fig. 6. g(η) for different values of N
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M = 0.5, R1 = 2, C1 = Sc = γ1 = 0.2
A1 = Bi = 0.4, Pr = Nt = Nb = 0.3
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associated boundary layer thickness. Fig. 9 is plotted to explore 
the impact of Bi on θ(η). Physically, the Biot number is the ratio 
of internal thermal resistance at the surface of the body to the 
boundary layer thermal resistance. Therefore, enhancing the 
values of Bi shows an increase in temperature profiles and its 
related boundary layer thickness. Fig. 10 is sketched for a better 
understanding of the impact of Sc on concentration profiles 
ϕ(η). Physically, Schmidt number is inversely proportional to 
the mass diffusion, therefore an increase in Sc causes a reduc-
tion in nanoparticle concentration profiles, as well as in related 
boundary layer thickness.

Figures 11–12 are designed to depict the effect of thermo-
phoretic and Brownian motion parameters on ϕ(η). In thermo-
phoresis, the small particles are pushed away from the hot sur-
face and are driven towards a cold surface, therefore increasing 
the values of Nt, which causes an increase in nanoparticle con-
centration profiles (Fig. 11). The Brownian motion comes into 
play due to the zig-zag movement of nanoparticles. Such motion 
then results in an increase of kinetic energy of particles, and 
hence the collision between the particles increases. Therefore, 
the Brownian motion is affected by the increasing values of Nb, 

which then reduces ϕ(η) with the relevant boundary layer thick-
ness, as shown in Fig. 12. Figure 13 shows that the profiles ϕ(η) 
and the appropriate boundary layer thickness decrease with de-

Fig. 7. g(η) for different four cases

Fig. 10. ϕ(η) for different values of Sc
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η)

ϕ(
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η

η

Fig. 13. ϕ(η) for different values of γ1

Fig. 8. θ(η) for different values of Pr

Fig. 11. ϕ(η) for different values of Nt
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Fig. 9. θ(η) for different values of Bi

Fig. 12. ϕ(η) for different values of Nb
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C1 = Sc = γ1 = 0.2, A1 = 0.4, 
Pr = Nt = Nb = 0.3
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structive chemical reaction (γ1 > 0), whereas an opposite trend 
is seen for generative chemical reaction (γ1 < 0).

Table 1 is formed to describe the arbitrary values of micro-
polar parameters [19]. Table 2 is drawn to present the impact 
of the magnetic parameter, shrinking parameter and micropolar 
parameters on shear and couple stresses. It is noted that shear 
stresses intensify with an increase in M, while a reverse trend is 
observed for R1, C1, and A1. An increase in the shear stresses is 
seen for 0.25 < –N < 0.75, whereas the opposite behavior can 
be noted for 0.75 < –N < 1. The couple stresses are increasing 
for increasing values of micropolar parameters, magnetic pa-
rameter, and shrinking parameter, as shown in Table 2. Table 3 
displays the effects of heat transfer rate for various values of 
Pr and Bi. Rising values of the Prandtl number and heat transfer 
Biot number lead to an increase in heat transfer rate at the sheet. 
Table 4 presents the impact of the Schmidt number, thermopho-
retic parameter, Brownian motion parameter and destructive/
generative chemical reaction parameter on ϕ׳ (η). It is seen that 
the mass transfer rate is a decreasing function of Sc, Nb, and 
γ1. However, the opposite trend is noted for larger values of 
Nt. Table 5 was made to present the validity of the numerical 
results. It is apparent that the results are compared well with 
the previously published literature work.

Table 1 
Different values of R1, C1, and A1 for the four cases discussed

Case No. R1 C1 A1

1 1 0.1 0.2

2 1.5 0.15 0.3

3 2 0.2 0.4

4 3 0.3 0.6

Table 2 
Shear and couple stresses at sheet for different values  

of M, N, and four Cases of R1, C1, and A1

M –N Case No. (1 + R1) f″(0) g′(0)

0 0.25 3 0.72994 0.96967

1 0.99312 1.18024

2 1.54858 1.54426

3 2.19657 1.87129

0.5 0.25 3 0.80299 1.03122

0.5 0.85992 1.18253

0.75 0.86544 1.28875

1 0.80069 1.31458

0.5 0.25 1 1.04855 0.68654

2 0.90768 0.89683

3 0.80299 1.03122

4 0.66129 1.18097

Table 3 
Heat transfer rate at the sheet for different values of Pr and Bi

Pr Bi –θ′(0)

0.1 0.4 0.13516

0.2 0.15499

0.3 0.16835

0.5 0.18529

0.3 0.1 0.07444

0.2 0.11853

0.4 0.16835

1 0.22502

Table 4 
Mass transfer rate at the sheet for different values  

of Sc, Nt, Nb, and γ1

Sc Nt Nb γ1 ϕ′(0)

0.1 0.3 0.3 0.2 0.16848

0.2 0.16835

0.4 0.16817

0.8 0.16794

0.2 0.1 0.3 0.2 0.05619

0.2 0.11231

0.3 0.16835

0.4 0.22432

0.2 0.3 0.1 0.2 0.50505

0.2 0.25252

0.3 0.16835

0.4 0.12626

0.2 0.3 0.3 –0.1 0.16862

0.1 0.16842

0.5 0.16818

1 0.16798

Table 5 
Comparison of numerical values of shear and couple stresses at 

sheet for various values of M [19]

M

(1 + R1) f″(0) g′(0)

results from 
[19]

present 
study

results from 
[19]

present 
study

0 0.52887 0.52869 1.14119 1.14243

1 0.85965 0.85932 1.62744 1.62940

2 1.49003 1.48955 2.37378 2.37714

3 2.20069 2.20027 3.03622 3.04127
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5.	 Conclusion

The following conclusions can be drawn from the presented 
analysis:

1)	 Couple stresses are enhanced by increasing M, N, R1, 
C1, and D1.

2)	 Pr and Bi increase θ′(η).
3)	 Mass transfer rate enhances with the increase of Nt, 

whereas a reverse trend is noted in case of increasing 
Sc, Nb, and γ1.

4)	 Temperature profiles and thermal boundary layer 
thicknesses are decreasing functions of Pr, while the 
opposite behavior is seen in case of enhancing the 
values of Bi.

5)	 Concentration profile decreases for increasing values 
of the Schmidt number and Brownian motion param-
eter. On the other hand, the profiles increase for larger 
values of the thermophoretic parameter.
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