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Predictor-based stabilization for chained form systems
with input time delay

FAÏÇAL MNIF

This note addresses the stabilization problem of nonlinear chained-form systems with input
time delay. We first employ the so-called σ-process transformation that renders the feedback
system under a linear form. We introduce a particular transformation to convert the original
system into a delay-free system. Finally, we apply a state feedback control, which guarantees
a quasi-exponential stabilization to all the system states, which in turn converge exponentially
to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization
of the subsequent system. A simulation example illustrated on the model of a wheeled mobile
robot is provided to demonstrate the effectiveness of the proposed approach.

Key words: σ-process transformation, chained form systems, mobile robots, exponential
stabilization, time delay system.

1. Introduction

Within the last three decades the stabilization problem of nonholonomic mechanical
systems has occupied a central role in the nonlinear systems literature. Though non-
holonomic systems are controllable, they cannot be stabilized by stationary continuous
state feedback because they fail to satisfy Brockett’s necessary condition [1]. As a re-
sult, the well-posed smooth nonlinear control algorithms cannot be directly applied to
stabilize such systems. To overcome this obstacle, a set of approaches and new method-
ologies have been suggested that made the problem of stabilization of nonholonomic
system solvable. [2] and [3] and references therein give a good overview of these meth-
ods. These methods are within three categories: Smooth time-invariant methods [4], [5],
discontinuous time invariant methods [6],7] to cite few which are based on the so-called
σ-process transformation [6] , and hybrid stabilization techniques, [8] and references
therein.

On the other hand, one of the current trends in control engineering is to establish
new strategies that allow remote control of different systems including mobile robots
and manipulators [9]. The use of communication networks for connecting robotic sys-
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tems with their controllers is leading to substantial advantages such as increased flexi-
bility enhanced portability [10]. However, networking control channels are subjected to
unavoidable time delays that do not only degrade the performance of the control system
but also can pose impediments to the system stability if they not carefully addressed.
Time-delayed systems attracted the attention of many control theorists and practitioners
because of the stability challenges they face. Guaranteeing stability to a control system
has been always a challenge for control theorists. Several techniques have been proposed
in the context of teleoperation to get around the negative effect of the induced time delay
(see [11] for an overview of different proposed methods). All these methods have been
applied to unconstrained mechanical systems. Few attempts however have however been
given to time-delayed nonholonomic system.

This note addresses the problem of the stabilization of a special class of nonholo-
nomic mechanical systems; the chained form systems, when they are subjected to input
time delays. In fact, many nonholonomic mechanical systems including mobile robots
can be reduced to such a form by an appropriate local or global change of variables.
These type of systems are usually linked via delay-induced wireless communication
channels, which may compromise the performance and the stability of the controlled
system.

To address the stabilization problem of chained-form systems, we apply a lin-
ear transformation consisting of an input to state scaling. We then propose a two-
dimensional control in the form of quasi-linear state feedback that maintains stabilization
of the system states and their convergence to the origin with the presence time delay.

The layout of this note is as follows: In next section, we address nonholonomic
systems in chained form. Sections 3 and 4 are devoted to the control design firstly, of the
non-delayed system, and then the result is extended to the delayed chained form system
in section 4. In Section 5 we provide simulation results of the proposed control algorithm
on a Wheeled Mobile Robot (WMR).

2. Nonholonomic systems in chained form

In general, an n-dimensional chained form writes as

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

...
ẋn = xn−1u1

(1)

where x=(x1,x2, . . . ,xn)
T is the state vector of the system and u=(u1,u2)

T is the control
input.
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Various formulations of control schemes have been developed to resolve for the fail-
ure of chained form system to satisfy Brockett’s condition [1], namely time-dependent
controls, a variety of discontinuous control schemes such as sliding mode and backstep-
ping control. In [10] and references therein, authors present an extensive review of such
techniques.

3. Discontinuous control of chained forms

Applying the σ-process coordinate transformation [6] to system (1) yields

ξ1 = x1

ξ2 = x2

ξ3 =
x3

x1
...

ξn−1 =
xn−1

xn−3
1

ξn =
xn

xn−2
1

.

(2)

In the new coordinates the system is described by the following set of equations

ξ̇1 = v1

ξ̇2 = v2

ξ̇3 =
ξ2 −ξ3

ξ1
v1

...

ξ̇n =
ξn−1 − (n−2)ξn

ξ1
v1.

(3)

Consider for the subsystem-ξ1 the control law v1 = −kξ1 = −kx1, then the resulting
system is designated by the state equation ξ̇ = Aξ+Bv2, where

A =



−k 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 −k k 0 . . . 0 0 0
0 0 −k 2k . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 −k (n−2)k


(4)
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and
BT = [0 1 0 . . . 0].

The linear system (3) can be exponentially stabilized using the linear control

v =

[
v1

v2

]
=

[
−k1ξ1

p2ξ2 + p3ξ3 + · · ·+ pnξn

]
. (5)

Proposition 1 In the x-coordinates the control law expressed as

v =

[
v1

v2

]
=

[
−k1x1

p2x2 + p3
x3
x1
+ · · ·+ pn

xn
xn−2

1

]
. (6)

with k > 0 and the pi are such that the eigenvalues of the matrix A+Bp have negative
real parts p = [0 p2 · · · pn−1 pn] globally exponentially stabilizes the system (2) in the
open dense set Ω1 := {x ∈ ℜn : x1 ̸= 0}.

It is possible to show that the discontinuous control law (6) is well defined and bounded
for all t ­ 0, along the trajectories of the closed loop system (3)-(5) whenever x1(0) ̸= 0.

4. Time-delayed chained form system

Consider now the chained-form system with input time delay. The time delay is
assumed to be constant and of the same value for both inputs.

ẋ1 = v1(t − τ)
ẋ2 = v2(t − τ)

ẋ3 = x2v1(t − τ)
...

ẋn = xn−1v1(t − τ)

(7)

where τinℜ+ is the input time delay.
In the ξ-coordinates, the system dynamics writes as

ξ̇1 = v1(t − τ)

ξ̇2 = v2(t − τ)

ξ̇3 =
ξ2 −ξ3

ξ1
v1(t − τ)

...

ξ̇n =
ξn−1 − (n−2)∗ξn

ξ1
v1(t − τ)

(8)
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The control objective is to find the new input vector vT = [v1 v2] that achieves exponential
convergence of the states to the origin.

4.1. Predictor-based design and the reduction approach

Consider the following linear system with input time delay

ξ̇ = Aξ+Bv(t − τ), ξ ∈ ℜn, v ∈ ℜm (9)

and where τ is a bounded constant time delay. If we apply the transformation

η = ξ+
τ∫

t−τ

eA(t−τ−φ)Bv(φ)dφ (10)

then the pseudo-linear z-dynamics write as

η̇ = Aη+ B̄v, B̄ = e−AτB. (11)

Note: It is straightforward to see from the definition of B̄ that if the pair (A,B) is con-
trollable then the pair (A, B̄) is also controllable.

Proposition 2 If a state feedback v = −Kη that stabilizes (11) exists, then the system
(9) is also exponentially stable.

Proof From the linear transformation (10), we have

||ξ(t)||=

∣∣∣∣∣∣
∣∣∣∣∣∣η(t)−

t∫
t−τ

eA(t−τ−φ)Bv(φ)dφ

∣∣∣∣∣∣
∣∣∣∣∣∣

¬ ||η(t)||+

∣∣∣∣∣∣
∣∣∣∣∣∣

t∫
t−τ

eA(t−tau−φ)Bv(φ)dφ

∣∣∣∣∣∣
∣∣∣∣∣∣

¬ ||η(t)||+ τ max
−τ¬φ¬0

||eAφ|| ||B|| ||K|| ||v(t +φ)||

¬ ||η(t)||+ τ max
−τ¬φ¬0

||eAφ|| ||B|| ||K|| ||η(t +φ)||

Since system (11) is quasi-exponentially stable, it follows that limt→∞ η(t) = 0, then
limt→∞ ξ(t) = 0 and the pseudo-linear system (9) is quasi-exponentially stable.
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4.2. Design of v1 for the ξ1-subsystem

For ξ1-subsystem we consider the linear transformation

η1(t) = ξ1 +

τ∫
t−τ

et−τ−φv1(φ)dφ (12)

which transforms it into
η̇1(t) = e−τv1(t) (13)

for which the control input can be chosen as

v1(t) =−kη1(t) (14)

where k is as in (5).

Proposition 3 If for any t0 ­ τ, the corresponding solution ξ1(t) exists and satisfies
limt→∞ ξ1(t) = 0. Moreover ξ1(t) = x1(t) does not cross the origin for all t ∈ [t0,∞).

Proof Substituting (14) in (13), yields

η1(t) = η1(t0)e−ke−τ(t−t0) (15)

which obviously converges to zero as t → ∞. Moreover,

ξ1(t) = η1(t)+ k
τ∫

t−τ

et−τ−φη1(φ)dφ (16)

which along with (15) suggests that ξ1(t) exists and satisfies limt→∞ ξ1(t) = 0. On the
other hand since (15) indicates that η1(t) does not cross zero for all t ∈ [t0,∞), and from
(14), so it is for ξ1(t) = x1(t).

4.3. Design of v2

Consider ξ̇ = Aξ+Bv2(t − τ) with

A =



−k 0 0 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
0 −k k 0 . . . 0 0 0
0 0 −k 2k . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 −k (n−2)k


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and
BT = [0 1 0 . . .0]

and consider the transformation

η = x+
τ∫

t−τ

eA(t−τ−φ)Bv2(φ)dφ (17)

yields
η̇ = Aη+ B̄v2 (18)

where B̄ = e−AτB, the following result follows:

Proposition 4 For the system (8), if the control law vT = [v1 v2] such that

v =

[
v1

v2

]
=


−k

ξ1 +

τ∫
t−τ

et−τ−φv1(φ)dφ


[0 p2 p3 . . . pn]

ξ+
τ∫

t−τ

eA(t−τ−φ)Bv2(φ)dφ



 (19)

and ξ is defined as in (2), the delayed closed loop system globally exponentially stabilizes
the system (3) in the open dense set Ω1 := {ξ ∈ ℜn : ξ1 ̸= 0}, moreover ξ1(t) = x1(t)
does not cross the origin for all t ∈ [τ,∞), and by virtue of Proposition 1, the result
follows for the original coordinates system.

5. Simulation example

Consider the kinematic model of a wheeled mobile robot

ż = ucosθ
ẏ = usinθ

θ̇ = ω
(20)

where (z,y) represents the position of the center of the mass of robot, θ is its heading
angle, u is its linear velocity and ω is its angular velocity.

Apply the global coordinate transformation

x1 = θ
x2 = zcosθ+ ysinθ
x3 = zsinθ− ycosθ
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and the static state feedback
u = v2 + x3v1ω = v1

we obtain
ẋ1 = v1

ẋ2 = v2

ẋ3 = x2v1.

Considering a constant time delay τ in both inputs. This time delay may in fact due to
data transmission delay or packet-loss in the case of wireless communication channels.
We get

ẋ1 = v1(t − τ)
ẋ2 = v2(t − τ)

ẋ3 = x2v1(t − τ).
(21)

In terms of ξ-coordinates, the system expresses as

ξ̇1 = v1(t − τ)

ξ̇2 = v2(t − τ)

ξ̇3 =
ξ2 −ξ3

ξ1
v1(t − τ).

(22)

which results in the system described by ξ̇ = Aξ+ B̄2v2 where

A =

 −k 0 0
0 0 0
0 −k k


and B̄2 = e−Aτ[0 1 0]T . It is clear that (22) is a simple form of (3). Henceforth, the appli-
cation of the control law is direct. Assume τ = 0.5sec and the design gains are chosen
such as k > 0 and so as to set the coefficients p2 and p3 in the matrix

A =

[
p2 p3

−k k

]

such as σ(A3) ∈C−. Setting k = 1, gives p2 =−3 and p3 = 4.
Fig. 1 shows the response of the system in its original coordinates x with the initial

conditions? x0 =
[
4.9 5 −π

2

]T . It is clear that the original system coordinates converge
exponentially to zero. Note also that the first coordinate x1 does not cross zero as claimed
in proposition 3. The trajectories of the system responses in ξ-coordinates are depicted
in Fig. 2, whereas Fig. 3 represents the control inputs v1 and v2 to the system.
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Figure 1: System states’ response in the x-coordinates.

Figure 2: System states’ response in ξ-coordinates.
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Figure 3: Control inputs.

6. Conclusion

In this paper, we addressed the problem of stabilization chained form systems subject
to time delay in the input that may be cause by data transmission. The solution we have
brought achieves a quasi-exponential convergence for the states of the system. Future
research would address random time delays.
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