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Abstract Direct and inverse problems for unsteady heat conduction
equation for a cylinder were solved in this paper. Changes of heat con-
duction coefficient and specific heat depending on the temperature were
taken into consideration. To solve the non-linear problem, the Kirchhoff’s
substitution was applied. Solution was written as a linear combination of
Chebyshev polynomials. Sensitivity of the solution to the inverse problem
with respect to the error in temperature measurement and thermocouple in-
stallation error was analysed. Temperature distribution on the boundary of
the cylinder, being the numerical example presented in the paper, is similar
to that obtained during heating in the nitrification process.

Keywords: Inverse problem; Sensitivity of the solution to the inverse problem; Appli-
cation of Chebyshev polynomials

Nomenclature

a – thermal diffusivity, m2/s
c – specific heat, J/kgK
f – temperature on the cylinder boundary, ◦C
Fo – Fourier number
g – distance between the thermocouple and cylinder boundary, m
MINUS – values calculated with the thermocouple installation error of δr∗into

the direction of the axis of cylinder
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PLUS – values calculated with the thermocouple installation error of δr∗into
the direction of cylinder boundary

r – radius, m
R – maximum radius, m
random – values calculated with stochastic disturbance of temperature measure-

ment
t – time, s
T – temperature, ◦C
dp – values calculated with the use of the direct problem
ip – values calculated with the use of the inverse problem

Greek symbols

β – coefficient in the assumed temperature function on the cylinder
boundary

δ – absolute error
∆ – difference, Laplacian
∇ – gradient
ϑ – temperature in non-dimensional coordinates
λ – heat conduction coefficient for the cylinder, W/mK
ξ – radius in non-dimensional coordinates
ρ – density, kg/m3

τ – time in non-dimensional coordinates

Subscripts

0 – start time (for t = 0)
max – maximum value during heating
+ δξ∗ – inexact thermocouple location by δξ∗ towards the boundary
– δξ∗ – inexact thermocouple location by δξ∗ further from the boundary
δϑ – the error in temperature measurement of δϑ
m – measuring

Superscripts

* – measuring

1 Introduction

Realization of thermal field fulfilling the set criteria is required in processes
of heating machine’s components. To control body heating, it is important
to know the temperature on the boundary of the region. However, it is not
always possible to measure the boundary temperature, as, for example, in
the burning chamber or on the inner surface of gas-turbine casing. It is ex-
tremely difficult when radiation constitutes a great part of heating process
(heat treatment processes). In such cases, the boundary temperature can
be determined from solution of the inverse problem based on temperature
measurement at inner points in the body, arranged close to the boundary
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where the course of temperature is not known [1,21]. Some methods of
solving one-dimensional inverse problem of thermal field distribution for a
cylinder were presented in [3]; and for the cylindrical layer – in [2]. Solu-
tion of the inverse problem based on Laplace’s transform was discussed in
[2,3,10,12]. Inverse problem for the heat conduction equation was solved
with the use of sequential method and described in papers [2,22]. Analysis
of thermal fields during unsteady heat transfer for an irregular geometry
was described in [4]. Method of inverse problem finds a wide application in
technical issues. In [24], a substitute calculation model for the inverse heat
conduction problem was discussed. Boundary condition for a heated beam
was sought for using this model and the finite element method. Paper [5]
presents the algorithm for solving the inverse heat flow problems, which
use the finite element method. The concept of this algorithm consists in
solving the Neumann problem, where the heat flux on the inner boundary is
sought. Algorithm gave smooth, non-oscillating and stable solution. It was
used to analyse heat transfer in the region with holes. Paper [6] presents
a method of solving the inverse heat conduction problem, comprising the
solution of the Poisson’s equation for simpler and linked with each other re-
gions instead of the Laplace’s equation for multiply-connected region, such
as the gas-turbine blade with cooling channels. In paper [17], by means
of solving the heat equation for 2D model in a steady-state with the use
of the inverse problem, thermal conductivity of material as the polyno-
mial depending on temperature was sought for. Paper [14] discusses heat
flow in high-temperature industrial furnaces. Solving direct and inverse
problems with the use of the conjugate gradient method for the changes
of phase of metal solidification were analysed. Trefftz methods as well as
the method of fundamental solutions are often used for solving direct and
inverse problems for the equation of heat conduction [13,18, 23]. Paper
[8] presents the solution of direct and inverse non-Fourier heat conduction
problems with the use of Trefftz functions and Trefftz method. Paper [9]
presents the method of solving nonlinear direct and inverse heat conduc-
tion problems with the use of Trefftz functions. Paper [16] discusses the
solution of the inverse problem for the Poisson equation with the use of
fundamental solution method and Tikhonov regularization. Application of
the fundamental solutions method for solving the inverse problem of heat
source determination in an unsteady heat conduction is presented in [15].
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Heat treatment and thermo-chemical treatment processes comprise wide
ranges of temperature. For nitrification process, heating temperature ranges
from an ambient temperature up to the temperature of approx. 550 oC.
Considering such range of temperature for steel, any change of heat conduc-
tion coefficient, λ, and specific heat, c, is significant. For the analysed range
of temperature, the heat conduction coefficient changes from 52 W/(mK)
to 36 W/(mK), and specific heat changes from 440 J/(kgK) to 750 J/(kgK)
[11]; it is 30.8% and 70.5% of their initial values, respectively Heat conduc-
tion equation includes the change of thermal diffusivity a = λ/ρc. Hence,
the increase of λ and decrease of c causes the change of thermal diffu-
sivity coefficient a from 0.000015 m2/s to 0.000007 m2/s, what is 53.3%.
Such significant change of thermal diffusivity for temperature ranging from
20 oC to 550 oC in heat treatment processes requires application of math-
ematical model in which λ and c are functions depending on temperature
(non-linear problem). Knowledge of temperature distribution during heat-
ing enables precise analysis of heat treatment processes and stresses arising
during heating. Therefore, non-linear and unsteady heat conduction equa-
tion was solved in this paper with the use of the method of inverse problem.

2 Direct problem

Solution of direct problem enables determining temperature distribution
in a cylinder with the known temperature on its boundary. For the heat
conduction equation

ρ (T ) c (T )
∂T

∂t
= div

(

λ (T ) ∇T
)

(1)

the following initial condition was assumed

T (r, t = 0) = T0 = 0 . (2)

Kirchhoff’s substitution [7] was applied

ϑ =
1

λ0

∫ T

T0

λ (u) du =
1

λ0

∫ T

0
λ (u) du (3)

and

ϑ + δϑ =
1

λ0

∫ T +δT

0
λ (u) du . (4)
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After substracting (3) from (4), we obtain

δϑ =
1

λ0

(

∫ T +δT

0
λ (u) du −

∫ T

0
λ (u) du

)

=
1

λ0

∫ T +δT

T
λ (u) du . (5)

It was hence obtained [7]

∂ϑ

∂t
= a (ϑ (T )) ∆ϑ . (6)

Equation (1) in polar coordinates reads

∂ϑ

∂t
= a (ϑ (T ))

(

∂2ϑ

∂r2
+

1

r

∂ϑ

∂r

)

(7)

and when the non-dimensional coordinate

ξ̄ =
r

R
∈ 〈0, 1〉 (8)

is introduced the Eq. (2) is transformed to the form

∂ϑ

∂t
= a

(

ϑ (T )
) 1

R2

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

. (9)

It was assumed that density changes a little during the heating process,
and heat conduction coefficient and specific heat depend on temperature

∂ϑ

∂t
=

λ (ϑ (T ))

ρ0c (ϑ (T ))

1

R2

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

. (10)

When the non-dimensional time coordinate τ = Fo = at
R2 = λ0t

ρ0c0R2 was
introduced, the following equation was obtained:

∂ϑ

∂τ
=

λ
(

ϑ (T )
)

λ0

c0

c
(

ϑ (T )
)

(

∂2ϑ

∂ξ̄2
+

1

ξ̄

∂ϑ

∂ξ̄

)

, ξ̄ ∈ (0, 1) . (11)

Since the variable ξ̄ ∈ 〈0, 1〉, therefore substitution ξ = 2ξ̄−1 is done. Then
[19]

ξ̄ =
ξ + 1

2
,

∂ϑ

∂ξ̄
= 2

∂ϑ

∂ξ
,

∂2ϑ

∂ξ̄2
= 4

∂2ϑ

∂ξ2
. (12)
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Hence
∂ϑ

∂τ
= 4

λ
(

ϑ (T )
)

λ0

c0

c
(

ϑ (T )
)

(

∂2ϑ

∂ξ2
+

1

ξ + 1

∂ϑ

∂ξ

)

. (13)

Approximating the derivative with respect to time by the backward differ-
ence quotient, we have obtained the following linear equation:

ϑ̃ (τi) − ϑ̃ (τi−1)

∆τ
≈ 4

λ
(

ϑ̃i−1

)

λ0

c0

c
(

ϑ̃i−1

)

(

d2ϑ̃

dξ2
+

1

ξ + 1

dϑ̃

dξ

)

. (14)

Solution to Eq. (11) is sought in the form of the linear combination of
Chebyshev polynomials

ϑ̃ =
N
∑

k=0

αkWk (ξ) , ξ ∈ 〈−1, 1〉 , (15)

where Wk (ξ) denotes the Chebyshev polynomials of the first type [20].
Assuming that β2 = 1

∆τ , Q = ϑ (τi−1) and taking substitution (15) into
account, we obtain the following system of linear equations

β2
N
∑

k=0

αkWk (ξ) − β2Q =

4
λ
(

ϑ̃i−1

)

λ0

c0

c
(

ϑ̃i−1

)

(

N
∑

k=0

αkW
′′

k (ξ) +
1

ξ + 1

N
∑

k=0

αkW
′

k (ξ)

)

. (16)

Let q (ξ, τ) = 4λ(ϑi−1)
λ0

c0
c(ϑi−1) , thus we have

q (ξ, τ)
N
∑

k=0

αkW
′′

k (ξ)+
1

ξ + 1
q (ξ, τ)

N
∑

k=0

αkW
′

k (ξ)−β2
N
∑

k=0

αkWk (ξ) = −β2Q .

(17)
Therefore,

N
∑

k=0

αkq (ξ, τ) W
′′

k (ξ)+
N
∑

k=0

αk
1

ξ + 1
q (ξ, τ) W

′

k (ξ)−
N
∑

k=0

αkβ2Wk (ξ) = −β2Q .

(18)
Hence, assuming p (ξ) = 1

ξ+1 and r (ξ, τ) = −β2Q, we have

N
∑

k=0

αk

(

q (ξ, τ) W
′′

k (ξ) + p (ξ) q (ξ, τ) W
′

k (ξ) − β2Wk (ξ)
)

= r (ξ, τ) . (19)
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To determine coefficients αk, the collocation method is used, then for the
radius ξi (for a period of time), we obtain the equation

N
∑

k=0

αk

(

q (ξi) W
′′

k (ξi) + p (ξi) q (ξi) W
′

k (ξi) − β2Wk (ξi)
)

= r (ξi) (20)

and demand that Eq. (20) is satisfied at all inner points ξi (i = 1, 2, . . . ,
N −1). Hence we have N – 1 of equations, and the number of unknowns is N
+ 1, α0, α1, . . . , αN ; to close the system of equations, boundary conditions
are joined

∂ϑ̃

∂ξ

∣

∣

∣

∣

∣

ξ=−1

= 0 , (21)

ϑ̃
∣

∣

∣

ξ=1
= f (τ) , (22)

which, based on (15), has the form

∂ϑ̃

∂ξ

∣

∣

∣

∣

∣

ξ=ξ0=−1

=
N
∑

k=0

αkW
′

k (ξ0 = −1) = 0 , (23)

ϑ̃
∣

∣

∣

ξ=ξN =1
=

N
∑

k=0

αkWk (ξN = 1) = f (τ) . (24)

Equation (20) together with boundary conditions (23) and (24) creates the
following matrix equation

A(N+1)×(N+1)































α0

α1
...

αN−1

αN































=































0
r (ξ1)

...
r (ξN−1)

f































. (25)

Elements of matrix A are expressed by the formulae

a0j = W
′

j (ξ0 = −1) , (26)

aij = q (ξi) W
′′

j (ξi) + p (ξi) q (ξi) W
′

j (ξi) − β2Wj (ξi) , (27)

aNj = Wj (ξN = 1) (28)
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for i = 1, 2, . . . , N − 1, j = 0, 1, 2, . . . , N . Multiplying the left side of
Eq. (25) by the matrix A−1, we obtain































α0

α1
...

αN−1

αN































= A−1































0
r (ξ1)

...
r (ξN−1)

f































, (29)

what can be noted as






























α0

α1
...

αN−1

αN































=



















ã00 ã01 . . . . . . ã0N

ã10 ã11 . . . . . . ã1N
...

...
. . .

...
...

...
. . .

...
ãN0 ãN1 . . . . . . ãNN

















































0
r (ξ1)

...
r (ξN−1)

f































, (30)

where ãij are elements of the matrix A−1.

3 Inverse problem

The purpose of solving the inverse problem is to determine unknown tem-
perature on the boundary of the cylinder f (in subsequent moments of time)
based on temperature measurements inside the cylinder and on the form
of the solution to the direct problem. On the basis of the Eq. (30) we have
that































α0

α1
...

αN−1

αN































=



































∑N−1
i=1 ã0ir (ξi) + f ã0N

∑N−1
i=1 ã1ir (ξi) + f ã1N

...

...
∑N−1

i=1 ãNir (ξi) + f ãNN



































. (31)

Therefore,

αj =
N−1
∑

i=1

ãjir (ξi) + f ãjN for j = 0, 1, 2, . . . , N . (32)

Coefficients αj were introduced into the solution (15). Hence,

ϑ̃ (ξ) =
N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ) . (33)
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Figure 1: Measuring points.

For measuring points ξ∗

l , where l = 1, 2, . . . , L (Fig. 1), we have that

ϑ̃ (ξ∗

l ) =
N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) . (34)

To determine unknown parameters α0, α1, . . . , αN , the functional should be
minimized

I (f) =
L
∑

l=1

(

ϑ̃ (ξ∗

l , f) − ϑ̃m (ξ∗

l )
)2

. (35)

Having substituted formula (33), for the value calculated at measuring
points ξ∗

l , where l = 1, 2, . . . , L, we have

I (f) =
L
∑

l=1

[

N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) − ϑ̃m (ξ∗

l )

]2

. (36)

Annihilation of the first derivative is the necessary condition of the func-
tional (4) minimum

dI

df
= 0 . (37)

Including Eqs. (4) and (37), we obtained

L
∑

l=1

{[

N
∑

k=0

(

N−1
∑

i=1

ãkir (ξi) + f ãkN

)

Wk (ξ∗

l ) − ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN

}

= 0 .

(38)
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Hence,

L
∑

l=1

{[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

− ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN +

f

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2






= 0 . (39)

Let

Al =

[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

− ϑ̃m (ξ∗

l )

]

N
∑

k=0

Wk (ξ∗

l ) ãkN , (40)

Bl =

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2

, (41)

then the Eq. (39) can be noted as

L
∑

l=1

{Al + fBl} = 0 . (42)

Therefore,

f =

−
L
∑

l=1

Al

L
∑

l=1

Bl

. (43)

In mathematical model, the heat conduction coefficient depends on temper-
ature, and can be noted as the linear combination of Chebyshev polynomials

λ (T ) =
n
∑

i=0

aiWi(T̃ ) , (44)

where temperature T̃ = 2T −Tmax−T0
Tmax−T0

, then T̃ ∈ 〈−1, 1〉. Applying the Kirch-
hoff’s substitution (3), we obtain

ϑ =
1

λ0

∫ T

T0

λ (u) du =
Tmax − T0

2λ0

∫ T

T0

n
∑

i=0

aiWi(T̃ )dT̃ . (45)

Since ϑ = g (T ), hence T = g−1 (ϑ). For the value ϑ (T ), the interval
〈Ti, Ti+1〉 (Fig. 2), for which the following inequality is satisfied, is sought

ϑ (Ti) ≤ ϑ (T ) ≤ ϑ (Ti+1) . (46)
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Figure 2: Determination of temperature ϑ(T ) intermediate value in (Ti, Ti+1) interval in
the function of k parameter, Eq. (48).

Then, on the basis of linear extrapolation

ϑ (T ) = kϑ (Ti) + (1 − k) ϑ (Ti+1) , (47)

T = kTi + (1 − k) Ti+1 . (48)

Hence,

k =
ϑ (T ) − ϑ (Ti+1)

ϑ (Ti) − ϑ (Ti+1)
. (49)

Specific heat was also presented as the linear combination of Chebyshev
polynomials

c (T ) =
n
∑

i=0

biWi(T̃ ) , (50)

where temperature T̃ ∈ 〈−1, 1〉. Coefficients ai and bi were determined
with the use of the least squares approximation method [14]. They are
presented in Tab. 1.

4 Sensitivity of the solution to the inverse
problem to errors in measurements

To determine the distribution of temperature on the cylinder boundary,
it is necessary to measure temperature inside this cylinder as close to the
boundary as possible. Sensitivity of the solution to the inverse problem
comprises the impact of the thermocouple installation error ±δξ∗

l as well
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Table 1: Coefficients of polynomials approximating functions λ(T) and c(T).

i ai bi

0 41.519 660.920

1 -11.350 247.360

2 -0.90257 51.725

3 0.010553 18.980

as the error in temperature measurement δϑl = h (δTi) (5) on the sought
distribution of temperature on the cylinder boundary. Non-dimensional
temperature on the boundary is

f±δξ∗

l
,δϑ =

−
L
∑

l=1

Al,±δξ∗

l
,δϑl

L
∑

l=1

Bl,±δξ∗

l
,δϑl

, (51)

where

Al,±δξ∗

l
,δϑl

=

[

N
∑

k=0

Wk (ξ∗

l )

(

N−1
∑

i=1

ãkir (ξi)

)

−

(

ϑ̃m (ξ∗

l ± δξ∗

l ) + δϑl

)

]

N
∑

k=0

Wk (ξ∗

l ) ãkN , (52)

Bl,±δξ∗

l
,δϑl

= Bl =

(

N
∑

k=0

Wk (ξ∗

l ) ãkN

)2

. (53)

5 Numerical example

To test the program, it was assumed that the distribution of temperature
on the cylinder boundary can be described by the function of the form

f (τ) = Tmax

(

1 − e−βτ
)

, where β = 1.1. Calculations were performed for

the cylinder of 100 mm diameter. The following values were assumed for
calculations: λ0 = 52.531 W

mK , c0 = 429.331 J
kgK , and ∆τ = 0.187. Direct

problem was solved and distributions of temperature on radii r1 = 48 mm,
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a) b)

Figure 3: Course of the random error in temperature measurement of values from the
interval [−0.01T ∗, 0.01T ∗] (a), and [−0.02T ∗, 0.02T ∗] (b) for the temperature
measurement at the distance of 2 mm from the boundary of the cylinder with
the installation error δr∗ = – 0.5 mm.

Figure 4: Distribution of temperature on the boundary of the cylinder assumed in the
direct problem (dp) as well as calculated with the use of the inverse problem
(ip) including error in thermocouple installation (PLUS, MINUS) and random
error in temperature measurement (random): a) 0.01T∗, b) 0.02T∗.

r2 = 46 mm and r3 = 44 mm (g1 = 2 mm, g2 = 4 mm and g3 = 6 mm)
were determined. Obtained temperature values were input data for the so-
lution of inverse problem and corresponded to the temperature measured by
thermocouples. Analysis of solution sensitivity to errors in thermocouple
installation was conducted. It was assumed that each of thermocouples may
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be shifted into the direction of the cylinder boundary by δr∗ = 0.5 mm,
what was noted as PLUS in Fig. 3. Shifting thermocouple closer to the
cylinder axis corresponds to the error in installation δr∗ = −0.5 mm and
is noted as MINUS (Fig. 4). In calculations, random error in tempera-
ture measurement δT ∗ was included, what is denoted as random in Fig. 3.
This error was a random number from the interval [−0.01T ∗, 0.01T ∗] or
[−0.02T ∗, 0.02T ∗]. Figure 3 presents illustrative course of the random error
in temperature measurement for the thermocouple located at the distance
of 2 mm from the boundary with the installation error δr∗ = −0.5 mm and
with the maximal errors in temperature measurement δT ∗ = 0.01T ∗ and
δT ∗ = 0.02T ∗.

Distributions of temperature on the boundary of the cylinder, assumed
in the direct problem and calculated with the use of inverse problem, includ-
ing the sensitivity of the solution were presented in Fig. 4. For the random
error in temperature measurement δT ∗ = 0.01T∗ and for thermocouples
shifted into the direction of the cylinder axis by |δr∗|= 0.5 mm, the error of
temperature distribution on the cylinder boundary was slightly above 6 ◦C
(Fig. 5a, b). Larger differences between the assumed temperature and the
calculated one with the use of the inverse problem were obtained when the
random disturbance in temperature measurement was up to 0.02T ∗. Those
values are up to 13 ◦C (Fig. 5c, d).

Temperature distributions in the cylinder, assumed in the direct prob-
lem and calculated with the use of the inverse problem method for the time
of 900 s, 2100 s, 3000 s, 4200 s, 5100 s, and 8100 s are presented in Fig. 6.
Calculations were made for thermocouples located at the distance of 2, 4
and 6 mm from the boundary. Installation error was δr∗ = −0.5 mm. Ran-
dom error in temperature measurement reached maximally 2% of the mea-
sured value, what correspond to values from the interval [−0.02T ∗, 0.02T ∗].

Figure 7 presents the assumed distribution of temperature on the bound-
ary of the cylinder as well as the distributions of temperature calculated
with the use of the inverse problem for thermocouples located at the dis-
tance of 2, 4 and 6; 4, 6, and 8 as well as 6, 8, and 10 mm from the
boundary. For random error in temperature measurement up to 0.02T ∗,
when the distance of thermocouple location from the boundary increases,
the maximal error in calculations on the cylinder boundary increases too.

Numerical tests, presented above, assumed greater measurement distur-
bances than those occurring real production conditions. Figure 8 presents
distributions of temperature obtained as a result of solution of the in-
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Figure 5: Difference in temperatures on the boundary of the cylinder assumed in the
direct problem (dp) and calculated with the use of the inverse problem (ip),
including the thermocouple installation errors δr∗ = 0.5 mm (a, c) and δr∗ =
-0.5 mm (b, d) as well as the random error in temperature measurement up to
0.01T ∗ (a, b) and 0.02T ∗ (c,d).

verse problem, with the installation error δr∗ = 0.5 mm (PLUS) and
δr∗ = −0.5 mm (MINUS). Stable during the whole heating process er-
ror in temperature measurement of 3◦C (PLUS) or −3 ◦C (MINUS) was
assumed. These parameters correspond to heating conditions obtainable
during the experiment. Errors in temperature distribution, obtained in
this experiment, slightly exceeded 3 ◦C.
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Figure 6: Temperature distribution along the radius of the cylinder for the time of
a) t = 900 s, b) t = 2100 s, c) t = 3000 s, d) t = 4200 s, e) t = 5100 s,
f) t = 8100 s with the maximal disturbance of 0.02T∗ and thermocouples lo-
cated at the distance of 2, 4, and 6 mm from the boundary with the instalaltion
error δr∗ = −0.5 mm.
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Figure 7: Temperature distribution on the boundary of the cylinder assumed in the di-
rect problem (dp) and calculated with the use the inverse problem (ip) for
installation errors δr∗ = 0.5 mm (PLUS) and δr∗ = −0.5 mm (MINUS) with
the temperature measurement error up to 0.02T ∗ and thermocouples located
at the distance of: a) 2, 4, 6 mm; b) 4, 6, 8 mm; c) 6, 8, 10 mm from the
boundary of the cylinder.

6 Conclusion

In heat treatment processes, such as nitrification and carburising, heat
conduction coefficient and specific heat change significantly during heat-
ing. In the computational model, described in this paper, the change in
heat conduction coefficient and specific heat with respect of temperature
were included. It enables temperature distribution on the boundary of the
cylinder to be determined more precisely by solving the inverse problem and
then by solving the direct problem inside the cylinder. It is a basis of pre-
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Figure 8: Distribution of temperatue on the boundary of the cylinder assumed in the
direct problem (dp) and calculated with use of the inverse problem (ip) for
installation errors δr∗ = 0.5 mm (PLUS) and δr∗ = -0.5 mm (MINUS) with
the error in temperature measurement δT ∗ = 3 ◦C (PLUS) and δT ∗ = −3 ◦C
(MINUS) and thermocouples located at the distance of 2, 4 and 6 mm from
the boundary of the cylinder.

cise analysis of structure of the layer, being the subject of heat treatment,
and of stresses arising in the component being heat treated. Obtained re-
sults indicate low sensitivity of the solution to the inverse problem to the
thermocouple installation and temperature measurement errors.
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