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Identification of stable elementary bilinear time-series
model

LUKASZ MALINSKI

The paper presents new approach to estimation of the coefficients of an elementary bilinear
time series model (EB). Until now, a lot of authors have considered different identifiability con-
ditions for EB models which implicated different identifiability ranges for the model coefficient.
However, all of these ranges have a common feature namely they are significantly narrower than
the stability range of the EB model. This paper proposes a simple but efficient solution which
makes an estimation of the EB model coefficient possible within its entire stability range.
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1. Introduction

The most commonly used time–series models are the linear ones. They are exten-
sively described in the literature [10], [22]. Effective identification algorithms for linear
times-series models are well-known and frequently used in industry, economic and aca-
demic research. However, the major problem is that real world phenomena are mostly
nonlinear. Therefore, linear models provide a barely approximation of process behavior.
As a result one of the challenges that scientists try to master is to extend the set of lin-
ear models with nonlinear ones. There are many propositions of nonlinear models to be
found along with identification procedures dedicated for them (see [34], [38], and [36]).

Bilinear model, introduced by Granger and Andersen in 1978 [14], is one of the sim-
plest nonlinear time–series models. The most general form of this kind of model is Bilin-
ear Autoregressive Moving Average Model (BARMA). Theory on statistical properties
of BARMA model was developed by Subba Rao [35], Pham [33], [32], Gooijger and
Heauts [13], Mohler and Tang [31]. Further analysis of this model, concerning its stabil-
ity, stationarity and invertibility, was done by Mathews and Lee [29], Bibi [1], [2] and
Kristensen [23], and finally the estimation algorithms were proposed by Subba Rao [35]
(based on Newton-Raphson algorithm), Chellapilla and Rao [12] (using evolutionary al-
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gorithms) and Hili [18] (based on Hellinger distance). Most of the researchers performed
their considerations in relation to the simplified bilinear structures. Numerous identifi-
cation procedures and analysis of their weaknesses have been presented by Guegan and
Pham [17], Mathews and Moon [30], Mathews and Lee [29], Brunner and Hess [11], Wu
and Hung [40] and more recently by Wang [39] and Hristova [19].

The elementary bilinear (EB) time–series model is the simplest bilinear structure,
consisting of two terms only: a white noise term and a bilinear term. Although the EB
model, compared to BARMA model is significantly less complex, it may be applied,
as an element of a hybrid linear-bilinear (L-EB) prediction model, (Bielinska [6], [3])
or as a part of a non-linear minimum-variance controller (Bielinska and Zielinski [7]).
Besides, understanding the relation between its properties and its identifiability is the
key to perform proper identification of the more complex bilinear time–series models.

Properties of the EB model and process originated from it were addressed by Mar-
tins [27], [28], Malinski and Bielinska [25], and Malinski and Figwer [26]. Numerous
estimation procedures for an invertible EB model were presented by Kim, Billard and
Basawa [21], Bouzaachane, Harti and Benghabrit [8], [9]. Moreover, Iwaueze and John-
son [20] studied the problem of misclassification of the diagonal EB model and the linear
MA model, and they showed the possible consequences.

The majority of estimation procedures presented in the literature concern a limited
range of possible values of the stable EB model coefficient only. Therefore, there is a
significant range of useful EB models which are stable, but up to now impossible to
be identified due to limits of estimation algorithms. This means that there is a need for
some new estimation approach which extends the range of identifiable EB models to
their entire stability range. The new estimation approach which seems to be the desired
solution, is presented in this paper.

Content of Section 2 of this paper covers main statistical properties of the EB model
and process originated from it. Further, in Section 3 the constraints and difficulties of
the estimation of EB model coefficient are discussed. The new (proposed by the author),
modified approach which breaks the constraints is provided in Section 4. Results of
simulations are presented in Section 5 and finally, conclusions and remarks can bee
found in Section 6.

2. Elementary bilinear model and process

The elementary bilinear time–series model is defined by the following formula [5]:

yi = βei−kyi−l + ei; (1)

where yi is the model output, β is a constant model coefficient and ei is a random identi-
cally distributed white noise called stimulation or innovation signal. The further analysis
of EB model and process originated from it is made by use of the following assumptions
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about ei:
E{ei}= 0; (2)

E{eiei+m}=

{
λ2 : m = 0
0 : m ̸= 0

. (3)

In addition we assume that ei has a Gaussian distribution.
Parameters k and l are called structure parameters and relation between them implies

one of the possible structures of the EB model:

• super–diagonal structure for k < l,

• diagonal structure for k = l,

• sub–diagonal structure for k > l.

The process obtained from stimulation of (1) by a random signal ei will be called
elementary stochastic bilinear process (or EB process). The particular realization of EB
process consisting of finite N samples in discrete time will be treated as time–series and
called EB time–series.

The stability condition (4) for the EB model and process (in Bounded Input Bounded
Output sense) is obtained by calculations of convergence of function series acquired by
recursive computation of the model output [5]

β2λ2 < 1; (4)

where λ2 is the variance of the stimulation ei. Therefore, for ei with the fixed variance
λ2, we can define a range of β, within which the EB model is stable:

β ∈
(
− 1
|λ|

,
1
|λ|

)
. (5)

It is also worth to mention that the stability condition (4) is structure (k, l) independent.
The second important condition for the EB model is the invertibility condition. The

inverted model to (1) is described by:

ei = yi −βei−kyi−l. (6)

Thus, substituting α =−β we can rewrite (6) as follows:

ei = αei−kyi−l + yi. (7)

Both (1) and (7) are EB models and also |α| = |β|. Although, yi does not satisfy
assumptions (2) and (3) in [5] is shown that if yi is limited (it comes from the stable EB
model), the stability condition for (7) can be defined as:

E{α2y2
i }< 1 ⇒ α2E{(y2

i })< 1, (8)
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the same as provided by Granger and Andersen in [15]. Therefore, while the stability
range for (1) is (5), the stability range for the inverted model (7) is:

α ∈

− 1

|
√

E{y2
i }|

,
1

|
√

E{y2
i }|

 . (9)

Because, E{e2
i }¬ E{(ei +βei−kyi−l)

2}, thus E{e2
i }¬ E{y2

i }, the stability range of
the inverted model (9) is narrower than the stability range (5) of the original EB model.
So the stable EB model with the sufficient high value of coefficient β have its inverted
model unstable.

The model is invertible if it is possible to estimate the input signal ei by knowing
output signal yi and true value of model coefficient β. It is possible if the inverted model
is stable but not necessary otherwise.

Therefore, basing on the stability condition of (7) we can formulate the general range
of the invertible EB models:

β ∈

− 1

|
√

E{y2
i }|

,
1

|E
√

{y2
i }|

 . (10)

Going further, we should define the invertibility condition with regard to the EB
model structure, because unlike the stability condition, it is structure dependent. As pro-
vided in [4] and [25], the variance of the EB model output may be expressed by means
of the model coefficient β and the stimulation signal variance λ:

• for the super–diagonal structure [5]:

E{y2
i }=

λ2

1−β2λ2 ; (11)

• for the diagonal structure [5]:

E{y2
i }= β2 3λ4

1−β2λ2 +λ2; (12)

• for the sub–diagonal structure [25]:

E{y2
i }= β2(k−l+1)λ2(k−l+1)+2 3λ4

1−β2λ2 +
k−l

∑
m=0

β2mλ2m+2. (13)

By introducing (11), (12) and (13) into (8) and performing the elementary mathematical
operations, the following invertibility conditions can be obtained:
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• for the super–diagonal structure [5]:

β2λ2 < 0.5; (14)

• for the diagonal structure [5]:

β2λ2 < 0.36; (15)

• for the sub–diagonal structure [25]:

β2λ2 <
k−l+2

√
0.5. (16)

In order to check how output of the inverted model corresponds to the original stim-
ulation signal, two EB time–series originated from super–diagonal EB model were gen-
erated. Both simulations were performed using stimulation signal of the variance λ2 = 1:

• the first one for β = 0.4 (which lies within both (5) and (10)), so the model is
stable and invertible,

• the second one for β = 0.9 (which is within (5) but outside (10)), thus the model
is stable yet not invertible.

Next, the estimates êi were computed using (6) and true β value. Both plots are presented
in Fig. 1.

As we can see, for time–series originated from invertible model all estimates êi are
equal to ei, while time–series obtained using non–invertible model, the explosion of esti-
mates occurs about i = 120. This explosion is the result of the inverted model instability.
This phenomenon has impact on the model identifiability and is more precisely described
in the next section.

3. Identifiability

The problem of invertibility of the EB model is the identifiability of this model. For
the purpose of this paper we define the identifiability as the possibility to obtain the
statistically accurate estimate of model coefficient during the identification.

The most common approach to estimation of the EB model coefficient is based on
minimization of the mean square error MSE:

MSE =
1
N

N

∑
i=1

ε2
i ; (17)

where εi is a one step prediction error computed as follows:

εi = yi − β̂εi−kyi−l. (18)
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Figure 1: Estimated simulation signals

Equation (18) is similar to (6) which means that ε can be treated as the estimate êi of a
stimulation signal ei. The β̂ is the estimate of model coefficient β.

If β̂ = β these estimates, further noted as êi, should be convergent to the original
ei values and also their variance should be close to minimal. Randomness of the EB
process, and fact that in practice we always operate on the finite time–series, result in
some random displacement of the global minimum of MSE cost function from the point
β̂ = β. Moreover, lower values of β make βei−kyi−l part of the model having less impact
of the model output yi than ei. This results in increased variance of the MSE global
minimum displacement.

Now, if the concerned EB model is non–invertible, the incidental explosions of êi
may occur as it was presented in previous section. Lets consider how this phenomenon
might influence the shape of the MSE function.

The same set of EB time–series (Fig. 1) is once more taken under consideration.
However, this time êi were also computed for β̂ ̸= β and for these, the values of MSE
cost function were obtained and presented in upper plots of Fig. 2. The vertical dashed
line represents the placement of the original β. In the bottom plots both: original ei and êi

estimated for β̂ = β are presented. In this way the convergence of êi to ei for the original
EB model coefficient can be observed.
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Figure 2: MSE function
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Analyzing Fig. 2a, we can see that êi is convergent to ei and the placement of the
global minimum (represented by small circle on the MSE plot) is close to the original β
(zoom A).

A very different conclusion can be drawn from Fig. 2b, where the explosion at
i = 120 (zoom B) caused the significant rise of the MSE cost function even though,
β̂ = β. As a result the minimum located at β̂ = 0.9 (zoom C) is not a global minimum of
the MSE cost function. The actual global minimum of MSE for this particular case has
been displaced towards very low values (zoom E). Therefore the EB model coefficient
acquired as argument of global minimum of this particular cost function will not even be
close to original one. The presented situation explains why the invertibility condition is
generally considered as the identifiability condition (see [16], [37], [39], [5]). Moreover,
many authors report that even narrower range than (9) should be considered if accurate
estimation results for EB model coefficient (see [9], [11], [27], [40]) might be obtained.

4. Proposed solution and its impact on identification

Let once more have a look at Fig.2b. We can see that explosion of êi (zoom B)
quickly fades out and remaining êi are convergent to ei (zoom D). This implies that lack
of convergence of êi caused by instability of the inverted model does not accumulate
over time, thus it can be corrected by a simple bound imposed on êi values. Therefore,
author propose to use the Saturated Mean Square Error (SMSE) cost function instead of
MSE (17) as the cost function for estimation:

SMSE =
1
N

N

∑
i=1

ê2
i (19)

In SMSE εi is replaced by êi which are estimates of ei computed by the following for-
mula:

êi =


w : εi ­ w
εi : −w < εi < w
−w : εi ¬ w

. (20)

The εi is computed using (21).

εi = yi − β̂êi−kyi−l. (21)

The bounding level w is equal to 3Se , where Se is the standard deviation of ei. Normally
Se is unknown before the estimation, but it is possible to evaluate it in recursive estima-
tion runs [24]. In this paper we simply assume that Se is known and focus on impact of
the proposed bounding level w = 3Se on estimation using the SMSE cost function. The
bounding level w is established basing on assumption of the Gaussian distribution of ei.
By this way no more than 0.3% of samples should be incorrectly truncated.
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Figure 3: SMSE function
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Lets check what impact have the SMSE function on the estimation of coefficient
of invertible and non–invertible EB model. The shape of the SMSE cost function for
already analysed time–series is presented in Fig. 3. For invertible example (β = 0.4), the
global minimum has not not been displaced (zoom A). The shape of the SMSE function
for this particular time–series has changed a little but what is the most important, the
scale of the cost function values was significantly reduced (zoom B).

Results obtained for the non–invertible model are even more interesting. The explo-
sion at i = 120 is now restrained within the limit w (zoom C). This way the variance
of êi is significantly decreased for β̂ = β. As a result, the global minimum of the cost
function is very close to β̂ = 0.9 (zoom F) which is it correct placement. Although, the
second explosion occurs about i = 190 (zoom F), which is most probably caused by a
very subtle error arisen from applying the limit w (zoom E), it seems to have virtually
non negative impact on the global minimum placement of the SMSE cost function.

In sequel the results of the simulations similar to those presented above, are shown
and discussed.

5. Simulation results

The aim of the research provided in this section was to simulate a large number
(R = 1000) of independent super–diagonal (k = 1, l = 2) bilinear time–series (each of
length N = 1000 samples). The stimulation signal was a Gaussian noise of zero mean
value and variance λ2 = 1, thus, stability range (5) for simulated models is as follows:

β ∈ (−1,1) , (22)

The invertibility range (10) is defined as:

β ∈
(
−
√

0.5,
√

0.5
)
. (23)

Simulations were performed for the positive stability range only, starting from
β = 0.01 and ending at β = 0.99 with the fixed step ∆β = 0.01. For each β value, R
independent time–series were generated and passed for estimation of super–diagonal
EB models with the known structure (k = 1, l = 2).

Identification of the EB model was performed for each β (original coefficient of
the simulated EB time–series) separately. As a result for each pair: β, r, estimates β̂r,β
(r = 1,2, ...R) were obtained.

The estimation was performed twice, each time by minimisation of a different cost
function (MSE or SMSE). In both cases the same optimisation algorithm was performed:

1. The initial search for global minimum was performed by a simple grid-search
within the positive stability range β̂ ∈ (0,1) with fixed step ∆β̂ f st = 0.0001.
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Figure 4: Position Measures

2. β̂min corresponding to the minimal value of the cost function from step 1 is
used as the center of the second range for search. The second range is β̂ ∈
[β̂min−∆β̂ f st , β̂min+∆β̂ f st ] and the second fixed step is ∆β̂sec = 0.00001. The β̂min
obtained in the second step is assumed to be a global minimum of the specified
cost function and a final estimation result.

In order to distinguish the minima β̂min of MSE and SMSE functions, the following nota-
tions will be used respectively: β̂MSE

β,r and β̂SMSE
β,r . The estimation result using function F

is considered as proper, if |β− β̂F
β,r|< ηmax. Therefore, for further analysis the following

estimation error measures are introduced:

ηMSE
β,r = β̂MSE

β,r −β; (24)

and for the SMSE cost function:

ηSMSE
β,r = β̂SMSE

β,r −β. (25)

Due to changing statistical properties of identification results along with increasing β,
it is no easy to determine a proper ηmax value. Therefore, a statistical analysis for both
ηSMSE

β,r and ηMSE
β,r was performed.

First, simple position measures (mean and median) were computed and are presented
in Fig.4. Next, simple dispersion measures (standard deviation and interquartile range)
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Figure 5: Dispersion Measures

were obtained and are presented in Fig.5. The analysis of the position and dispersion
measures provide the following observations (marked in figures by corresponding capital
letters):

A. Both the MSE and the SMSE cost functions provide similar, close to zero mean
and median values of ηF

β,r within the range of invertible model coefficient values
(23).

B. There is a range of β values within which the median of ηMSE
β,r remain close to zero

but the mean value of ηMSE
β,r begin to drift towards −∞. It suggest that the outliers

begin to occur in estimation results if the original β is beyond (23) and if MSE
cost function is in use. Such behavior is not observed for the SMSE cost function.

C. There is the range of β where both median and mean value of ηMSE
β,r are drifting

towards −∞. This means that incorrect estimates are not longer outliers and begin
to dominate the identification results. Such behavior is not observed for the SMSE
cost function.

D. Most of dispersion measures for the MSE and the SMSE cost functions are close
to each other within the range of invertible model (23). The non–zero values of
those measures are caused by randomness occurring in data and seem to fade out
along the incising values of β.
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E. There is a range of still invertible models (within (23)) for which standard devia-
tion of ηMSE

β,r begin to drift towards +∞ while standard deviation of ηSMSE
β,r is fading

out towards zero. There is no such behavior observed for interquartile range which
suggest that this drift is caused by outliers (for the MSE only).

F. There is a subrange of non–invertible models, within which the standard deviation
of ηMSE

β,r strongly drift towards +∞ while standard deviation of ηSMSE
β,r is close to

zero. The interquartile range for both ηMSE
β,r and ηSMSE

β,r is very close to zero which
implies that the increasing number of outliers occurs along with the increasing β
when the MSE cost function is in use.

G. There is the range of non–invertible modes within which both dispersion measures
(standard deviation and interquartile range) for which ηMSE

β,r values are far from
zero. In this range the incorrect estimates obtained using the MSE cost function
are clearly dominative within the data set. If the SMSE cost function is used, no
such behavior is observed.

H. At the very end of stability range (22) both dispersion measures of ηMSE
β,r seem to

fade out towards zero. This observation might not be accidental and it is probably
caused by the strong impact of βei−kyi−l in contrast to ei which results in increased
estimation accuracy for both cost functions.

In addition to simple statistics analyzed above, the histograms of β̂MSE
β,r and β̂SMSE

β,r are
shown in Fig.6 and Fig.7 respectively. The histograms were normalized so the intensity
of gray-scale corresponds to estimated probability of occurrence. Moreover, as we are
more interested in showing the incorrect results the scale was truncated on probability
equal to 0.05 so all estimated probabilities greater or equal to 0.05 are represented by
black points. Thanks to that even the most rare thus the most interesting results can be
observed.

The specific observations made by visual analysis of the histogram are enumerated
below (the letters corresponds to areas depicted in figures):

I. There is a range of invertible EB models within which the distribution of identifi-
cation results β̂MSE

β,r is relatively wide but no outliers can be observed.

J. There is the range of rather high β values within which the outliers present in
estimation results become visible. Their number successively increases along with
increase of original β values.

K. The final range of β located near the very end of the stability range (22) contains a
significant or even dominative number of incorrect identification results (the MSE
cost function).

L. While using the SMSE cost function, the range of invertible EB models seems to
produce the very similar results to those obtained for the MSE cost function.
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Figure 6: Histogram using MSE cost function (w = ∞)

Figure 7: Histogram using SMSE cost function (w = 3Se)
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M. For the SMSE cost function in range of the higher β values do not contain any
explicit outliers.

N. No characteristic (for the MSE cost function) outliers were found among the re-
sults obtained.

O. Only very accurate estimation results can be found in the very end of considered
range of original β values.

Summarising the results and the analysis presented above the following conclusions
can be drawn:

• Like in typical estimation approaches, using the MSE function is justified mostly
within the range of invertible EB models. However, the increase in a standard
deviation of ηMSE

β,r for higher original β values (within invertiblity range) make
estimation using the MSE accurate only in limited range. This was also reported
by number of authors before.

• Although the proper estimation of the non invertible models (using the MSE cost
function) is possible, it is very unreliable. This claim is supported by observation
of numerous outlying estimation results obtained during simulations within this
range.

• Use of the SMSE cost function significantly changes the distribution of estimation
results ηSMSE

β,r by eliminating the outliers. As a result the correct and convergent
estimation results can be observed within the entire positive stability range of β.

• The statistical properties of EB model for positive and negative β values are the
same so it can be assumed that correct estimation of EB model coefficient within
the negative stability range is also possible.

• Distributions of the estimation results obtained at the very end of the stability
range (SMSE cost function) are extremely narrow. Therefore, more sophisticated
statistical using for e.g. Wilcoxon test, may not provide with credible conclusions.

6. Summary

In the paper the problem of estimation of coefficient of the elementary bilinear time–
series model was addressed. Firstly, it was shown that the main issue of the correct
estimation of the stable EB model coefficients is the model invertiblity. Next, the new
simple solution to this problem was proposed in Section 4 by recommendation of using
the SMSE cost function instead of commonly used MSE. Finally, with support of large
number of simulations the credibility of the proposed solution was presented in Section
5, where the clear superiority of the SMSE over the MSE is highlighted.
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The increase of SMSE computational complexity (in comparison to MSE) is in-
significant, yet it seems to provide with far more accurate estimation results. Although,
SMSE introduce the additional parameter (bounding level w) which correct value is un-
known before estimation, it can be easily obtained by using recursive approach proposed
in [24].

However, as long as the the SMSE cost function seems to solve the main estima-
tion issue (invertiblity of the model), it should not be treated as the final and universal
solution.

The first problem that needs emphasis is the fact that the analysis presented above
was performed with assumption of the Gaussian distribution of a stimulation signal.
Therefore, the solution for a different types of distribution of a stimulation signal requires
different and dedicated rules for evaluation of bounding level w.

There is also the second problem not addressed in this paper. If we look at Fig. 3b, we
can see that although, the global minimum of the SMSE cost function is in the correct
place, the shape of the entire cost function is very complex and consists of multiple
extrema. This is a significant problem for the estimation algorithms based on gradient
approach. Therefore, a design of dedicated stochastic optimization algorithm should be
provided in a future works in order to complete the solution for estimation of EB model
coefficients.
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