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A SIMULATED ANNEALING BASED OPTIMIZATION ALGORITHM FOR AUTOMATIC 
VARIOGRAM MODEL FITTING

SYMULACJA ALGORYTMU OPTYMALIZACYJNEGO PROCESU ODPRĘŻANIA 
DLA AUTOMATYCZNEGO DOPASOWANIA MODELU WARIOGRAMU

Fitting a theoretical model to an experimental variogram is an important issue in geostatistical studies 
because if the variogram model parameters are tainted with uncertainty, the latter will spread in the results 
of estimations and simulations. Although the most popular fitting method is fitting by eye, in some cases 
use is made of the automatic fitting method on the basis of putting together the geostatistical principles 
and optimization techniques to: 1) provide a basic model to improve fitting by eye, 2) fit a model to a large 
number of experimental variograms in a short time, and 3) incorporate the variogram related uncertainty 
in the model fitting. Effort has been made in this paper to improve the quality of the fitted model by 
improving the popular objective function (weighted least squares) in the automatic fitting. Also, since 
the variogram model function (£) and number of structures (m) too affect the model quality, a program 
has been provided in the MATLAB software that can present optimum nested variogram models using 
the simulated annealing method. Finally, to select the most desirable model from among the single/multi-
-structured fitted models, use has been made of the cross-validation method, and the best model has been 
introduced to the user as the output. In order to check the capability of the proposed objective function 
and the procedure, 3 case studies have been presented.
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Dopasowanie modelu teoretycznego do eksperymentalnego wariogramu jest kluczowym zagad-
nieniem w badaniach geostatystycznych ponieważ jeśli parametry modelu wariogramu obarczone są 
niepewnością, to otrzymamy znaczny rozrzut wyników obliczeń i symulacji. Pomimo, że najpopular-
niejszą metoda dopasowania jest dopasowanie ‘na oko’, w niektórych przypadkach wykorzystuje się 
automatyczne metody dopasowania modelu oparte na zasadach geostatystyki i optymalizacji w celu: 
1) dostarczenia podstawowego modelu do dopasowania ‘na oko’; 2) dopasowania modelu do większej 
ilości eksperymentalnych wariogramów w krótkim okresie czasu; 3) uwzględnienia niepewności związanej 
z wariogramem w dopasowaniu modelu. W pracy podjęto próbę poprawy jakości dopasowania modelu 
poprzez wprowadzenie zmodyfikowanej popularnej funkcji celu (ważone najmniejsze kwadraty) do au-
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tomatycznego dopasowania. Ponadto, ponieważ funkcja modelu wariogramu (L) i ilość struktur (m) ma 
także wpływ na jakość modelu, opracowano program w środowisku MATLAB który podaje optymalne 
modele wariogramu w oparciu o metodę symulacji odprężania. W części końcowej wybrano najkorzyst-
niejszy model spośród modeli dopasowania z wykorzystaniem metody walidacji krzyżowej i najlepszy 
model przedstawiany jest użytkownikowi. W celu zbadania możliwości stosowania proponowanej funkcji 
celu i przedstawionej procedury, zaprezentowano trzy studia przypadku.

Słowa kluczowe: automatyczne dopasowanie wariogramu, geostatystyka, optymalizacja, symulacje 
procesu odprężania

1. Introduction

A key stage in geostatistical studies is the structural analysis of the regionalized variable 
to describe the spatial variations of the desired variable (grade, thickness, accumulation, etc.) 
(Chiles & Delfiner, 2012). It is the variogram that characterizes the spatial variability of a re-
gionalized variable (Pardo-Igúzquiza, 1999). Generally, the variogram of a regionalized variable 
is unknown and the experimental variogram should be calculated using the data gathered from 
the regionalized variable. Using the moments method, the experimental variogram is calculated 
as follows(Matheron, 1965):
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where γ̂(h) is the value of the experimental variogram for the vector h= |xi – xj|, N(h) is the number 
of data pairs for h, and z(xi) and z(xj). are the observed or experimental value at points xi and xj. 
After calculating the experimental variogram, it is necessary that an appropriate model be fitted to 
it; this is a basic step in geostatistics (Journel & Huijbregts, 1978, Christakos 1984) which largely 
affects the computation of the krigging weights (Gorsich & Genton, 2000) and, hence, it affects 
the efficacy of the maps obtained from the krigging estimator and the geostatistical simulation 
(Genton, 1998a). Although fitting by eye (a procedure in the graphical geostatistical software 
based on trial and error) is still the most common method of fitting a model to an experimental 
variogram, with the increasing use of optimization methods in geostatistical studies in the past 
and recent years, much effort has also been made regarding the automatic fitting of the optimum 
model to the experimental variogram. Automatic fitting is carried out: 1) to provide a basic model 
to enhance fitting by eye, 2) when it is necessary that a model be fitted to a large number of 
experimental variograms in a short time, and 3) when it is necessary that the uncertainty related 
to the experimental variogram be considered in fitting a model to it (Pardo-Igúzquiza, 1999). 
The history goes back to formulating the problem of fitting a mel to an experimental variogram 
based on such criteria as least squares (David, 1977; Cressie, 1979), generalized least squares 
(Cressie & Hawkins, 1980, Taylor & Burugh, 1986, Genton, 1998b), weighted least squares 
(Starks & Fang, 1982, Cressie, 1985, Jian et al., 1996), and weighted and ordinary least squares 
(McBratney & Webster, 1986).

 In the first program developed for the automatic fitting of the variogram model, use was 
made of the weighted least squares criterion for the modeling of the objective function and the 
problem was solved using the quadratic programming method after incorporating such constraints 
as “monotonocity”, “smoothness” and “convexity” (Shapiro & Botha, 1991). Later, use was 
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made of the least squares criterion and the simplex optimization method in the VARFIT program 
(Pardo-Igúzquiza, 1999) developed in the FORTRAN environment. Genton (Gorsich and Gen-
ton 2000) made an effort in non-parametric estimation of variogram and its derivatives for the 
fitting of the appropriate model in the Matlab environment (version 5). Paula & Clayton (2003) 
enhanced the objective function of the experimental variogram considering lags intervals and 
the number of pairs at every point (Paula F. Larrondo et al., 2003). Desassis (Desassis & Renard, 
2013) developed an algorithm, based on the numerical algorithm, to find the optimum model 
based on the objective function (5) for single/multi-variable cases. Many of the former methods 
have been developed to fit a model to a direct experimental variogram, but Emery (Emery, 2010) 
studied the fitting of a coregionalization model extensively and proposed 3 new algorithms for 
unknown sill, known sill, and Plurigaussian models. The objective function in his studies was 
weighted least squares and use was made of the extended Goulard-Voltz, Simulated Annealing, 
and Levenberg-Marqurdt methods respectively to find the optimal solutions.

Effort has been made in this paper to fit the best theoretical nested variogram model to an 
experimental variogram. The fitted models have been selected from among spherical, exponential, 
gaussian, and cubic models that can be 1, 2, or 3-structured. Since most simulation algorithms and 
geostatistical estimations need a variogram model, this research makes possible for the geosci-
ence researchers to select, from among the many possible cases, the most appropriate variogram 
model with due consideration to the number of structures.

2. Materials and methods

2.1. Problem formulation

 For the random variable Z, the experimental variograms γ̂  are calculable for different vector 
lags hi; i = 1,..., n, and the optimum model γ should be fitted to it. An appropriate model is one 
that its value has the least distance from those of the experimental variogram γ̂(hi) in every lag 
hi or, in other words, the value of the following objective function should be a minimum (David, 
1977; Journel & Huijbregts, 1978; Clark, 1979):

 

2ˆ 2  2  i i
i

Minimize h h   (2)

Since the amount of the experimental variogram uncertainty is different for different lags, the 
weights of all the lags should not be the same (Webster & Oliver, 2001). The variogram behavior 
near the origin specifies the spatial continuity of the regionalized variable, and the quality of fit-
ting a model to the primary lags is more important compared to the intermediate and end ones. 
Therefore, it is necessary that this point be considered in the objective function in the form of 
adding the value of the theoretical variogram, for the desired lag, in the denominator. The result 
of this correction is that the more the lag distance increases from the origin, the less its effects 
will be on the value of the objective function (Fig. 1).

The number of existing pair points for every lag, on the basis of which the experimental 
variogram has been calculated, is another point to consider; the more the number of pair points, 
the more the reliability of the value of the experimental variogram. This point can be applied in 
the objective function using the coefficient of the number of existing pair points for every lag. 
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In 1985, Cressie (Cressie, 1985) modified the above objective function in the following form to 
be able to consider the effects of the above 2 peculiarities:
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where Nh( j) is the number of pairs at every point in calculating the variogram, γ̂(h ( j)) is the value 
of the experimental variogram in h( j), and γ(h ( j);λ) is the value of the theoretical variogram 
for the estimated parameters (λ). Webster& McBratney 1989 studied the effects of adding these 
weights and concluded at the adding improved the results.
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Fig. 1. Trend of the reduction of the value of 1/γ2 with respect to the lag distances for the spherical model 
with a sill and range of 20 and 75 respectively

 In fitting the optimum model, besides variogram model parameters (nugget effect, sill and 
range), the variogram model function £ and the number of the structures m are effective too. The 
rate of the effect of the variogram function increases especially in nested models where every 
structure can follow one of the models.

 In many experimental variograms, it is observed that in end lags (after reaching the 
value of the sill), the trends are rising, falling or sinusoidal (Fig. 3); therefore, the value of 

(γ̂(h ( j)) – γ (h ( j); λ))2 increases considerably. After range, coefficient 2
1

;h j
 reaches 

a constant number for spherical, gaussian and cubic models (for the exponential model it 
tends to a constant value), and Nh( j) does not vary much in the end lag; therefore, coefficient 

2 ;
h jN

h j h j
 cannot compensate for the increase in (γ̂(h ( j)) – γ (h ( j); λ))2 and causes the 

sill of the fitted optimum model to distort. To adjust this increase, it is necessary that a “distance” 
function be added to the objective function. Now, since by adding h in the denominator of the 
objective function the weights allocated to the preliminary points will be illogically very large 
(compared to other points) (Fig. 2), to solve this problem, h will be substituted with h  in the 
denominator of relation 3 and the objective function will be rewritten as follows:
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Fig. 2. a) Reduction trend of 1/h with respect to the lags distances, b) Reduction trend of 1/ h  
(both with respect to lags distances)

Effects of the modified component (applied in the objective function) on drawing near the 
sill of the fitted variogram model to the real values are shown in Fig. 3. Fig. 3-a is the model fit-
ted based on relation 3 wherein the value of the sill of the fitted variogram model is smaller than 
the desirable value due to the falling trend in the end lags and Fig. 3-b is related to the model 
fitted using the modified objective function of relation 4 wherein the value of the sill of the fitted 
model has increased and looks more desirable.

Fig. 3. Models fitted to the experimental variogram: a) with the Cressie weighting relation and, 
b) with the modified relation

a

b
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2.2. Decision variables

Decision variables in this research are the variogram model parameters including the nugget 
effect, sill, and range, and are modeled in the form of the linear ψ((2n +1),1) where n is the number 
of the structures of the variogram model. Its first array is the nugget effect and arrays 2i and 2i +1 
are respectively the sill and the range of the i th structure. Another decision variable that affects 
the output of the algorithm is the variogram model selected for every one of the structures. The 
possible structures considered in the present study are spherical, gaussian, exponential, and cubic 
(their specifications are given in Table 1). Since the variogram model type was not definable 
in the form of a quantitative decision variable, the optimization problem was solved based on 
different arrangements of the type of model used for the variogram model structures; the better 
options were then selected based on the value of the objective function.

TABLE 1

Specifications of the common variogram models

33 1            for ,
2 2

                                      for ,

h hh C h a
a a

h C h a

 Spherical 
model

31 exp hh C
a

 Exponential 
model

231 exp hh C
a

 Gaussian 
model

2 3 5 735 7 37     for ,
4 2 4

                                                               for ,

h h h hh C h a
a a a a

h C h a

 Cubic 
model

2.3. Simulated annealing

The simulated annealing (SA) algorithm is a simple, effective, and meta-heuristic optimi-
zation algorithm for the solution of NP optimization problems. Similar to most meta-heuristic 
algorithms, it has been established by modeling and simulating one of the nature’s laws or 
phenomena. It has been presented based on substituting physical elements in the process of 
physical annealing (system state, state variation energy, temperature, and freezing state) with the 
elements of the optimization problem (possible solution, cost, neighborhood solution, control-
ling parameter, and the heuristic solution) (Kirkpatrick et al., 1983). This algorithm consists of 
2 basic mechanisms: 1) producing the substitute, and 2) an acceptance rule (Lee & El-Sharkawi, 
2008). To solve an optimization problem, the SA algorithm first starts with a primary solution 
and then, in an iteration loop, moves to the neighboring solution. If the latter is better than the 
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current one, the algorithm substitutes it (moves to it); otherwise, it will accept it as the present 
solution with a probability P which is found as follows:

 

f
TP e   (5)

where Δf is the difference between the objective function of the present solution and that of the 
neighboring one, and T is the temperature. Many iterations are run at every temperature and then 
the temperature is reduced gradually. In the preliminary steps, very high temperatures are adjusted 

so that worse solutions can be more prob-
able to accept. With the gradual decrease 
in temperature, there is less probability 
for the worse solution to be accepted in 
the final steps; therefore, the algorithm 
converges on a near-optimal solution. The 
algorithm flow-chart is given in Fig. 4. 
The simulated annealing algorithm has 
been used to find the optimal solution of 
such different mining problems as opti-
mally locating the additional drillholes 
(Soltani & Hezarkhani, 2009; Soltani-
Mohammadi & Hezarkhani, 2013), cal-
culating the permissible charge weight for 
blasting operations (Soltani-Mohammadi 
et al., 2012), geophysics studies (Luo 
et al., 2013), controlling and guiding 
exploration and extraction operations 
(Debba et al., 2009; Xia et al., 2011), and 
simulating and estimating (Deutsch & 
Journel, 1992; Lee & Ellis, 1997; Peredo 
& Ortiz, 2011). Reasons for their high us-
age are: 1) they do not have to incorporate 
problem assumptions, and 2) they rapidly 
find the near optimal global solution. To 
run the simulated annealing algorithm, 
it is necessary that, first, such annealing 
parameters as the annealing function, 
the temperature updating function, and 
the initial temperature be specified. The 
annealing function is either “Boltzmann” 
or “fast”, and the temperature updating 
function is selected from among expo-
nential, logarithmic, and linear functions. 
The initial temperature can be defined 
both as a number or a function.

 

Fig. 4. Simulated annealing algorithm
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3. Case studies

Three case studies have been presented to assess the capability of the proposed algorithm.

3.1. Case study 1

This case study is related to the automatic fitting of a model suitable to an omni-directional 
experimental variogram of an Al2O3 grade dataset with a variance equal to 21.3. This experi-
mental variogram has been calculated in 20 lags with an initial lag of 30 m. Fig. 6 shows this 
experimental variogram together with the number of pair points in every lag. Running the algo-
rithm necessitates the determination of the preliminary parameters of the annealing; to determine 
these parameters, different cases were studied. Fig. 5 shows the effects of the selection of the 
annealing function on the process of optimization. As shown, if the “fast” function is selected 
as the annealing function: 1) the time needed to reach the near-optimal solution will be reduced 
(Fig. 5c), and 2) it will be less probable for the solution to be trapped in a local optimal solution 
(Fig. 5(a and b)). A linear function was selected for temperature updating, and the initial anneal-
ing temperature was taken to be 300 degrees.

Fig. 5. Results from running the simulated 
annealing algorithm: a) “fast” anne-
aling function, b) Boltzman annealing 
function, and c) comparison of a) 
and b) regarding the best value of the 
objective function
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Fig. 6. The exponential variogram of the first dataset

Fig. 7 shows the results from running the algorithm; 4 fitted, single-structured, optimum 
models can be seen in the first row. As shown, the spherical (7-1), cubic (7-2), and gaussian 
(7-3) models are fitted acceptably, but the exponential models (7-4) are not so. Four of the best 
2-structured and 3-structured models fitted to the experimental variogram are given in rows 2 
and 3. As shown, in Figs. (7-5) to (7-11) (except Fig. (7-6)), one structure in all the nested models 
is cubic. Although using the cubic model has had acceptable results in the fitting of the variogram 
model, it should be noted that it cannot be used in such business software brands as “Datamine”, 
“Surpac”, etc and in non-business ones such as “gslib”, “Wingslib”, SGeMS, etc.

Cross-validation was carried out in this research based on the 12 better models (Fig. 7), 
and the results for Mean Error (ME), Mean Squared Error (MSE), Correlation Coefficient (CC), 
and Combined Error (CE) are given in Table 2. ME, MSE, and CE values are found as follows:

 1
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i i
i

ME Z x Z x
N
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MSE Z x Z x
N
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 1Combined Error abs CC MSE abs ME   (8)

where, for the case being studied, Z(xi) is the real value of the component (grade, thickness, etc), 
Ẑ(xi). is the estimated value of the component based on the fitted variogram model, and N is the 
number of points 
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The least CE value is related to the single-structured gaussian model (5.1+15.6 gaussian 
(177)) which is shown in Fig. 7-3 as the selected model and marked with an asterisk (*) at the 
left corner. The worst among these 12 models is the sgle-structured exponential model.

TABLE 2

CC, MSE, ME, and CE values for the first dataset

Combined ErrorMEMSECCn.
23.940.08823.190.351
25.36–0.11924.460.212
20.250.03119.610.393
30.110.03829.220.144
21.560.09720.790.245
22.96–0.25921.900.216
24.66–0.12423.810.277
24.79–0.11823.710.048
23.43–0.15922.420.169
22.46–0.26721.410.2110
22.18–0.15321.240.2111
22.09–0.21921.110.2412

Fig. 7. Models proposed for the basic model of fitting by eye for the first set of data 

3.2. Case study 2

Effort has been made here to automatically fit a model suitable to an Omni-directional 
experimental variogram of an SiO2 grade dataset with a variance equal to 8.2. This experimental 
variogram has been calculated in 18 lags with an initial lag length of 40 m. Fig. 8 shows the 
experimental variogram together with the number of pair points in every lag. 
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Fig. 8. The experimental variogram of the second set of data

Fig. 9 shows the results of running the algorithm. There are 4 fitted, single-structured, opti-
mum models shown in the first row. As shown, the exponential model (9-1) has been fitted well, 
but, considering the structure of the experimental variogram, the spherical (9-2), cubic (9-3), and 
gaussian (9-4) models have not been fitted well. Four best 2-structured and 3-structured models 
fitted to the data are shown respectively in rows 2 and 3 of the figure. Similar to case study 1, 
in some cases, with an increase in the number of structures, the quality of the fitted model has 
somewhat improved, but it is negligible due to the considerable increase in the volume of calcula-
tions and the increased time required for the algorithm running and simulation.

Cross-validation of this study too was carried out based on the 12 better models of Fig. 9; 
ME, MSE, CC, and CE results are given in Table 3. As shown, the least CE is related to the 
single-structured exponential model (0.14+8 exponential (189)) which is shown in Fig. 9-1 as 
the selected model and marked with an asterisk (*) at the left corner.

TABLE 3

CC, MSE, ME, and CE values for the second set of data

Combined ErrorMEMSECCn.
54321

4.52–0.1194.090.701
6.730.0346.170.482
7.210.0696.570.433
5.860.0035.420.564
6.91–0.0076.350.455
5.62–0.1315.100.616
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54321
6.95–0.0856.310.457
7.400.0396.790.448
9.18–0.0528.260.139
8.52–0.0387.710.2210
6.04-0.0395.570.5711
8.94-0.0218.090.1712

Fig. 9. Models proposed for the basic model of fitting by eye for the second dataset

3.3. Case study 3

The experimental indicator variogram has been worked out for a thickness dataset with 
a variance equal to 0.22. This experimental variogram has been calculated in 20 lags with an 
initial lag length of 250 m, an azimuth of 135 degrees, and a dip of 0 degree. Fig. 10 shows the 
shape of this experimental variogram together with the number of pairs in every lag, and Fig. 11 
shows the results of running the algorithm. Four fitted, single-structured optimum models are 
shown in the first row of Fig. 11. As shown, the cubic (11-1) and spherical (11-2) models have 
been fitted well, but the fitted exponential and gaussian models are not so. It is seen that the 
quality of the fitted model has not been improved considerably due to the increase in the number 
of structures. But, this small improvement will lead to the complexity of the variogram model 
which increases the volume of calculations and the time needed to run the krigging algorithm; 
therefore, it is negligible, especially when the number of grid points and data are many, or when 
search volume neighborhood methods are not used.
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Fig. 10. The experimental variogram of the third dataset

Fig. 11. Models proposed for the basic model of fitting by eye for the third dataset
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4. Conclusions

In many experimental variograms, we observe rising, falling, or sinusoidal trends in the end 
lags, and this causes the variogram sill to deviate from the desirable value and go up or down; 
we added h  in the denominator of relation 3 to modify this effect. These case studies showed 
that we were able, by this modification of the objective function, to minimize the effects of these 
trends and bring the variogram sill closer to the desirable value.

As shown, increasing the number of structures from 2 to 3, does not considerably improve 
the quality of the fitted model, but it will lead to the complexity of the variogram model which 
increases the volume of calculations and the time needed to run the krigging algorithm; this will 
cause problems, especially when grid points and data are many, or when search volume neigh-
borhood methods are not used.

Since, in the simulated annealing, we cannot define the “equal” case when we are defining 
the constraints, we are not able to define the constraints related to the equality of the sill of the 
fitted model with the value of the data variance; we can define only the upper and lower con-
straints of every decision variable (co, c, a). To solve this problem, it is suggested that the future 
researches be focused on such other meta-heuristic algorithms as the genetic algorithm (GA).
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