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ANALYSIS OF THERMAL STRESSES AND STRAINS DEVELOPING DURING 
THE HEAT TREATMENT OF WINDMILL SHAFT

In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of 
the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equa-
tion over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. 
The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order 
to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software 
utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field 
in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of 
the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined 
by using modified Rice and Tracy criterion. 
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1. Introduction

The currently observed global involvement in the develop-
ment of renewable energy sources favours the production of wind 
energy, which is considered one of the cleanest and cheapest way 
of obtaining the green energy. In order to product this type of 
energy it is necessary to provide the appropriate materials for 
the construction of wind turbines. One of the components of 
wind turbine is the windmill shaft on which rotor is mounted. 
To ensure desired strength and quality requirements during the 
windmill shaft production process, it is necessary to use care-
fully prepared heat treatment, that provides required properties 
of the final product [1,2]. The proper selection of the parameters 
such as: rate of heating to the austenitization temperature, rate of 
cooling during quenching etc., allows to minimize stresses and 
strains that develop inside the heat treated ingot. This in turns 
allows to avoid defects caused by fractures.

Selection of the above mentioned parameters can be carried 
out based on numerical simulations, using specific software de-
veloped for solving this type of problems [1,3]. Using the results 
of numerical simulation in designing the heat treatment process 
allows to minimize the costs of the production.
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2. Mathematical model of heat transfer 

To determine the temperature field during the heat treat-
ment of ingots the solution of the Fourier-Kirchhoff equation 
is required:
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(τ > 0; 0 < r < R; 0 < z < l)
where:
 ρ – density, kg/m3,
 c – specific heat, J/(kg·K),
 t – temperature, °C,
 R – radius, m,
 l – length, m,
 r, z – cylindrical coordinates,
 λ – thermal conductivity, W/(m·K),
 qv – density of the internal heat source, W/m3,
 τ – time, s.

The solution to this equation is time depended temperature 
field, which should comply with the boundary conditions on the 
ingot surface during the heat treatment. The boundary conditions 
have been assumed depending on the stage of the heat treatment 
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process. The considered heat treating process has consisted of 
four operations: charge heating in the furnace chamber of, water 
or oil quenching, tempering and cooling in air. The boundary 
conditions applied to describe the heat transfer process during 
ingot heating in the chamber furnace have been introduced in the 
paper [4]. The heat flux released to the environment during the 
quenching process has been described by the Newton’s equation:

 s aq t t   (2)
where:
 α – heat transfer coefficient, W/(m2·K),
 ts – ingot surface temperature, °C,
 ta – ambient temperature: water, oil, air or chamber fur-

nace temperature, °C.
The heat transfer coefficient between the ingot surface and 

quenching medium has been described basing on the experimen-
tal data. In case of water quenching the heat transfer coefficient 
is determined by the following equations [5]:
for 20°C < t < 750°C
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for t < 20°C 

 α = 0.51, kW/(m2·K) (4)

for t >750°C

 α = 0.55, kW/(m2·K) (5)

Heat transfer coefficient during quenching in oil has been 
described by the formulas [6]: 
for t < 350°C
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for 350°C <t < 580°C
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for t > 580°C
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The boundary conditions describing the heat transfer during 
the last stage of the heat treating process, that is cooling in air, 
have taken into account both the radiation and convection heat 
losses. More information about this model has been presented 
by Hadała in the paper [7].

3. Numerical model of heat transfer 

The temperature field of the heat treated ingots has been 
calculated using numerical model which utilize the Finite Ele-
ment Method (FEM) to the solution of the Fourier-Kirchhoff 

equation. Considering the shape of the ingot cross section and 
taking into account that the temperature field of the heated ingot 
has to be determined many times, axially symmetrical solution 
at the longitude section of the ingot has been applied. In order to 
determine the heat transfer between the ingot and the environ-
ment, the set of partial differential equations 

 ij j ij j jK t C t G   (9)

has to be solved, where: 
 Kij – thermal conductivity matrix,
 Cij – thermal capacity matrix,
 Gj – heat load vector,
 tj – nodes temperature vector,
 t·j – temperature derivatives at nodes with respect to time.

Vector Gij and matrixes Cij, Kij have been described by the 
integrals:
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where:
 Ni – are shape functions,
 Qe – volume of an element,
 Se – area of an element.

Shape function derivatives with respect to the global coor-
dinates have been determined by the following equation

 1k k
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The Jacobian determinant used to transform the global 
coordinates to natural coordinates has the form:
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In case of the surface integrals the Jacobian determinant of 
the transformation has been described as 

 
1

detf
rD   (15)

In order to calculate the correct values of thermal conductiv-
ity and thermal capacity matrixes and the heat load vector the 
surface integrals have been calculated only for elements lying 
on the surfaces of shaft. In the developed mathematical model 
four-nod elements with linear shape function have been used [8]:
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Derivatives of the global coordinates with respect to natural 
coordinates have the form:
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where: ξi
k – natural coordinates of an element.

Assuming a linear change of temperature versus time for 
(τo < τ < τo + Δτ) and using the Galerkin scheme of integration, 
the set of equation has been obtained [8]:

 Δij j iA t B   (19)

This set of equation (19) allows calculating the temperature 
of the material after the time increment Δτ.

Vector Bi and the matrix Aij in the equation (19) have the 
following form:
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The set of equations (19) can be obtained calculating in-
tegrals: (10), (11) and (12) over all elements. The set of linear 
equation resulting from this operation has been solved using the 
Gauss elimination method.

4. Stress and strain model

During the whole heat treatment process thermal stresses 
develop inside the heat and cooled ingots, that are caused by 
nonuniform temperature field and phase transformation. This 
stresses may lead to elastic or plastic deformations. However, 
when the limit of material formability is exceeded, existing voids 
develop and local fractures occur and in some cases the steel 
cracks. There are methods that allow to determine the stress and 
strain fields inside the materials that are under heat load. The 
finite element method has been applied to determine the stress 
and strain fields during the ingots heat treatment process [8,9]. 
The specific steps of the solution were as follows:

• expressing the displacement field {Δ} as a function of nodes 
displacement {Δ}. To define these field, the shape function 
values have to be determined.

• expressing the strain field {ε}, as a function of nodes dis-
placement vector, by differentiation of displacement field 
according to small elastic-plastic strain tensor definition.

• determining the relationship between stress and stains 
and defining the stress as the function of nodes degrees of 
freedom.

• determining the relationship between the forces at nodes 
and stresses from the condition of equilibrium between the 
nodal forces and the stresses power inside an element.
Due to the possibility of plastic deformation and time de-

pendent heating conditions, the incremental method has been 
used to determined the stress field. The relationship between 
the stresses and strains increments have been determine using 
Prandtl-Reuss equations. The methodology of stress and strain 
fields determination has been described in the monograph [9].

In order to determine the material failure point the Rice and 
Tracy crack criterion has been used:

 
3exp
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p
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where: 
 φ–f – effective logarithmic strain,
 σp – effective stress,
 σm – mean stress.

The results of the investigation presented in the paper [10] 
have shown a good accuracy of criterion (22) in determining the 
moment of material destruction. 

Criterion (22) provides that the material destruction occurs 
when the right side of the equation exceeds the value of the ef-
fective logarithmic strain φ–f defined during the uniaxial tensile 
test at the moment of fracture. The constant CRT has been deter-
mined from the stress and strain state definition for an uniaxial 
tensile test. Finally, the modified Rice and Tracy criterion has 
been obtained:

 3exp 0.5 exp   for  0
2

m
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p
  (23)

 φ–f = 0    for    σm < 0

According to the criterion (23), cracking may occur if the 
parameter φ–f exceeds the maximum value of the logarithmic 
strain determined from the uniaxial tensile test of the sample 
taken from the shaft steel.

5. Numerical calculations

Numerical calculation have been conducted for the two 
cases of the heat treatment process of windmill shaft. Both heat 
treatment processes have consisted of four operations, there were: 
ingot heating in the chamber furnace, quenching, tempering and 
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cooling in air. The cases differed from each other in the type of 
quenching medium. In Case I water and in Case II oil. The total 
time of the whole heat treatment process was the same for each 
considered processes and equaled to 8500 minutes. The first op-
eration – heating to an austenization temperature of 860°C – was 
the same in both cases and equaled to 2240 minutes. The dura-
tion of the other heat treatment differed for Case I and Case II. 
The time of each operation for both considered heat treatment 
processes is presented in table 1.

TABLE 1

Duration of the heat treatment operations

Operation
Case I Case II

Time, min Time, min
Heating to 860°C 2240 2240
Quenching in water 40 —
Quenching in oil — 80
Tempering 1930 1880
Cooling in air 4290 4300

The ingot initial temperature assumed for calculation 
was 20°C. The chemical composition of steel was as follows: 
C = 0.34%, Mn = 0. 55%, Si = 0.27%, Cr = 1.4%, Ni = 1.5%. 
Thermophysical properties of steel were selected based on steel 
chemical composition. The limit value of the effective logarith-
mic strain determined in the tensile test at temperature 500°C was 
equal to 0.13. In figure 1, the scheme of the windmill shaft with 
marked cross-sections at which the results of computations have 
been presented. Selected for the analysis three cross-sections of 
the windmill shaft are characterized by different outer diameters. 
In figure 2 the scheme of the heat treatment process has been 
presented. The calculations conducted for the first operation 
has shown that the assumed time of heating to the austenization 
temperature has been selected properly. The temperature distribu-
tions along the ingot radius has been similar at each considered 
cross-section. In figures 3-5 and 6-8 the distributions of the ef-

fective logarithmic strain and the mean stress, respectively after 
heating to the austenization temperature has been presented. The 
values of the effective logarithmic strain have been very small 
and have not exceed 0.002 at any considered cross-section of the 
ingot (Fig. 3-5). Higher values of the effective logarithmic strain 
have been observed at the windmill shaft surface. It is acceptable, 
taking into account, that the mean stress in the entire volume of 
the heated ingot was negative (compressive) (Fig. 6-8).

Fig. 1. Scheme of the heat treated windmill shaft
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Fig. 2. Scheme of the heat treatment process for considered cases

 
Fig. 3. The distribution of the effective logarithmic strain in the ingot 1-1 
cross-section after heating to 860°C

 
Fig. 4. The distribution of the effective logarithmic strain in the ingot 2-2 
cross-section after heating to 860°C
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Fig. 5. The distribution of the effective logarithmic strain in the ingot 3-3 
cross-section after heating to 860°C

After the water quenching process the temperature distri-
bution along the radius was different at each cross-section. In 
order to compare the temperature distribution three characteristic 
points has been selected. First point was located at the internal 
surface of the ingot, the second one in the middle of the wall 
thickness and the third one was placed at the outer surface of 
the ingot. The results of calculations have indicated that after 
the water quenching process (after 2280 minutes from the start 
of the heat treatment process (Tab. 1), the highest difference 
in the temperature distribution has been observed in 1-1 cross-
section. There, the values of temperature at the characteristic 
points have been equal to 61°C, 222°C and 103°C, respectively, 
counting from the internal surface of the ingot. The maximum 
difference between calculated temperatures in 1-1 cross-section 
was equal to 161 K. At 2-2 cross-section the difference in the 
temperature distribution along the ingot radius has been signifi-
cantly lower. The maximum difference has not exceeded 50 K. 
In case of 3-3 cross-section, after the water quenching process, 

 
Fig. 6. The mean stress distribution in the ingot 1-1 cross-section after 
heating to 860°C

 
Fig. 7. The mean stress distribution in the ingot 2-2 cross-section after 
heating to 860°C

 
Fig. 8. The mean stress distribution in the ingot 3-3 cross-section after 
heating to 860°C

the entire part of the ingot has had the same temperature equal 
to 20°C. Such differences in the values of temperatures between 
particular cross-sections of the ingot are caused by a large differ-
ence in the ingot outer diameter. The effective logarithmic strain 
after the water quenching process was still very small of about 
0.001 at each cross-section that have been taken under consid-
eration (Fig. 9-11). The mean stress values at each considered 
cross-section at the end of the quenching process were positive, 
it means that the shaft material is under tensile conditions (Fig. 
12-14). The highest values of the mean stress have occurred 
at each considered cross-section of the ingot, near the internal 
surface of the windmill shaft. There, the mean stress values have 
not exceeded 480 MPa at the 1-1 cross-section (Fig. 12), 540 
MPa at 2-2 cross-section (Fig. 13) and 615 MPa at 3-3 cross-
section (Fig. 14). 

The temperature distribution in the whole ingot after the 
tempering operation has been homogeneous, and resulted from 
the length of the heating time in the furnace. In the Case I this 
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Fig. 9. The distribution of the effective logarithmic strain in the ingot 1-1 
cross-section after quenching in water (Case I)

 
Fig. 10. The distribution of the effective logarithmic strain in the in-
got 2-2 cross-section after quenching in water (Case I)

 
Fig. 11. The distribution of the effective logarithmic strain in the ingot 
3-3 cross-section after quenching in water (Case I)

 
Fig. 12. The mean stress distribution in the ingot 1-1 cross-section after 
quenching in water (Case I)

 
Fig. 13. The mean stress distribution in the ingot 2-2 cross-section after 
quenching in water (Case I)

 
Fig. 14. The mean stress distribution in the ingot 3-3 cross-section after 
quenching in water (Case I)
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time was about 32 hours (Tab. 1), ingot temperature equaled to 
600°C. The effective logarithmic strain after tempering has been 
slightly higher from that reported for the previous heat treatment 
operations. In the 1-1 cross-section which is characterized by 
the largest ingot radius, the maximum values of the effective 
logarithmic strain have been the smallest at a level of 0.0016 
(Fig. 15). In 2-2 cross-section the maximum values of the ef-
fective logarithmic strain have been equal to 0.0024 (Fig. 16) 
and in the 3-3 cross-section the highest values of the effective 
logarithmic strain have occurred of about 0.003 (Fig. 17). In 
all considered cross-sections the highest values of the effective 
logarithmic strain have been developed near the ingot outer 
surface. The main stress distributions after tempering operation 
in each cross-section of the ingot have been opposite to the 
preceding operation of water quenching. The lowest vales of 

the mean stress have occurred near the internal surface of the 
ingot. However, tempering has caused that inside the heated 
ingot compressive stresses have developed (Fig. 18-20). The 
last heat treatment operation – cooling in air-has lasted about 
72 hours. After this time the temperature inside the windmill 
shaft has dropped to 50°C. After this heat treatment operation 
the effective logarithmic strain has decreased to approximately 
0.001 in each considered cross-section of the ingot (Fig. 21-23). 
The maximum mean stress at the end of heat treatment process, 
that included ingot quenching in water, has been located near the 
ingot internal surface. The maximum values of the mean stress 
have not exceed 740 MPa in the ingot 1-1 cross-section, 680 
MPa in 2-2 cross-section and 590 MPa in 3-3 cross-section. The 
minimum value of the mean stress after heat treatment process 
has not dropped below 500 MPa. 

 
Fig. 15. The distribution of the effective logarithmic strain in the in-
got 1-1 cross-section after tempering (Case I)

 
Fig. 16. The distribution of the effective logarithmic strain in the in-
got 2-2 cross-section after tempering (Case I)

 
Fig. 17. The distribution of the effective logarithmic strain in the in-
got 3-3 cross-section after tempering (Case I)

 
Fig. 18. The mean stress distribution in the ingot 1-1 cross-section after 
tempering(Case I)
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Fig. 19. The mean stress distribution in the ingot 2-2 cross-section after 
tempering (Case I)

 
Fig. 20. The mean stress distribution in the ingot 3-3 cross-section after 
tempering (Case I)

 
Fig. 21. The distribution of the effective logarithmic strain in the in-
got 1-1 cross-section after cooling in air (Case I)

 
Fig. 22. The distribution of the effective logarithmic strain in the in-
got 2-2 cross-section after cooling in air (Case I)

 

Fig. 23. The distribution of the effective logarithmic strain in the in-
got 3-3 cross-section after cooling in air (Case I)

 
Fig. 24. The mean stress distribution in the ingot 1-1 cross-section after 
cooling in air (Case I)
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In the heat treatment process which included quenching 
in oil and has been considered as Case II, the first operation 
of the ingot heating to 680°C, has been the same as in Case I, 
and resulted in the same distributions of temperature, effective 
logarithmic strain and mean stress. It has caused that the total 
time of the quenching operation was about 40 minutes longer 
from the quenching in water (Tab.1). The maximum temperature 
difference between characteristic points of the ingot (the same 
as mentioned in Case I) has been smaller to the case of water 
quenching. The temperature deference was equal to 25 K in 
the 1-1 cross-section of the ingot, and to 16 K in the 2-2 cross-
section. For example, the values of temperature at characteristic 
points over the ingot radius starting from the internal surface 
of the ingot ware equal to 122°C, 128°C, 147°C in 1-1 cross-
section. Similarly, as in case of water quenching, temperature 
distribution along the ingot radius in 3-3 cross-section has been 
nearly the same at a level of 50°C after the oil quenching process. 
The effective logarithmic strain after the oil quenching process 

was smaller than the one obtained during water quenching, it 
has not exceed 0.001 (Fig. 27-29). Similarly as after the water 
quenching operation, positive mean stresses at each considered 
cross-section indicate that inside the ingot tensile stresses has 
developed (Fig. 30-32). The maximum mean stress at any 
considered cross-section has not exceed 570 MPa (Fig. 30-32). 
Also, the mean stress distributions in the all ingot cross-sections 
is the same as the one observed after water quenching operation 
(Fig. 12-14).

The tempering operation in Case II has been about 1 hour 
shorter then in Case I. This resulted from higher and more 
homogenous temperature distribution inside the ingot after 
quenching operation. The values of the effective logarithmic 
strain after tempering operation in Case II have been lower than 
in the previously presented case, and they do not exceed 0.002 
in any considered ingot cross-section (Fig. 33-35). The effective 
logarithmic strain distributions were similar to those obtained 
for the analogous operation considered in the Case I. The mean 

 
Fig. 25. The mean stress distribution in the ingot 2-2 cross-section after 
cooling in air (Case I)

 
Fig. 26. The mean stress distribution in the ingot 3-3 cross-section after 
cooling in air (Case I)

 
Fig. 27 The distribution of the effective logarithmic strain in the ingot 1-1 
cross-section after quenching in oil (Case II)

 
Fig. 28 The distribution of the effective logarithmic strain in the ingot 2-2 
cross-section after quenching in oil (Case II)
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Fig. 29. The distribution of the effective logarithmic strain in the in-
got 3-3 cross-section after quenching in oil (Case II)

 
Fig. 30. The mean stress distribution in the ingot 1-1 cross-section after 
quenching in oil (Case II)

 
Fig. 31. The mean stress distribution in the ingot 2-2 cross-section after 
quenching in oil (Case II)

 
Fig. 32. The mean stress distribution in the ingot 3-3 cross-section after 
quenching in oil (Case II)

 
Fig. 33. The distribution of the effective logarithmic strain in the in-
got 1-1 cross-section after tempering (Case II)

 
Fig. 34. The distribution of the effective logarithmic strain in the ingot 
2-2 cross-section after tempering (Case II)
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Fig. 35. The distribution of the effective logarithmic strain in the in-
got 3-3 cross-section after tempering (Case II)

 
Fig. 36. The mean stress distribution in the ingot 1-1 cross-section after 
tempering (Case II)

 
Fig. 37. The mean stress distribution in the ingot 2-2 cross-section after 
tempering (Case II)

 
Fig.38. The mean stress distribution in the ingot 3-3 cross-section after 
tempering (Case II)

 
Fig.39. The distribution of the effective logarithmic strain in the in-
got 1-1 cross-section after cooling in air (Case II)

 

Fig. 40. The distribution of the effective logarithmic strain in the 
ingot 2-2 cross-section after cooling in air (Case II)
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stress values have not dropped below –410 MPa in 1-1 cross-
section (Fig. 36). In case of 2-2 and 3-3 cross-sections have 
been much lower and not exceeded –350 MPa and –305 MPa 
respectively (Fig. 37-38). In the entire volume of the shaft mean 
stresses have been compressive. Time of the last heat treatment 
operation which was cooling in air was only 10 minute longer 
from that used in Case I (Tab. 1). The windmill shaft temperature 
after cooling in air was about 50°C. The effective logarithmic 
strain has been slightly lower from that of Case I, here it has 
not exceed 0.001 at any cross-section of the ingot (Fig. 39-41). 
The maximum values of the mean stresses after the air cooling 
operation in Case II have been larger than those in Case I. For 
example the mean stress in the ingot 1-1 cross-section was equal 
to 800 MPa near the internal surface of the ingot. The minimum 
value of the mean stress after heat treatment process has not 
dropped below 540 MPa.

6. Conclusions

In the paper the results of calculations which have allowed 
designing the heat treatment process of the windmill shaft have 
been presented. The two heat treatment processes have been 
considered. The processes consisted of four heat treatment opera-
tions. The processes has differed in the type of cooling medium 
used for quenching. The conducted analysis has allowed deter-
mining the time of each heat treatment operation required to ob-
tain demanded properties of the windmill shaft. The simulations 
have allowed answering the question on a possibility of crack 
formation in the heat treated windmill shaft. For the calculation 
the self-developed software was utilized. The developed stresses 
and strains model can also be used to calculate the stress field 
in ingots and profiles. The developed stresses and strains model 
can also be used to calculate the stress field in ingots and other 
axially symmetric products.

 
Fig. 41. The distribution of the effective logarithmic strain in the in-
got 3-3 cross-section after cooling in air (Case II)

 
Fig. 42. The mean stress distribution in the ingot 1-1 cross-section dur-
ing cooling in air (Case II)

 
Fig. 43. The mean stress distribution in the ingot 2-2 cross-section dur-
ing cooling in air (Case II)

 
Fig. 44. The mean stress distribution in the ingot 3-3 cross-section dur-
ing cooling in air (Case II)
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