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ROCK FAILURE ANALYSIS BASED ON A COUPLED ELASTOPLASTIC-LOGARITHMIC 
DAMAGE MODEL

MODEL PĘKANIA SKAŁ OPARTY NA SPRZĘŻONYM ELASTOPLASTYCZNO-LOGARYTMICZNYM 
MODELU USZKODZEŃ

The rock materials surrounding the underground excavations typically demonstrate nonlinear me-
chanical response and irreversible behavior in particular under high in-situ stress states. The dominant 
causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the 
presence of local shear stresses which cause the frictional sliding. During this process, the net number 
of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the 
elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The 
main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring 
within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of 
microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and 
finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage 
process is stiffness degradation, dilatation and softening response.

In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible 
deformations and stiffness degradation of rock materials under loading. In this model, damage evolution 
& plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take 
into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was 
implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains.

Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic 
and damage constitutive model. The developed model has been programmed in VC++ environment. Then, 
it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental 
Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, 
softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confine-
ment pressure dependency of rock behavior was simulated in according to experimental observations.
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Zachowanie materiału skalnego otaczającego wyrobiska podziemne w odpowiedzi na wysokie stany 
lokalnych naprężeń działajacych in situ jest zazwyczaj nieodwracalne i nieliniowe. Reakcje nieodwracalne 
spowodowane są w głównej mierze przez płynięcie plastyczne i procesy uszkodzeń. Płynięcie plastyczne 
uwarunkowane jest przez występowanie lokalnych naprężeń ścinających powodujące obsunięcia skał. 
W trakcie tego procesu ilość wiązań netto pozostaje praktycznie niezmieniona. Całościowy efekt płynięcia 
plastycznego w skali makroskopowej polega na tym, że właściwości elastyczne (np. sztywność) stają 
się niewrażliwe na działanie nieodwracalnych procesów tego rodzaju. Podstawową przyczyną reakcji 
nieodwracalnych reakcji w materiałach quasi-kruchych, do których należą skały, jest powstawanie 
uszkodzeń wewnątrz materiału. W skali mikroskopowej, proces uszkodzenia rozpoczyna się od zainicjo-
wania i stopniowej propagacji mikro- pęknięć. Gdy długość mikro- pęknięć osiągnie wartość graniczną, 
zaczynają one łączyć się ze sobą w rezultacie powodując powstanie lokalnych mezo- pęknięć. W ujeciu 
makroskopowym i fenomenologicznym, następstwami procesu uszkodzenia jest obniżenie sztywności, 
powstawanie dylatacji szczelin oraz miękniecie materiału. 

W pary wykorzystano sprzężony model elastoplastyczno- logarytmiczny do symulacji nieodwra-
calnych odkształceń i utraty sztywności materiału skalnego pod wpływem naprężeń. W modelu tym 
ewolucje uszkodzeń i opis płynięcia plastycznego sformułowano w oparciu o reguły nieodwracalnych 
przemian termodynamicznych. Aby uwzględnić utratę sztywności oraz miękniecie materiału w obszarach 
gdzie występowały największe naprężenia wykorzystano zmienną logarytmiczną opisującą uszkodzenie. 
Odkształcenia plastyczne zamodelowano z wykorzystaniem modelu plastycznego opartego na warunku 
plastyczności Drukera- Pragera.

Zaproponowano także algorytm do obliczania kolejnych kroków procedury numerycznej, oparty na 
zaproponowanym modelu plastycznym oraz konstytutywnym modelu uszkodzeń. Opracowany model 
pracuje w środowisku VC++. Został on następnie wykorzystany jako osobny, nowy model konstytutywny 
zapisany w kodzie DEM (UDEC). W części końcowej przeprowadzono symulację zachowania wapienia 
oolitowego w oparciu o zaproponowany model. Nieodwracalne odkształcenia, utrata sztywności zostały 
odtworzone w postaci wyników procedury numerycznej. Ponadto, przeprowadzono symulacje zachowania 
skał w zależności od działającego na nie ciśnienia w oparciu o obserwacje eksperymentalne. 

Słowa kluczowe: wytrzymałość materiału na uszkodzenia, plastyczność, utrata sztywności, zmienna 
logarytmiczna opisująca uszkodzenie, kruchość

Nomenclature

α – Drucker-Pruger friction parameter
β – Drucker-Pruger dilation parameter
C – Drucker-Pruger cohesion parameter
d – scalar damage variable
εij – total strain tensor
ε·ij – increment of total strain tensor
εe

ij – elastic part of strain tensor
ε p

ij – plastic part of strain tensor
εc – strain corresponding to uniaxial compressive strength
E 0

ijkl – undamaged fourth order elastic stiffness tensor
Eijkl – fourth order elastic stiffness tensor of damaged material

Et
ij

ed
kl – tangent elastic stiffness tensor in the elastic-damage condition

Et
ij

ep
kl – tangent elastic stiffness tensor in the elastic-plastic condition

fc – uniaxial compressive strength 
ft – uniaxial tensile strength
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FL – logarithmic damage criterion
Fd – scalar damage criterion
Fp – plastic yield function
gf – fracture energy per unit volume
J'2 – second invariant of the deviatoric stress tensor
K – brittleness parameter
L – logarithmic damage variable
L· – logarithmic damage multiplier
Q p – plastic potential function
σij – stress tensor
σ·ij – increment of stress tensor
σc – uniaxial compressive strength
σkk – first invariant of the normal stress tensor
r(d ) – resistance functions corresponding to scalar damage variable
r(L) – resistance functions corresponding to logarithmic damage variable
r0 – modulus of resilience
sij – deviatoric stress tensor
ψ – free energy thermodynamic potential function
ψ p – plastic part of free energy thermodynamic potential function 
λ·p – plastic multiplier
Yd – thermodynamic force associated with the scalar damage variable
YL – thermodynamic force associated with the logarithmic damage variable

1. Introduction

Due to increasing human needs to rock excavations, the analysis of stress and strain sur-
rounding rock mass and stability evaluation of these excavations are essential. Rocks surround-
ing excavations under induced stresses have non elastic, nonlinear mechanical behavior within 
the elastic stiffness degradation and unrecoverable plastic strains. In this regard, the inelasticity 
associated with most of the brittle solids, during external loadings, is the result of two kinds of 
irreversible changes: microcracking (damage process) and frictional sliding along microcracks. 
These two kinds of irreversible phenomena, which may be assumed to occur in coupled or un-
coupled forms, lead to the degradation of elastic property of the material and the development 
of moderate to large permanent deformations at the macro-scale level, respectively.

The strain softening and elastic stiffness degradation on macro-scale are due to the damage 
process including nucleation, growth and propagation of microcracks on micro-scale of rocks, 
while the plastic strains are due to the frictional sliding along microcracks faces. The most of 
experimental observations in the past few years have shown that the use of plasticity theories is 
appropriate to model the deformation component caused by frictional sliding along microcracks, 
whereas the use of damage mechanics theories to model the nucleation and propagation of micro-
cracks is clearly evident in the literature. Therefore, these two mechanisms –microcracking and 
frictional sliding – are to be addressed properly through the use of combined damage and plastic-
ity theories, while developing constitutive models for brittle solids. Many researchers (Addessi 
et al., 2002; Bazant & Kim, 1979; Dragon & Mrotz, 1979; Hansen et al., 2001; Jefferson, 2003; 
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Ortiz & Popov, 1982; Ortiz, 1985; Salari et al., 2005; Simo & Ju, 1987; Voyiadjis et al., 2008; 
Yazdani & Karnawat, 1996; Yazdani & Schreyer, 1990; Shao et al., 2006; Chiarellia et al., 2003; 
Kamal et al., 2013; Wang et al., 2016; Li et al., 2014) have adopted combined damage-plasticity 
approach in the constitutive modeling of brittle solids such as concrete and rocks .

Furthermore, using of logarithmic damage model proposed by Carol et al. (2001), the elastic 
stiffness degradation and strain softening on post-peak region can be considered simultaneously. 
The damage law was formulated in terms of the so-called logarithmic damage variable and its 
associated thermodynamic force, which is physically meaningful and corresponds to the density 
of energy stored in the deformation of the damaged material. In this regard, to simulate of rock 
behavior, the logarithmic damage model has been implemented in the laboratory and field scales 
data (Molladavoodi & Mortazavi, 2011; Mortazavi & Molladavoodi, 2012). Although the coupled 
elastoplastic-damage model has been proposed in literature to simulate the pre-peak behavior, 
in this investigation, to take into account the elastic stiffness degradation, strain softening and 
irreversible strains at the same time especially on post-peak region, the coupled elastoplastic-
logarithmic damage model has been proposed.

Despite the fact that some micromechanical damage models based on homogenization 
procedure have been proposed recently to take into account sliding and damage mechanisms of 
microcracks (Zhu et al., 2008,2011; Molladavoodi, 2015), in this investigation a phenomenological 
logarithmic damage model coupled with plasticity has been applied for the sake of its simplicity 
in analysis of the complex behavior of rocks especially on post-peak region.

The proposed coupled elastoplastic-logarithmic damage model has been formulated in the 
framework of continuum thermodynamics using of the internal variables. In this regard, a Drucker-
Prager yield function has been applied for plastic loading of the material and a non-associated flow 
rule has been employed to control inelastic dilatancy. Hence, the formulation and computational 
procedure of the proposed model have been presented in this paper.

Although, the plastic models have usually been implemented in geomechanics numerical 
software in order to non-linear analysis of rock excavations, to take into account the damage 
process and plastic flow simultaneously, the combined implementation of damage mechanics 
and plasticity is essential. In this study, the proposed coupled elastoplastic-logarithmic damage 
model has been programmed and implemented into a commercial software to simulate the Oolithic 
limestone rock, finally, a number of load histories are examined to investigate the performance 
of the model.

2. The principles of the proposed model

In this paper, based on experimental investigations, a coupled elastoplastic-logarithmic 
damage model has been proposed for the description of mechanical behavior of rock materials. 
As classically, assuming the isothermal conditions and infinitesimal strains, the total strain tensor 
is decomposed into an elastic part (εe

ij) and plastic part (ε p
ij) (Shao et al., 2006):

 , e p e p
ij ij ij ij ij ij   (1)

For this class of materials, an isotropic damage can be used to introduce the macro-scale 
effect of microcracks existence in micro-scale. In a representative volume element (RVE) with 
randomly distributed microcracks, the isotropic and scalar damage variable (d) is defined in 
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a phenomenological way by the surface density of microcracks lying on a plane cutting the RVE 
(Lemaitre & Desmorat, 2005). The scalar damage variable varies from zero corresponding to un-
damaged state to one representing the damaged status. With applying a logarithmic change of the 
damage variable, the logarithmic damage variable (L) can be defined as below (Carol et al., 2001):

 

1 , 1
1

LL ln d e
d

  (2)

In the scalar damage variable case, the fourth order elastic stiffness tensor of damaged 
material (Eijkl) can be written as

 
01  0 1ijkl ijklE d E d   (3)

While E 0
ijkl is the undamaged fourth order elastic stiffness tensor (without microcracks). Neverthe-

less, in the logarithmic damage variable case, the fourth order elastic stiffness tensor of damaged 
material can be written as

 
0  0L

ijkl ijklE e E L   (4)

With postulation the coupling of damage process and plasticity, the free energy thermody-
namic potential function can be expressed by (Conil et al., 2004):

 
1
2

pp p
ij ij ijkl kl pklE  (5)

While γp and ψp are the plastic hardening internal variable and the locked plastic hardening 
energy respectively. Finally, the state equation for stress tensor was obtained by derivative of the 
free energy thermodynamic potential function with respect to the elastic strain tensor (Rashid 
et al., 2003).

 
 p e

ij ijkl kl ijkl klkle
ij

E E  (6)

On the basis of equation (6), the stress tensor increment (σ·ij) can be calculated as below

  e e
ij ijkl kl ijkl klE E   (7)

Therefore, a damage evolution and plastic flow rule must be determined to compute the 
stress tensor increment in equation (7). In this regard, to compute the increment of elastic stiffness 
tensor (E·ijkl), the derivative of elastic stiffness tensor with respect to logarithmic damage variable 
is multiplied by the logarithmic damage variable increment (L· ) as below

 
0  ijkl L

ijkl ijkl ijkl
E

E L e E L E L
L

  (8)

By substitution the equation (8) into (7), we have

   e e
ij ijkl kl ijkl klE E L   (9)
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The thermodynamic force associated with the scalar damage variable (Yd) representing the 
energy release rate as a result of the microcracks growth in rock is given by

 
01 1  

2 2
ijkl p pp p

d ij ij kl ij ij ijkl klkl kl
E

Y E
d d

  (10)

In the logarithmic damage variable case, the thermodynamic force associated with the 
logarithmic damage variable (YL) can be calculated as below

 
1 1  
2 2

ijkl p pp p
L ij ij kl ij ij ijkl klkl kl

E
Y E

L L
  (11)

The physical meaning of the thermodynamic force associated with the logarithmic damage 
variable is the current strain energy of rock. According to equation (11), the derivative of the 
thermodynamic force associated with the logarithmic damage variable with respect to the elastic 
strain tensor and logarithmic damage variable respectively can be calculated as following

 

pL
ijkl kl ijkle

ij

Y E  
 

 

1
2

ppL
ij ij ijkl kl kl

Y E
L

  (12)

2.1. Damage characterization

The damage criterion (Fd) which is the boundary of damage progression in rock is consist-
ing of two principal parts of loading and resistance functions. Therefore, it can be written as 
(Shao et al., 2006):

 
dF f loading r resist  (13)

According to equation (13), the loading function is usually expressed as function of the 
thermodynamic force associated with the damage variable. On the other hand, the resistance 
function represents the current damage energy release threshold (energy barrier). Therefore, in 
the scalar damage variable case, the damage criterion is expressed as following:

 ,d
d dF Y d Y r d   (14)

In order to consider the strain softening behavior on post-peak region, the resistance func-
tion is to be a decreasing power function of the scalar damage variable. Hence it can be written 
as (Salari et al., 2004):

 

0
0 1 , , 0 1K

f

r
r d r d K K

g
  (15)

Here r0 designates the modulus of resilience, i.e. the elastic strain energy at peak stress in 
uniaxial strength test as shown in Fig. 1, gf is the fracture energy per unit volume (area under 
the complete stress-strain curve) and the exponent K represents the ratio between the modulus 
of resilience and the fracture energy per volume.
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Fig. 1. The complete stress-strain curve in uniaxial strength test (Salari et al., 2004)

Fig. 1 shows the physical meaning of r0 and gf parameters clearly. It can be written as:

 
0 0 0

0

1 , .
2 fr g d  (16)

In the scalar damage variable case, using the equations (10) & (15) the damage criterion 
can be expressed as following equation:

 
0

0
1, 1
2

kpd p
d ij ij ijkl kl klF Y d E r d  (17)

On the other hand, in the logarithmic damage variable case, by substitution the equation (2) 
into (15), the resistance function and the damage criterion can be expressed as following

 0 
KLr L r e   (18)

 0
1,  
2

L e e KL
L ij ijkl klF Y L E r e  (19)

With application of the consistency condition on the above equation (F· L = 0), we have:

 
, 0

L
L eL L

L ije
L ij

r LY YFF Y L L L
Y L L

  (20)

Using the equations (12) & (20), the increment of logarithmic damage variable under elastic-
damage loading condition without plastic flow (·ε p

ij = 0) can be calculated as following

 

/ 1
2

L
ije

ij ij ij

eL kl kl

Y

L
r L Y r L
L L

  (21)
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In which the logarithmic damage multiplier (L· ) is a positive scalar expressed from the 
loading-unloading condition according to the Kuhn-Tucker relations (Shao et al., 2006):

 , 0, 0,  ,  0L L
L LF Y L L F Y L L   (22)

The rate form of the constitutive equation (9) under elastic-damage loading condition without 
plastic flow (·ε p

ij = 0) becomes:

  
edt

ij ijkl klE   (23)

In the above equation, Et
ij

ed
kl is the tangent elastic stiffness tensor in the elastic-damage condi-

tion. Substitution the increment of logarithmic damage variable obtained in equation (21) into 
equation (9) without plastic flow, the tangent elastic stiffness tensor is given by

 

 
ed

e e
ijqs qs klcd cdt

ijkl ijkl
L

E E
E E

r L Y
L L

  (24)

2.2. Plastic characterization

The rock plastic behavior is determined with yield function (FP), hardening and plastic 
flow rules. For rock materials, the dilatancy was usually considered by non-associated plastic 
flow rule with a suitable plastic function (Qp). For the sake of simplicity, the confining pressure-
sensitive Drucker-Prager model was used to describe the plastic behavior, whereas the plastic 
loading function has been modified to consider the effect of damage in plasticity (Zhang & 
Cai, 2001).

 2,P ' L
ij mF F L J e C  (25)

 2
p '

ij mQ F J   (26)

 
2,  

3
'kk

m ij ijJ s s  
 

Where, σkk denotes the first invariant of the ‘nominal’ stress tensor (σij), J'2 the second invariant 
of the deviatoric stress tensor (sij), α friction, C cohesion and β the dilation parameter. Tradi-
tionally the effective stress tensor has been usually used in the plastic yield function rather than 
nominal stress to take into account the damage effect on rock plastic behavior. In equivalence, 
the cohesion parameter can be multiplied by expression e–L (Salari et.al. 2004). The two Drucker-
Prager parameters α and C may be expressed in terms of the uniaxial tensile (ft ) and compressive 
strength (fc) values as

 

.2 23  and  2
3 3

c t c t

c t c t

f f f f
C

f f f f
  (27)
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Adopting a non-associated flow rule

 

p
p p
ij

ij

Q  (28)

Here ·ε p
ij is the rate of plastic strain tensor and λ·p is the plastic multiplier. In addition, λ·p is 

a non-negative scalar expressed from the loading-unloading condition according to the Kuhn-
Tucker relations:

 , 0,  0,   0P p P p
ijF F L F   (29)

In the absence of logarithmic damage evolution (L·  = 0), the plastic multiplier is determined 
from the plastic consistency condition (F· p = 0) as below

 

p

ijkl kl
ijp
p p

ijkl
ij kl

F E

F QE
  (30)

The rate form of constitutive equations (9) in elastic-plastic condition without logarithmic 
damage evolution (L·  = 0) can be expressed

 
ept

ij ijkl klE   (31)

In the above equation, Et
ij

ep
kl is the tangent elastic stiffness tensor in the elastic-plastic condi-

tion. Substitution the increment of plastic strain tensor in equation (28) into equation (9) without 
logarithmic damage evolution, leads to 

 

 
ep

p p

ijqs klcd
qs cdt

ijkl ijkl p p

ijkl
ij kl

F QE E

E E
F QE

  (32)

2.3. Coupled elastoplastic damage behavior

Generally, the plastic flow and damage evolution occur in a coupled process. Due to effect 
of plasticity and damage process on each other, the plastic and logarithmic damage multipliers 
should be determined simultaneously. Applying the plastic and damage consistency conditions 
leads to a coupled system of equations as

 

, 0

, 0

L
L eL L

L ije
L ij

P p
p

ij ij
ij

r LY YFF Y L L L
Y L L

F FF L L
L

  (33)



762

Substitution of the equations (9) & (12) into system of equations (33), a system of equations 
in matrix form can be expressed

 

p
LL L

ijee
ij ijij

ppp P p p
e ijkl klijkl kl ijkl ijij ij kl

r L YY Y Q
L L L

FF F F Q EE E
L

  (34)

The plastic and logarithmic damage multipliers were calculated based on the Cramer’s Rule 
to solve the system of equations as following

 

pp p p
L L

ijkl ij ijkl kle e
ij kl ijij ij ij

pp p p p
eL L

ijkl ijkl kle
ij kl ijij ij

Y Y QF Q FE E

L
r L Y Y QF Q F FE E
L L L

  (35)

 

p p p
eL L

ijkl kl ijkl kl ije
ij ij ijP

Pp P P P
eL L

ijkl ijkl kle
ij kl ijij ij

r L Y YF F FE E
L L L

r L Y Y QF Q F FE E
L L L

  (36)

3. The model algorithm

The classic step by step iterative approach including elastic prediction, plastic and dam-
age corrections was implemented to the numerical computation procedure according to the 
elastoplastic-logarithmic damage model. With assuming the increment of total strain at each step, 
the increments of stress, plastic strains and logarithmic damage variable are calculated in each 
element and added to their previous values based on the constitutive equation in rate form. The 
nth step of the numerical computational procedure can be described as following:

1) The tensors 1 1 1 1, , ,n n e n p n
ij ij ij ij  and the logarithmic damage variable L(n –1) 

have been determined at the end of previous step (n – 1).  
2) Assuming an increment of total strain (Δεij

(n)), the total strain tensor can be calculated as

 
1n n n

ij ij ij   (37)

3) The elastic behavior without plasticity and damage is assumed as trial elastic prediction

 
11 1 0,  

ne n n P n e n n nL
ij ij ij ij ij ijkl kle E   (38)
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4) The logarithmic damage criterion FL(YL, L) in equation (19) and plastic yield function 
FP(σij, L) in equation (25) are calculated and checked.

5) If FL ≥ 0 & FP < 0 only damage evolution occurs in absence of plasticity. The increment 
of logarithmic damage variable is calculated from equation (21), and then the logarithmic 
damage variable is updated as L(n) = L(n–1) + L· (n).

6) If FP ≥ 0 & FL < 0 only plastic flow occurs in absence of damage evolution. The plastic 
multiplier is computed according to equation (30). The increment of plastic strain tensor 
is calculated at nth step as following. Then the plastic strain tensor is updated.

 
/
2

1
3

nP
ijp P P

ij ijn n
ij

sQ

J
  (39)

 Based on equation (9), the stress tensor is corrected as following

 
1 0 nnn n pL

ij ij ijkl kle E   (40)

7) If FP ≥ 0 & FL ≥ 0, the plastic flow and damage evolution occur simultaneously. The 
plastic and damage multipliers are computed based on equations (35) & (36). The incre-
ment of plastic strain tensor is calculated from equation (39), and the logarithmic damage 
variable is updated at nth step. Finally based on equation (9), the stress tensor is corrected 
as following

 

1 0 nnn n e npL
ij ij ijkl kl kle E L   (41)

4. The developed model input parameters

For analysis of problems, the physical, mechanical and strength properties of constitutive 
model are considered as essential input parameters. Therefore, to use a constitutive model, the 
cognition of its input parameters is necessary. On the other hand, the simplicity and accuracy 
of determining the input parameters of the constitutive model is important. Hence, the input 
parameters of the elastoplastic-logarithmic damage model consist of three parts:

1) Elastic parameters: Including Young’s modulus (E0) and Poisson’s ratio (ν0),
2) Plastic parameters: Including Cohesion (C), friction (α) and dilation (β) parameters,
3) Damage parameters: Including Strain energy corresponding to the maximum strength 

(r0) and Fracture energy per unit volume (gf).

5. Analytical solution of the coupled elastoplastic 
logarithmic damage model

In this section, the behavior of rock sample under uniaxial tensile strength test (UTS) condi-
tion has been investigated by closed form solution method. In this test, the maximum principal 
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stress (σ1) is in the direction of the positive y axis (σ1 = σyy ≥ 0), while all other stress components 
equal to zero. As previously mentioned, the logarithmic damage criterion in UTS test can be 
written as below:

 
0

0
1,
2

tK LL L
L i i tF Y L e E r e   (42)

According to the above equation, the thermodynamic force associated with logarithmic 
damage is written as follow:

 
01 1  

2 2
L

L i i L i iY e E Y   (43)

Due to the fact that the loading is in y direction, the equation (42) can be written as 
below:

 0
1,
2

tK LL
L y y tF Y L r e   (44)

During the loading, no damage evolution will occur when the damage criterion is negative 
(F +L < 0). Assuming zero initial damage (L0 = 0), the loading process will be continuing until 
damage criterion turns from negative value to zero (F +L = 0). In fact, this moment of loading 
represents the peak strength in stress-strain curve. Therefore, in this moment, the elastic strain 
energy corresponding to the maximum uniaxial tensile strength test (r0t) will be determined as 
follows:

 

2

0 0 0
1, 0 0
2 2

tK LL t
L t t t tF Y L r e r

E
  (45)

By continuing the process of loading, the damage criterion turns from zero to positive  value 
(F +L > 0). Therefore, at this moment of loading, damage evolution will occur (L· ≠ 0). In this 
regard, by substitution equation (45) into (42), the damage criterion is written as follow:

 

2
0

0
1, 0
2 2

tK LL L t
L y yF Y L e E e

E
  (46)

According to the above equation, the exponential variable (e–L) can be written as follow:

 

2
1 tKyL

t
e   (47)

By substitution equation (47) into stress-strain equation, the relationship between stress and 
strain is calculated as follow:

 

1
10 0 ,   

t

t

K
Ky y yL L

y y t t y t
t t t

e E E e   (48)
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Finally, by reversing the above equation, the elastic-damage strain (εy
ed) is determined as 

below:

 

1
1

t

t

K
Kyed

y t
t

 (49)

On the other hand, in this paper, the Drucker-Prager yield criterion has been employed 
to calculate the irreversible strains. In this regard, according to equation (25), the plastic yield 
function can be written as follow:

 2
P ' L

mF J e C   (50)

According to equation (25), in UTS test:
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2
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Similar to the damage mode, at the initial stage of loading, the value of plastic yield criterion 
(equation (50)) is negative (FP < 0). Therefore, no plastic flow occur. By increasing the loading, 
the value of plastic yield function turns from negative to zero in a certain stress value (FP = 0). 
In the presence of plastic flow and absence of damage evolution, according to the equation (51), 
the plastic yield stress can be determined as below:

 

01 2 0, 0  
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p L
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CF e C L   (52)

By continuing the process of loading, after the strain corresponding to tensile strength (εt), 
in addition to plastic flow, the damage evolution will occur simultaneously. Therefore, the plastic 
yield function has a softening behavior. In this regard, by substitution equation (49) into (51), 
the relationship between stress and strain can be written as below:
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Finally, by reversing the above equation, the elastoplastic strain (εep) is determined as below:
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According to equations (51) and (54), the complete stress-strain curve based on elastoplastic-
logarithmic damage model can be drawn. The Fig. 2 shows the complete stress-strain curve for 
Oolitic limestone in UTS test condition based on the analytical solution using input parameters 
in Table 1. In this figure, the violet and red lines represent elastic-damage and elastoplastic 
curves respectively.
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Fig. 2. The complete stress-strain curves based on elastic-damage and elastoplastic models

In this step, the main purpose is to combine the separate stress-strain curves based on 
elastoplastic and elastic-damage models and to calculate the united stress-strain curve based on 
coupled elastoplastic-logarithmic damage model by analytical method.

According to Fig. 3, in the first stage, an arbitrary level of stress was determined on the figure 
(K). Now, from this level of stress, a line parallel to the strain axis was drawn. The intersection 
of this line with the stress-strain curves corresponding to elastoplastic and elastic-damage models 
have been called B and C respectively.

K 

 

B 

A

C D 

Fig. 3. The combined stress-strain curve based on the coupled elastoplastic damage model
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In the second stage, based on the theory of plasticity, due to the lack of stiffness degradation, 
the slope of unloading (red) line is parallel to the initial elastic modulus. The intersection of this 
line with strain axis has been called A. In fact, OA represents the irreversible strain.

In the third stage, based on the theory of damage, due to the lack of irreversible strain in 
elastic-damage stress-strain curve, the unloading (violet) line returns to origin point (O). Finally, 
to obtain the combined stress- strain curve corresponding to the coupled elastoplastic-damage 
model, a green line was drawn parallel to the violet line from the point A. The intersection of this 
green line and arbitrary stress level (black line) has been called point D which has been located on 
the combined stress-strain curve based on the coupled elastoplastic-logarithmic damage model.

By repeating the above steps at different stress levels, all points of the stress-strain curve 
based on the coupled elastoplastic damage were obtained. Accordingly, the stress-strain rela-
tion based on the coupled elastoplastic logarithmic damage model in post peak region can be 
calculated as follows:
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Finally, by substitution equations (51) and (54) into (55), the above equation can be written 
as below:
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6. Numerical simulation with the proposed 
constitutive model

In this investigation, to simulate the behavior of rock, the coupled elastoplastic-logarithmic 
damage model programmed and implemented in a commercial software environment. Similar to 
all of the constitutive models, in this developed model, the new stress tensor is calculated based 
on applied incremental strain tensor.

Generally, to investigate the softening behavior of rocks on post peak region, the complete 
stress-strain curve obtained by servo control test machine is necessary. In this regard, the area 
under this curve represents the fracture energy per unit volume (gc) of rocks. In addition, the 
shape of stress-strain curve especially after maximum point represents the mechanism of fracture 
and brittleness of rocks. In this section, in order to numerical simulation under various loading 
conditions, the behavior of an Oolitic limestone with UCS and UTS equal to 68 MPa and 6.8 
MPa respectively reported by Brady & Brown, 2005 has been selected as a basis of modeling. 
The complete stress-strain curve of the Oolitic limestone within unloading and reloading cycles 
(stiffness degradation) and plastic strains has been shown in Fig. 4.

In this regard, in the table 1, the parameters of Oolitic limestone reported in Brady & Brown, 
2005 have been provided as input data for numerical simulation based on the developed model.
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TABLE 1

Rock properties used in the numerical analysis (Brady & Brown, 2005)

Elastic parameters Plastic parameters Damage parameters

E 0 = 34 GPa
ν0 = 0.3

C = 5 MPa
α = 0.4724
β = 0.4724

gf cnum = 110 MPa
gf tnum = 7 MPa

According to table 1, there are 7 material parameters needed to calibrate the elastic, plastic 
and damage behavior. Representative values for the tested Oolitic limestone have been used in 
the numerical simulation. It should be noted that, in this article, to simulate the behavior of rock 
according to the proposed model, a rate of velocity equal to 0.2 mm per second has been applied 
at the top of an element in vertical direction. 

6.1. Uniaxial compressive strength test (UCS)

The complete stress-strain curve simulated under uniaxial compressive strength test condi-
tions based on the elastic-logarithmic damage constitutive model without plastic flow is shown 
in Fig. 5.

As shown in Fig. 5 on post-peak region, the strain softening behavior and stiffness degrada-
tion resulting from damage occur during the cycles of unloading and reloading without any plastic 
strain. To show the actual behavior of rocks, in addition to the damage evolution, simulation of 
the plastic deformation which occur under loading and unloading conditions is essential. Hence 
the complete stress-strain curve of Oolitic limestone simulated with the coupled elastoplastic-
logarithmic damage model under UCS test conditions has been illustrated in Fig. 6.

According to Fig. 6, if the developed coupled elastoplastic-logarithmic damage model has 
been employed instead of only damage model, the irreversible strains due to the plastic flow can 
be simulated in addition to the stiffness degradation and softening behavior.

Fig. 4. The complete stress-strain curve of Oolitic limestone (Brady & Brown, 2005)
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Fig. 5. The complete stress-strain curve simulated based on the elastic-logarithmic damage model 
without plastic flow
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Fig. 6. The complete stress-strain curve of Oolitic limestone simulated 
with the coupled elastoplastic-logarithmic damage model

According to the simulation results, three distinctive regions can be observed. In the first 
phase OA, the material behavior remains linear elastic. Hence neither plastic flow nor damage 
evolution occur in this phase. The slopes of the axial stress-strain curves are the same as the Young 
modulus. As can be seen in the Fig. 6, after the yield stress (point A), the behavior of Oolitic 
limestone changes from elastic to plastic hardening immediately. The phase AB corresponds to 
hardening behavior prior to peak strength as a result of plasticity. This process continues until the 
maximum point (peak strength). In the third phase BC, the damage evolution law also is activated. 
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In other words, after this point (B), in addition to softening behavior, according to the cycles of 
unloading and reloading, the plastic flow and stiffness degradation occur simultaneously. Finally, 
softening behavior, stiffness degradation and irreversible strains after peak strength because of 
simultaneous plastic flow and damage evolution can be seen in Fig. 6.Correspondingly, the yield 
stress (point A) and peak strength (point B) on the stress-strain curve represent the plastic yield 
surface and damage resistance respectively.

In Fig. 7, to validate the developed model, the complete stress-strain curves for Oolitic 
limestone based on experimental data and numerical simulation have been illustrated side by side.
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Fig. 7. The complete stress-strain curves corresponding to numerical simulation and experimental data for 
Oolitic limestone

It can be observed in Fig. 7 that the mechanical responses simulated with the developed 
coupled elastoplastic-logarithmic damage model are in agreement with the experimental Oolitic 
limestone behavior consisting of initial linear elastic, hardening before peak strength and finally 
softening after peak strength. 

According to Fig. 7, in addition to comparing the complete stress-strain curves corresponding 
to experimental data (red line) and numerical simulation (blue line), we can have a good judge 
about the developed model. In this regard, the initial portions of the curves including elastic and 
plastic hardening phases are substantially consistent. On the other hand, the plastic yield surface 
and damage resistance on the both curves are matched together. The softening behavior of rock 
sample is evident on the post peak region for two curves. In other words, according to Fig. 7, it 
can be concluded that the developed model is predominantly acceptable. 

6.2. Uniaxial tensile strength test (UTS)

Fig. 8 illustrates the simulated complete stress-strain curve of Oolitic limestone in uniaxial 
tensile strength conditions by implementing the developed elastoplastic-logarithmic damage 
model.
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Fig. 8. The stress-strain curve under UTS condition based on the developed coupled 
elastoplastic logarithmic damage model

According to the Fig. 8, the simulated irreversible strains and stiffness degradation based 
on the developed coupled elastoplastic-logarithmic damage model within softening behavior is 
evident. Due to the low tensile strength compared to the compressive strength, the plastic hard-
ening phase does not occur in this test. In other words, before reaching the plastic yield surface, 
the damage process occurs. Therefore, in this test, instead of three distinctive phases, two phases 
are observed. Initially the material behaves linearly elastically until the plastic dilatation reaches 
a critical limit defined by the damage resistance (point B) of the material, and the damage pro-
cess is mobilized resulting in large deterioration of strength down to a residual strength level as 
well as in progressive damage of the elastic stiffness in the softening regime. In other words, on 
the second phase AB, in addition to softening behavior, the plastic flow and damage evolution 
occur simultaneously.

6.3. Triaxial compressive strength test

One of the observed mechanisms reported by different researchers concerns the behavior of 
rocks under triaxial loading conditions and its dependency on the confining pressure. According 
to Fig. 9, with increasing confining pressure the rock strength and ductility increase too (Brady 
& Brown, 2005). 

In this section, the main objective of the simulation of triaxial compressive strength test is 
to investigate the dependency of the strength and ductility on confining pressure. Accordingly, 
the Oolitic limestone was modeled under triaxial compressive loading conditions based on the 
developed coupled elastoplastic-logarithmic damage model. For this purpose, the confining 
pressures equal to 3 and 6 MPa were applied on both sides of the sample. As a result of apply-
ing confining pressure, the peak strength of rock changes from 68 MPa to 75 MPa and 84 MPa 
respectively as shown in Fig. 10.
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Fig. 10. The simulated increase of strength and ductility based on the coupled elastoplastic-logarithmic 
damage model

6.4. Investigation of the rock brittleness based 
on the proposed model

To determine the brittleness and ductility of the rock based on the proposed constitutive 

model, the parameter 0

f

r
K

g
 can be used as a controlling parameter. So that, by increasing the 

value of the controlling parameter, the brittleness increases, and consequently the ductility de-
creases. In this section, assuming constant parameter r0 (the elastic strain energy corresponding 
to the uniaxial compressive strength), the effect of variations of parameter gf  (fracture energy 

Fig. 9. Complete stress-strain curves obtained in triaxial compressive tests on Tennessee Marble at the confin-
ing pressures indicated by the numbers on the curves (Brady & Brown, 2005)
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per unit volume or area under the complete stress-strain curve) on the complete stress-strain 
curve has been investigated.

In Fig. 11, the effects of increasing parameter gf on the complete stress-strain curve in the 
uniaxial compressive strength test (UCS) for Oolitic limestone is shown.
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Fig. 11. The complete stress-strain curve based on the variations of parameter gf.

According to Fig. 11, while parameter r0 is equal to 68 KPa, the parameter gf varies from 
85 KPa to 680 KPa to investigate the effect of this parameter on rock ductility based on the 
coupled elastoplastic-logarithmic damage model. Accordingly, with increasing parameter gf 
the behavior of rock changes from brittle to ductile gradually, for the area under the complete 
stress-strain curve increases.

7. Conclusion

The proposed coupled elastoplastic-logarithmic damage model has been formulated within 
the framework of the principles and laws of irreversible thermodynamics. In the developed model, 
it is assumed that no damage evolution and stiffness degradation will occur prior to the maximum 
strength (pre peak). In other words, the strain energy applied by the loading is stored in these type 
of materials as much as possible. Finally, due to sudden release of this energy, rock is immediately 
fractured. In addition to the small number of input parameters, the simplicity in the determination 
of them is another characteristic of the proposed model. In this regard, all parameters used in the 
proposed model are calculated by standard experiments. Using the logarithmic variable damage, 
the thermodynamic force associated with damage gets a certain physical meaning.

 Finally, the experimental Oolitic limestone rock behavior was simulated based on the de-
veloped model. The numerical simulation results based on the coupled elastoplastic-logarithmic 
damage model in experimental scale shows both irreversible strain resulting from plastic flow, 
stiffness degradation due to damage evolution and softening. Furthermore, the confinement 
pressure dependency of rock behavior was simulated in according to experimental observations. 
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