www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

10.1515/acsc-2017-0018

Archives of Control Sciences
Volume 27(LXIII), 2017
No. 2, pages 279-291

Active resources concept of computation for enterprise
software

MACIEJ KORYL

Traditional computational models for enterprise software are still to a great extent central-
ized. However, rapid growing of modern computation techniques and frameworks causes that
contemporary software becomes more and more distributed. Towards development of new com-
plete and coherent solution for distributed enterprise software construction, synthesis of three
well-grounded concepts is proposed: Domain-Driven Design technique of software engineer-
ing, REST architectural style and actor model of computation. As a result new resources-based
framework arises, which after first cases of use seems to be useful and worthy of further re-
search.

Key words: domain-driven design, REST, actor model.

1. Introduction

Enterprise software systems working in deployment environment of huge corpora-
tions such as banks or industrial plants consist of many separate products, typically from
several to several dozen parts. One software product serves from hundreds to above
thousand use cases and at the same time interacts with use cases of other products due
to automation of complex business processes. As regards the computation character, two
types of processes may be listed:

* processes of interactive character, often automated by usage of workflow tools,
responsible for entire process composition from atom elements representing well
defined and cohesive activities. Process composition in such manner is called or-
chestration;

* processes of batch character, consisted of processing fragments one following an-
other or one running parallel with another, typically iterated on collections of busi-
ness objects characteristic for particular area, such as contracts, transactions, or-
ders, etc. Nowadays implementations of such batch processes are supported by
modern software frameworks dedicated to that purpose.

The Author is with Rzeszow University of Technology, W. Pola str. 2, 35-959 Rzeszow, Poland, e-mail:
maciej.koryl @ gmail.com
Received 18.12.2016.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

280 M. KORYL

In both cases, constructed processes consist of many functions working in close co-
operation, often exposed as APIs of systems or APIs of their components. As long as
cooperation is carried in synchronous way, complexity of such arrangement may be con-
trolled, even if number of involved systems is substantial and number of interactions is
high. In synchronous systems number of possible states in which system may occur is
countable and predictable at the stage of software designing or detectable during testing.
After applying asynchronous model of communication, complexity of system violently
grows with increase of possible different states, which number is non-linear function of
possible states of constituents of the system and number of interactions between them
([4]). During many years of computation theories development and many years of soft-
ware engineering implementation practices, meaningful conceptual and technical tools
were established, but that does not mean that problem of complexity has passed away or
even has been minimized to notable degree. The matter is broadly recognized in special-
ized computation areas dealing with well-established algorithms, but still is not enough
captured in commercial products development, govern by its own specificity connected
with high number of software users, many different business objects and huge number
of unpredictable interactions (sample characteristic of such systems is shown in [8]). In
these days, problem is more and more complicated because of limitations of monolithic
systems and the need for introduction of distributed software, for example in the form of
microservices ([12]), which are adapted for horizontal scaling and well suited in actual
hardware capabilities. Several conceptual and technical tools currently used in software
engineering discipline, dedicated to distributed processing are described in [3], where
one of them is an actor model of computation, which after many years of academic de-
velopment, currently gains great popularity in commercial area. Proposition which is
shown in this paper constitutes coherent and complete framework based on well-tried
techniques and design patterns with actor model between them and has working im-
plementation in Java programming language with use of modern tools for enterprise
applications such as Spring Framework and noSQL databases. Proposed solution has
been used to build some parts of banking transactional system, which supports batch
processes such as massive transactions processing or interaction with trade platform. As
a foundation of the idea, three engineering concepts act: Domain-Driven Design tech-
nique proposed in [5] and broadly accepted in software community, Representational
State Transfer architectural style introduced in [6] and currently becoming the most pop-
ular way of interaction between web components, and the actor model of computation
described in [10] nowadays gaining mature and useful implementations. In addition, the
solution was enriched by use of standard language of agent communication in multi-
agent systems — Agent Communication Language, which semantics was found as very
suitable for required interactions.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE 281

2. Fundamental concepts

2.1. Resource as a central point of the REST model

Representational State Transfer (REST) is an architectural style implementing fun-
damental rules of the web and HTTP standard. REST was introduced by dissertation [6]
and at present has obtained great popularity as ‘the web used correctly’. Central idea
of the style is to treat all things which have identity as resources and give them globally
unique Uniform Resource Identifier (URI). Resources named in this way may communi-
cate together using hyperlinks. Communication is provided by usage of standard HTTP
commands with their established semantics. Important rule of REST is that communica-
tion ought to be stateless, i.e. parties cannot keep state of communication assuming that
next message will be continuation of previous one. In proposed approach the resource
term plays key role as external representation of computation units and set of REST rules
and good practices in interactions modeling are applied.

2.2. Aggregate in Domain-Driven Design concept

Domain-Driven Design (DDD) concept introduced in [5] is an approach to software
development which pays attention to key meaning of domain model in software design.
Domain model plays central role in whole process of development acting as universal
medium of communication between all participants and providing stable base for soft-
ware structure. DDD technique is divided into two stacks of patterns: strategic and tacti-
cal ones. First of them serves as toolset for taking control over complexity of extensive
software and second consists of a set of building blocks, which is sufficient for complete
design of each kind of enterprise software on some level of abstraction. The most im-
portant pattern from tactical stack is the aggregate building block and there is plenty of
rules explained in literature, how to build useful aggregates (for example [18]). Aggre-
gate is a graph of objects tied together into one coherent object offering common set of
services for external world. The only way to access aggregate constituents capabilities is
aggregate root, the central entry point to that software unit. Thanks to such construction,
aggregate guarantees the consistency of changes of whole structure, controls its internal
state and gives convenient way for its access. In proposed framework, aggregate plays
important role as representation of stable state of a resource and also as a part of resource
in dynamical state by offering its behavioral capabilities.

2.3. Actor model of computation

The actor model of computation developed many years ago and firstly published
in [10] was thought as conceptual tool for understanding of concurrency. Many software
frameworks based on actor model have been built to this day, but broad utilization in
enterprise software area is still scarce. Currently, attention in that idea is growing, stim-
ulated by development of multi-core processors and development of cloud computing
solutions with necessity of computation distribution. Theory of actor model treats ac-
tors as universal primitives with capability to carry out each kind of needed computation

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

282 M. KORYL

([9]). Actors are independent units of computation loosely coupled together, only by
asynchronous messages passing and the only reliable knowledge which actor has about
other actor is its mailbox address. When an actor receives a message it may do some
computation, send messages to participants, create additional actors as its children or
may change its own behavior preparing itself for future course of situation. In proposed
framework, actors will support implementation of dynamical state of resource.

2.4. Agent Communication Language

Agent Communication Language (ACL) is a definition of standard language used
in multi-agent systems to model conversations between involved parties. Its origins are
in philosophical theory of speech acts ([15]), which state that each utterance has not
only informative, but also performative function, i.e. causes consequences in receiver’s
activity. ACL has been drawn up by Foundation for Intelligent Physical Agents (FIPA)
as FIPA-ACL set of standards [7]. In proposed solution ACL syntactics and semantics
are used to model communication between resources, especially by use of standard vo-
cabulary of performatives denoting the type of communicative acts.

3. Active resources model of computation

3.1. The active resources term

As ‘active resources’ are considered resources, which at moment of interaction may
be under change originated from other interaction, computation processes or any other
factor. As active resource is in unstable state and its properties may change in time,
another object cannot assume that something is true about that resource, even if resource
still exists or not. An observer cannot have knowledge about its state, but can have only
some beliefs. For example, if some procedure in banking system completes payment
and has information about sufficient balance of debited account, it cannot assume that
payment will be successful. It ought to be ready for receiving information from target
resource that operation has succeeded or not. As regards software design, active resource
is represented by synthesis of three concepts:

* REST resource, which brings unambiguous global identification of resource and
convenient language of communication for presentation and change of its state. It
also provides availability of many technical frameworks ready for use for imple-
mentation of interactions;

* DDD aggregate, which gives a comprehensive way of modeling software external
and internal structure, its behavior and rules forming objects identity. DDD tech-
nique also brings possibility of effective and cheap implementation thanks to help
of modern frameworks for enterprise software such as Spring Framework [16]
which was broadly used to implement proposed solution;

www.czasopisma.pan.pl P N www.journals.pan.pl

'
~—

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE 283

AtherResuurce

ResourceController

Active resources area [Actor Stable resources area
system] [Repository]

Q B

—
ActweResourceQ \
save

- @@=
StableResource [Aggregate]

Figure 1: Two areas of resources

* actor, which offers its capability of long-term existence and sophisticated commu-
nication abilities. Utilization of actor model is possible and reliable due to exis-
tence of mature implementations such as Akka Framework [1], which was used
with support of patterns based on it ([2, 18, 20]).

3.2. Two areas of resources

Any resource in the solution may stay in one of two states: stable state, when no
change of its properties is possible and active state, when its properties may dynamically
change. Therefore, symbolically two areas are distinguished: stable resources area and
active resource area as was presented in Fig. 1.

When message to resource in stable area was directed, resource is moved to active
area, where it acquires ability to act. If system detects that active resource is idle (does
not perform any activity and has empty mailbox), resource may be removed from active
area, but it depends on used strategy of supervising. In the system implementation these
areas as represented by DDD repository pattern and by actor system respectively. For
resource migration into active area, dedicated to such kind of resources, area supervisor
is responsible. Sample body of supervisor’s function of message handling is shown on
Listing 1. Some essential comments have been placed in the code.

Listing 1: Supervisor’s message handling function

public void onReceive (Object message) {
if (message instanceof CreateResource)
// request to create new resource
CreateResource msg = (CreateResource) message;
// create active resource

www.czasopisma.pan.pl P N www.journals.pan.pl
N

284 M. KORYL

ActorRef activeResource =
context () .actorOf (componentNameProps (),
msg.resourceName ()) ;
// and send message to the newborn in active state.
// It will be responsible for immediate
// creation of it’s stable representation
activeResource.tell (msg, self());

} else if (message instanceof PerformAct) {
// message to existing resource
PerformAct msg = (PerformAct) message;
// 1s resource 1in active state?
ActorRef activeResource =

this.getContext () .getChild (msg.resourceName ());
if (activeResource == null) { // no
// enter existing resource into active state
activeResource =
context () .actorOf (componentNameProps (),
msg.resourceName ()) ;

}
// send message to resource in active state
activeResource.tell (msg, self());

4. Example of distributed batch processing supported by the new concept

Each processing routine in transactional system may be treated as active resource.
Examples of such resources are: standing orders processing, interest calculation, interest
capitalization, incoming or outgoing payments processing etc. Initialization of process-
ing is therefore implemented as request for creation of resource of some kind. System or-
dering computation sends request to microservice which is responsible for handling such
processing. Typically it will be microservice which owns resources being processed, for
example customer contracts or registered payments. It also may be separate microser-
vice as in example below, when processing involves different resources. Ordering sys-
tem sends POST command with REQUEST performative and in return receives URI of
active resource which probably will be created in the target system. Ordering system
have to be ready to accept confirmation of resource creation sent by target system — the
CONFIRM performative meaning that processing has been started. Thanks to received
URI, ordering system is able to contact with active resource in target system and ask it
about its state (QUERY _REF performative sent by GET command) or to order further
requests, for example hold computation or abandon it (CANCEL performative sent by
POST command). Ordering system should be ready to accept information from resource

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE 285

% «microservice» «microservice» «microservice» «microservice»
Processing Payments CurrentAccounts Accounting
System 9perator

|]
}POSTIDrucessmg(REQUEST) I

runProcessing()
POST /payments(REQUEST) POST
IcurrentAccounts/003(REQUEST)

POST

[currentAccounts/004(REQUEST) 1
L POST /accounting/005(NFORM)

| POST faccounting/005(INFORM)

-—--d

| POST /payments/002(NFORM)
POST /processing/001({INFORM) H

GET
Iprocessing/001(QUERY_REF)

P SR

Figure 2: Sample processing supported by the new model

Retail banking 2]
application

| A
REST, WebSocket WebSlocket

Vi i
Discussed Autodealing system | __SOAP | Core-banking system g]
componenr

! A T

MINA MINA ~~50AP

| ~w

¥ | e

Dealing system g Treasury system gl

Figure 3: Component model of ‘autodealing’ example

(which may be sent as INFORM performative by POST command) or explicitly order
such information (e.g. results of computation). Sequence diagram presented in Fig. 2
illustrates example of interactions between microservices working on some kind of pro-
cessing in banking software. For clarity only single set of interactions for one transaction
was shown.

5. Example of real-time cooperation and problems solved

Second example concerns real-time computation provided in enterprise system of-
fering auto-dealing functionality, i.e. ability to make unassisted currency exchange trans-
actions on trading platform (typically such transactions are supported by brokers). The
whole solution consists of several components. The most important of them are shown
in Fig. 3.

The first attempt to implement Autodealing system was made using typical service-
oriented approach of stateless nature. Implementation and functional tests of the solution

286

www.czasopisma.pan.pl P N www.journals.pan.pl

S

<

M. KORYL

%

Customer

‘ Retail banking ‘ ‘ Autodealing system ‘ ‘ Trading platform Core-banking system

application

‘ Treasury system

select currency pair()

open quotation()

subscribe currency pair()

create quotation()

market data()

|
I
u]
calculate and persist()
o send guotation()
L

loop J

do transaction()

do transaction()

u send order()

|
| _ confirm dealing fransaction()

change quotation status() }

i
register corebanking fransaction()

T
|

register freasury transaction()

confirm fransaction() T \{

|

|

|

™|

-

Figure 4: Real-time cooperation supported by service-oriented approach

revealed some problems of diverse origin. In the majority of cases functionally satisfying
solution was found, but applied mechanisms were of different type and architecture of
the system began to drift into worrying direction. Coherent mechanism was demanded
and finally the active resources framework has filled the gap. The most interesting prob-
lems and solutions provided by the framework are described below. Description concerns
key interactions in system which are shown in Fig. 4.

1. The first problem is connected with events ordering and occurs when first market

data message arrives when quotation is still being created or persisted and doesn’t
exist yet. System cannot properly address market data. The simplest protection is
to ignore market data if quotation doesn’t exist, but user would wait unacceptably
long time if frequency of messages is low (e.g. one per 10 second).

The other problem concerns resource access synchronization and appears when
frequency of market data messages is high and new message arrives when pre-
vious is still being handled. System cannot synchronize processing by use of
database transactions because remote invocations exist. The simplest way is to
ignore incoming messages when the old one is being processed, but it may lead
to unwanted business effect of loosing the most beneficial offers. Some advanced
queuing mechanism should be used to ensure proper order of servicing.

Another problem appears after user decides to finalize transaction and system
sends order message to Trading platform. Until platform doesn’t confirm transac-
tion, still market data messages arrives to the system. In that state, such messages

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE 287

have to be ignored. Typical solution is to use special status property of object and
make behavior conditional on its value.

4. One of functional requirements is that user has to be informed about the result
of dealing transaction immediately when confirmation from Trading platform is
got, and the next parts of confirmation handling procedure (interaction with Core-
banking and Treasury domain systems) should be done later. To fulfil such a re-
quirement special tools for asynchronous processing have to be applied.

5. Since communication with domain systems may be unreliable, it should be re-
peated in controlled way if failure occurs, without blocking main use case sce-
nario. Such a requirement causes that some equipment for background processing
have to be used.

6. Until user doesn’t select the most interesting currency pair and register private
subscription in Trading platform, public rates are broadcasted to each observer.
To do that, Autodealing system have to maintain global list of active observers of
each currency pair or list of pairs for each active observer, and therefore special
concurrent structure must be applied.

7. Mentioned above list of observers is a static structure, and it cannot be directly
used to actively inform observers about communication problems happening, such
as temporal unavailability of dealing or domain systems. Low amount of mainte-
nance information causes discomfort and growing impatience when any problem
appears.

The active resource framework naturally helps to solve the problems mentioned
above.

1. Messages arriving at active resource are enqueued in its mailbox and each of them
are processed in exclusive mode (i.e. at the moment resource services only one
task). So, hazard cannot occur: creation of resource always would finish before
next message is taken to service.

2. All messages in resource mailbox are ordered and are computed exclusively -
this property blocks synchronization problem. In both cases (1. and 2.) prioritiza-
tion function of resource mailbox plays important role: the functional requirement
states that when newer message of the same type is already present in queue, it
has higher priority and should be served first. Older message should be skipped in
such case. Discussed solution supports that requirement.

3. Third problem may be solved by actor capability to dynamically change its behav-
ior. After ordering of transaction, actor switches its handling function to the new
one which accepts only confirmation and rejection messages.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

288 M. KORYL

4. Asynchronous processing is the normal way which active resource uses to perform
all its tasks. In this example, resource can inform user about Trading platform
answer and continue cooperation with other systems.

5. Repeated actions may be initiated and controlled by active resource in a few ways.
Common pattern is to address message to itself: when error is detected, actor sends
message to its own mailbox causing future effect of message processing. Since
active resource carries its state, repeated executions may be controlled and, for
example, ended after some number of failures.

6. Instead of keeping some kind of global structures storing addresses of observers,
built-in function of discussed framework can be used: each type of resource has its
own supervisor which keeps mailbox addresses of all its child resources in active
state. This address book (which is an actor system function) lets properly broad-
cast required information to resources, and each resource can inform its front-end
client.

7. Each active resource can actively react to problems appearing and can notify con-
nected user in the same way as above. Thereafter it can send information update
when conditions are changing.

Generally, one might say, that the new concept more naturally fits requirements of
real-time transactional systems then typical service-oriented solution. Examples above
point out that it solves many problems of different nature, simplifies software develop-
ment and introduces coherence into its architecture.

6. DDD tactical tool-set extension

The set of design patterns contained in tactical part of DDD includes the aggregate as
a central element and a few additional items. They belong to two sub-layers of business
logic layer: application and domain one. The concept of active resources introduces new
sub-layer including additional patterns responsible for active behaviour: the actors layer.
Enriched model of DDD tactical patterns is shown on Fig. 5.

7. Final remarks

New concept of computation in enterprise software and examples of its application
in some processing and real-time routines were presented. Similar solutions work in
real banking software and currently is under further research and development, but first
results are very promising. After a few first cases of use of the new solution, there might
be told that characteristic features of development process based upon new framework
are low cost of use cases implementation and low level of defects detected during quality

www.czasopisma.pan.pl P N www.journals.pan.pl

S

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE

289

Application

REST

RestController

ApplicationService

|
|
|
|
|
|
i 1
: Actors |
| |
Y Message |
ResourceSupervisor __g@gtg,_aemmﬁiq@_} ActiveResource ___"ggn_d___"_"} i
(REST) use
) ; i
} : create, send message OtherActorPatterns !
use I T !
______________________ i |
i ! |
| | |
T | T
i oo use J |
i i Domai i
VA |
Factory ! create Aggregate DomainService {,,,,,J
B ey B
| [T use
T |
| I
i retum / \ e 2
v | W
Repository J ValueObject Entity Strategy
| |
| |
1 3
LPH@'EE} DomainEvent .E:_DHE‘@D_J

Figure 5: DDD tactical patterns enriched with actors layer

assurance phase. The concept of active resource is thought as a broader idea and may
serve as fundamental framework able to maintain whole transactional solution. It may
be applied to serve both kind of enterprise computation: batch processing, where active
resource controls process, and computation of real-time or interactive character, which
is more unpredictable and more demanded than batch processing, and active resource
helps to control its complexity. Broader research is currently going on. Next planned
stage is attempt to build complete new module of transactional system with dominance of
resources of the new kind. Additional direction of theoretical and practical development
would be step towards utilization of some more sophisticated ideas, such as emergent
properties theory, speech acts theory and indeterminism, with hope, that they may help
in better understanding of complex software processes.

www.czasopisma.pan.pl P N www.journals.pan.pl
N
<

290 M. KORYL

References

[1] Akka Framework, http://akka.io. Access 11.2016.
[2] J. ALLEN: Effective Akka. O’Reilly Media, Inc., 2013.

[3] P. BUTCHER: Seven Concurrency Models in Seven Weeks. Pragmatic Bookshelf,
2014.

[4] K.M. CHANDY and L. LAMPORT: Distributed snapshots: Determining global
states of Ddistributed systems. ACM Trans. on Computer Systems, 3(1), (1985),
63-75.

[5] E. EVANS: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2003.

[6] R.T. FIELDING: Architectural Styles and the Design of Network-based Software
Architectures. PhD dissertation, University Of California, Irvine, 2000.

[7] FIPA Standards, http://www.fipa.org/repository. Access 11.2016.

[8] M. FOWLER: Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

[9] C. HEWITT: Actor Model of Computation: Scalable Robust Information Systems.
Cornell University Library, arXiv:1008.1459, 2015.

[10] C. HEWITT, P. BISHOP and R. STEIGER: A universal modular actor formalism
for artificial intelligence. IJCAI’73 Proc. of the 3rd Int. Joint Conf. on Artificial
Intelligence, (1973), 235-245.

[11] S. MILLETT and N. TUNE: Patterns, Principles, and Practices of Domain-Driven
Design. John Wiley & Sons, 2015.

[12] S. NEWMAN: Building Microservices. Designing Fine-Grained Systems. O’Reilly
Media, 2015.

[13] T. O’CoNNOR: Emergent properties. American Philosophical Quarterly, 31
(1994), 91-104.

[14] M. NASH and W. WALDRON: Applied Akka Patterns. O’Reilly Media, Inc., 2016.
[15] J.R. SEARLE: Speech Acts. Cambridge University Press, 1969.
[16] Spring Framework, https://spring.io. Access 11.2016.

[17] G. SUKUMAR: Distributed Systems: An Algorithmic Approach. Chapman and
Hall/CRC, 2014.

www.czasopisma.pan.pl P N www.journals.pan.pl
N

ACTIVE RESOURCES CONCEPT OF COMPUTATION FOR ENTERPRISE SOFTWARE 291

[18] V. VERNON: Implementing Domain-Driven Design. Addison-Wesley Profes-
sional, 2013.

[19] V. VERNON: Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Addison-Wesley Professional, 2015.

[20] D. WYATT: Akka Concurrency. Artima Press, 2013.

