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FREE VIBRATION ANALYSIS OF MINDLIN PLATES RESTING ON
PASTERNAK FOUNDATION USING COUPLED DISPLACEMENT

METHOD

The authors developed a simple and efficient method, called the Coupled Dis-
placement method, to study the linear free vibration behavior of the moderately thick
rectangular plates in which a single-term trigonometric/algebraic admissible displace-
ment, such as total rotations, are assumed for one of the variables (in both X,Y direc-
tions), and the other displacement field, such as transverse displacement, is derived by
making use of the coupling equations. The coupled displacement method makes the
energy formulation to contain half the number of unknown independent coefficients
in the case of a moderately thick plate, contrary to the conventional Rayleigh-Ritz
method. The smaller number of undetermined coefficients significantly simplifies the
vibration problem. The closed form expression in the form of fundamental frequency
parameter is derived for all edges of simply supported moderately thick rectangular
plate resting on Pasternak foundation. The results obtained by the present coupled
displacement method are compared with existing open literature values wherever
possible for various plate boundary conditions such as all edges simply supported,
clamped and two opposite edges simply supported and clamped and the agreement
found is good.

Nomenclature

θ assumed total rotation,
w transverse displacement,
G shear modulus,
k shear correction factor,
T total kinetic energy,
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U total strain energy,
ρ density of the plate,
ωL linear radian frequency,
K f Winkler foundation parameter,
Ks Pasternak foundation parameter,
K f Winkler stiffness,
Ks shear layer stiffness,
ν Poisson ratio,
a length of the plate in x direction,
b length of the plate in y direction,
D plate flexural rigidity,
α undetermined coefficient,
h thickness of plate.

1. Introduction

Plates are used in various engineering applications such as aerospace, marine,
civil, mechanical, nuclear, automobile and industrial. These structural members
vibrate when they are subjected to severe dynamic environment. So, the knowl-
edge of vibration is very important and essential to study and design of structural
members. In case of classical thin plate theory shear deformation is neglected and
it is considered in first order shear deformation theory. The authors used a simple
method called the Coupled Displacement method to study the vibration charac-
teristics of structural members by considering shear deformation. Many authors
contributed different methodologies to study the free vibration behavior of thin
plates.

Karasin [1] extended analytical solutions of the discrete one-dimensional beam
elements resting on elastic foundation for solution of plate vibration problems by
the so-called discrete parameter approach where the physical domain is broken
down into discrete sub-domains. Ferreira et al. [2] considered the static and free
vibration analysis of rectangular plates resting on Pasternak foundations described
by a two-parameter model based on collocation with radial basis functions and
based on a first-order shear deformation theory, where displacements and stresses,
as well as natural frequencies and modes are produced. Matsunaga [3] analysed the
natural frequencies of thick isotropic plates on two parameter elastic foundation by
considering the effect of shear deformation and rotary inertia using the method of
power series expansion of the displacement components using a set of fundamental
dynamic equations, higher order theory for thick plates with the help of Hamilton’s
principle. Zhou et al. [4] deliberated the free-vibration characteristics of rectangular
thick plates resting on elastic foundations based on the three-dimensional, linear
and small strain elasticity theory. The foundation is described by the Pasternak (two-
parameter) model and the Ritz method is used to derive the eigenvalue equation
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of the rectangular plate by augmenting the strain energy of the plate with the
potential energy of the elastic foundation. Bahmyari [5] utilized the the element
free Galerkin method to analyse free vibration of thin plates resting on Pasternak
elastic foundations with all possible types of classical boundary conditions. Rao et
al. [6] considered large-amplitude free vibrations of uniform Timoshenko beams
with different beam boundary conditions by using coupled displacement field
method.

Liu et al. [7] premeditated the vibration characteristics of square thick plates on
Pasternak foundation with arbitrary boundary conditions on the basis of the three
dimensional elasticity theory and the exact solutions are obtained based on the
Rayleigh-Ritz procedure by the energy functions of the thick plate. Reuzegar et al.
[8] used two-variable refined plate theory for the analysis of thick plates resting on
elastic foundation; the theory contains only two unknown parameters and predicts
parabolic variation of transverse shear stresses without using shear correction
factor and used the principle of minimum potential energy, the governing equations
for simply supported rectangular plates resting on Winkler elastic foundation are
obtained.

Krishnabhaskar et al. [9] used coupled displacement method for the evaluation
of large-amplitude free vibrations of Timoshenko beams at higher modes. Rajesh
et al. [10] presented the vibration behavior of rectangular thick plates by using the
Coupled Displacement method for simply supported beam boundary condition for
various thickness ratios. Rajesh and Saheb [11] usedCoupledDisplacementmethod
and successfully applied it to study the free vibrations of uniform Timoshenko
beams resting on Pasternak foundation for hinged-hinged and clamped-clamped
beam boundary conditions. Ozgan et al. [12] did the free vibration analysis of
thick plates on elastic foundations using modified Vlasov model with higher order
modified elements using 4-noded (PBQ4) and 8-noded (PBQ8) Mindlin plate
elements for the analysis usingWinkler foundationmodel. Two different integration
rules, namely the full integration (FI) and the selective reduced integration (SRI)
techniques, are used to obtain stiffness matrix of plates.

Ozgan et al. [13, 14] implemented Vlasov model with higher-order finite ele-
ments for free vibration analysis of thick plates on elastic foundations. Dehghany
and Farajpour [15] dealt with exact solution for free vibration analysis of simply
supported rectangular plates on elastic foundation on the basis of three dimen-
sional elasticity theory for the Pasternak foundation (two-parameter) model. The
Navier equations of motion are replaced by three decoupled equations in terms
of displacement components and these equations are solved using a semi-inverse
method to get the solution in the form of a double Fourier sine series. Omurtag et
al. [16] studied the free vibrations of thin plates resting on Pasternak foundation
using finite element method. Matsunaga [3] deliberated the vibration and stability
of simply supported rectangular thick plates on a Pasternak foundation using a
special higher order plate theory. Mindlin [17] proposed the so-called first-order
shear deformation theory by assuming constant shear strain throughout the cross
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section and introduced shear correction factor to compensate errors and got more
accurate results than that of classical plate theory. Zaman et al. [18] focused on
free vibration analysis of plates resting on a two-parameter elastic medium through
a finite element procedure. The associated shape functions are derived from the
solution of a plate resting on the two-parameter medium and a parametric study
is conducted to identify the influence of various factors on the mode shapes and
natural frequencies. Wen [19] investigated the method of fundamental solution
(MFS) applied to a shear deformable plate (Reissner/Mindlin’s theories) resting on
the elastic foundation under either a static or a dynamic load through fundamental
solutions by the boundary element method. Buczkowski et al. [20] studied the nat-
ural frequencies of thick plates resting on Pasternak foundation by taking 16-node
Mindlin plate element and 32-node zero thickness interface element representing
the response of the foundation by using finite element method. Saheb and Kr-
ishnabhaskar [21] premeditated large amplitude free vibration of simply supported
and clamped moderately thick square plates using coupled displacement method.
Saheb et al. [22] successfully applied coupled displacement method for evaluation
of large amplitude free vibration behavior of uniform Timoshenko beams. Wang
et al. [23] derived exact and analytical solutions for simply supported rectangular
plate on Pasternak foundation.

Xiang and Kitipornchai [24] worked on exact vibration solution for initially
stressed Mindlin plates on Pasternak foundations. Xiang et al. [25] worked on
Winkler and Pasternak foundation to study the soil behavior for different types of
foundations like shallow and deep. Zhong and Yin [26] explored eigenfrequencies
and vibration modes of a rectangular thin plate on an elastic foundation using
classical thin plate theory and integral transformation method. In this paper, the
authors presented the Coupled Displacement Field (CDF) method for analysing the
vibration behaviour of Mindlin rectangular plates, which is suitable for analysing
the vibration characteristics of structural members. The CDF method was success-
fully applied for analysing the vibration behaviour of Timoshenko beam with the
effect of foundation parameter [11].

2. Coupled Displacement method (CDF)

Knowledge of fundamental frequency parameters of moderately thick rectan-
gular plates is important and has to be considered in the initial design phase of
structural members. The energy methods provide a convenient means for comput-
ing the fundamental frequency parameters of structural members and the solutions
obtained using this approach are upper bound and the accuracy of the solution
depends on the admissible functions chosen for the lateral displacement and total
rotations.

In this paper, the authors used CDFmethod and that significantly simplifies the
formulation of the vibration problem of moderately thick rectangular plates. In this
paper, the solutions for the total rotations and the lateral displacement are coupled
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by using coupling equations, which are derived for obtaining the static solution
of shear deformable moderately thick rectangular plates. This method reduces the
magnitude of the problem by reducing the number of unknowns from 2n to n,
for the multi-term admissible functions and from two to one for the single-term
admissible functions and decreases the effort involved in the solution procedure
considerably to obtain the fundamental frequency parameter.

2.1. First order shear deformation theory of plates

The simplest shear deformation plate theory is the first-order shear deformation
plate theory (or FSDT), also referred to as theMindlin plate theory (Mindlin, 1951)
and it is based on the displacement.

u(x, y, z) = zθx(x, y), (1)

v(x, y, z) = zθy(x, y), (2)

w(x, y, z) = w(x, y), (3)

where u and v are in plane displacements in x and y direction, w is transverse
displacement along z direction, θx and θy denote rotations about the y and x axes
respectively. In FSDT, shear correction factor is introduced to correct the discrep-
ancy between the actual transverse shear stress distribution and that computed
using the kinematic relations of FSDT. The shear correction factor (k) depends not
only on the geometric parameters, but also on the loading and boundary conditions
of the plate. However, a value of k = 5/6, the widely used value of the shear
correction factor, is used in the present study.

Fig. 1. Geometry of thick plate

2.2. Coupled Displacement (CDF) method for Mindlin rectangular plates

In this method, an admissible functions for θx and θy which satisfies all
the geometric boundary conditions of plate domain is assumed. Note that these
functions may satisfy some or all the natural boundary conditions also. The for
lateral displacement (w) is evaluated using the coupling equations derived from
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the static equilibrium equation which is independent of the externally applied
load term.

dw
dx
= −θx +

h2

3.5

[
∂2θx

∂x2 + ν
∂2θy

∂y∂x

]
+

h2

10

[
∂2θx

∂y2 +
∂2θy

∂y∂x

]
, (4)

dw
dy
= −θy +

h2

3.5

[
∂2θy

∂y2 + ν
∂2θx
∂y∂x

]
+

h2

10

[
∂2θy

∂x2 +
∂2θx
∂y∂x

]
. (5)

It may be noted that two coupling equations are obtained for the moderately thick
rectangular plate. Though the admissible functions θx and θy , in general can be
written in a series form, here a single-term admissible functions for θx and θy is
chosen again with same intention of simplicity and better understanding of the
CDF method as

θx = α f1(x, y), (6)
θy = α f2(x, y), (7)

where α is the undetermined coefficient and f1(x, y) is the single-term admissible
function. Note that the functions for θx and θy are the different, as the rectangular
plate is considered in the present study.

Substituting the admissible functions for θx and θy as given in (6) and (7) in
(4) and (5) coupled displacement for the lateral displacement w is obtained as

w = α f3(x, y). (8)

Note that because of the use of the coupling equations, the transverse displace-
ment distribution (w) contains the same undetermined coefficient α as existing in
the θx and θy distribution. In general, a 2n undetermined coefficients problem in the
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Fig. 2. Moderately thick rectangular plate resting on Pasternak foundation
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R-R method reduces to an n undetermined coefficient problem in the CDF method.
The linear fundamental frequency parameter is obtained from the following simple
equation

d(U − T)
dα

= 0 . (9)

3. Linear Free Vibrations of moderately thick rectangular Plates

The detailed procedure for the CDF method is discussed in this section for
the case of evaluating the fundamental linear frequency parameter of a uniform
all edges simply supported moderately thick rectangular plate for which the exact
vibration mode shape (for shear flexible plate) for the transverse displacement w
is well known. In the CDF method, the admissible functions for θx and θy are

assumed in the functional form, noting the similarity between
dw
dx

, θx and,
dw
dy

, θy
and satisfy the boundary conditions and symmetric conditions for m, n mode of
vibration as

θx = α
mπ
a

cos
mπx

a
sin

nπy
b

, (10)

θy = α
nπ
b

sin
mπx

a
cos

nπy
b

, (11)

where m is number of half sine waves in x direction and n is number of half sine
waves in y direction.

For fundamental mode the above equations become (m = 1, n = 1)

θx = α
π

a
cos

πx
a

sin
πy

b
, (12)

θy = α
π

b
sin

πx
a

cos
πy

b
, (13)

dw
dx
= −θx +

h2

3.5

[
∂2θx

∂x2 + ν
∂2θy

∂y∂x

]
+

h2

10

[
∂2θx

∂y2 +
∂2θy

∂y∂x

]
, (14)

dw
dy
= −θy +

h2

3.5

[
∂2θy

∂y2 + ν
∂2θx
∂y∂x

]
+

h2

10

[
∂2θy

∂x2 +
∂2θx
∂y∂x

]
. (15)

Substituting equations (12) and (13) in equation (14) and (15) and after sim-
plification

dw
dx
= −α

π

a
cos

πx
a

sin
πy

b

[
1 +

h2

3.5

(
π2

a2 +
0.3π2

b2

)
+

h2

5
π2

b2

]
, (16)

dw
dy
= −α

π

b
sin

πx
a

cos
πy

b

[
1 +

h2

3.5

(
π2

b2 +
0.3π2

a2

)
+

h2

5
π2

a2

]
. (17)
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Integration of equation (16) and after evaluation of the constant of integration

wx = −α sin
πx
a

sin
πy

b

[
1 +

h2

3.5

(
π2

a2 +
0.3π2

b2

)
+

h2

5
π2

b2

]
. (18)

The expression for strain energy due to bending moment and transverse shear
force is given by

UE =
D
2

a∫
0

b∫
0

{(
∂θx
∂x

)2
+

(
∂θy

∂y

)2
+ 2ν

∂θx
∂x

∂θy

∂y
+ 2(1 − ν)

∂θx
∂y

∂θy

∂x

}
dx dy+

kGh
2

a∫
0

b∫
0

{(
dw
dx
+ θx

)2
+

(
dw
dy
+ θy

)2
}

dx dy. (19)

Substituting equations (12), (13), (16), (17) in the above equation and after
simplification

UE =
Dα2ab

2

[(
π2

a2 +
π2

b2

)2

+
6k(1 − ν)

h2

{
π2

a2 (A − 1)2 +
π2

b2 (B − 1)2
}]
, (20)

where

A =
[
1 +

h2

3.5

(
π2

a2 +
0.3π2

b2

)
+

h2

5
π2

b2

]
,

B =
[
1 +

h2

3.5

(
π2

b2 +
0.3π2

a2

)
+

h2

5
π2

a2

]
,

s is denoted as the aspect ratio (b/a = s) then

A =
[
1 +

h2

3.5

(
π2

a2 +
0.3π2

a2s2

)
+

h2

5
π2

a2s2

]
,

B =
[
1 +

h2

3.5

(
π2

a2s2 +
0.3π2

a2

)
+

h2

5
π2

a2

]
.

Rewriting the equation (20) in terms of aspect ratio s and thickness ratio (h/a)

UE =
Dα2a2s

2

[(
π2

a2 +
π2

a2s2

)2
+

6k(1−ν)
h2

{
π2

a2 (A−1)2+
π2

a2s2 (B−1)2
}]
. (21)

The expression for strain energy due to Pasternak foundation is given by

UF =
1
2

a∫
0

b∫
0

[
K fw

2
x + Ks

{(
dw
dx

)2
+

(
dw
dy

)2
}]

dx dy. (22)
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Winkler and Pasternak foundation parameters are given respectively as

K f =
K f a4

D
, Ks =

Ksa2

D
. (23)

Substituting equation (14), (15), (18) and (23) in equation (22), and after
simplification (for b/a = s)

UF =
α2Ds
8a2

[(
K f + Ksπ

2
)
(A)2 + π2 Ks

s2 (B)
2

]
. (24)

The total strain energy U = UE +UF

U =
Dα2a2s

2

[(
π2

a2 +
π2

a2s2

)2

+
6k(1 − ν)

h2
π2

a2

{
(A − 1)2 +

1
s2 (B − 1)2

}]
+

α2Ds
8a2

[(
K f + Ksπ

2
)
(A)2 + π2 Ks

s2 (B)
2

]
(25)

after further simplification the above equation becomes,

U=
Dα2sπ4

2a2



[ (
s2+1

)2

s4 +
6k(1−ν)

h2
a2

π2

{
(A−1)2+

1
s2 (B−1)2

}]
+

1
4π4

[(
K f + Ksπ

2
)
(A)2 + π2 Ks

s2 (B)
2

]

. (26)

The expression for kinetic energy of the moderately thick rectangular plate is
given as

T =
ρhω2

L

2

a∫
0

b∫
0

[
w2 +

h2

12
(θ2

x + θ
2
y)

]
dx dy. (27)

Substituting the equations (12), (13) and (18) in the above equation, and after
simplification

T =
ρhω2

Lα
2a2s

8

[
(A)2 +

h2π2

12a2

(
1 +

1
s2

)]
. (28)

By minimizing the Lagranzian with respect to undetermined coefficient α

∂(U − T)
∂α

= 0, (29)



116 KORABATHINA RAJESH, KOPPANATI MEERA SAHEB

λ =
ρhω2

La4

π4D
= 4

[ [
(s2 + 1)2

s4 +
6k(1 − ν)

h2
a2

π2

{
(A − 1)2 +

1
s2 (B − 1)2

}]
+

1
4π4

[(
K f + Ksπ

2
)
(A)2 + π2 Ks

s2 (B)
2
] ]/ [

(A)2 +
h2π2

12a2

(
1 +

1
s2

)]
, (30)

where

A =
[
1 +

h2

3.5

(
π2

a2 +
0.3π2

a2s2

)
+

h2

5
π2

a2s2

]
,

B =
[
1 +

h2

3.5

(
π2

a2s2 +
0.3π2

a2

)
+

h2

5
π2

a2

]
.

There are no exact trigonometric admissible functions available for plate
boundary conditions such as all edges clamped and opposite edges clamped and
simply supported. So, the author made an effort to derive algebraic admissible
functions which satisfy all essential boundary conditions for the above mentioned
plate boundary conditions instead of trigonometric admissible functions to show
the efficacy of the coupled displacement method. The expressions for transverse
displacement at different modes with different plate boundary conditions are shown
in Table 1.

Table 1.
Algebraic admissible functions for different plate boundary conditions at fundamental

and higher modes

Boundary condition Transverse displacement w Mode sequence

C-C-C-C

x2(a − x)2y2(b − y)2α 1, 1

x2(a − x)2y2(b − y)2(0.5 − x)α 1, 2

x2(a − x)2y2(b − y)2(0.5 − y)α 2, 1

x2(a − x)2y2(b − y)2(0.5 − y)(0.5 − x)α 2, 2

S-C-S-C

x(x − a)y2(b − y)2α 1, 1

x(x − a)y2(b − y)2(y − 0.5)α 1, 2

x(x − a)y2(b − y)2(x − 0.5)α 2, 1

x(x − a)y2(b − y)2(x − 0.5)(y − 0.5)α 2, 2
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By using equation (30), the fundamental frequency parameter values (λ), for
S-S-S-S plate boundary condition are calculated in terms of plate thickness ratio
(h/a), aspect ratio (s) and foundation parameters, and are shown in Table 2, Table 3.

Similar procedure is adopted for other plate boundary conditions such as
all edges clamped (C-C-C-C), opposite edges clamped and simply supported (S-
C-S-C) boundary conditions, and the corresponding frequency parameter values
are calculated by developing code in Mathmatica (Mathmatical tool), and are
shown in Table 4, Table 5 and Table 6, Table 7, and the agreement is good be-
tween the other researchers’ results and the results generated by present CDF
method.

4. Numerical results and discussion

Using the formulation described above, linear free vibration behavior of a
uniform thin and moderately thick rectangular plates is obtained in terms of plate
thickness ratio (h/a), aspect ratio (s) and foundation parameters. As a demonstra-
tion of the proposed formulation, the plate is considered with axially immovable
edges.

The present results in terms of fundamental frequency parameter (λ) are pre-
sented in Table 2 for all edges of simply supported moderately thick square and
rectangular plates with variation of Winkler foundation stiffness. For thin plates
resting on elastic foundation, both classical plate theory and Mindlin plate theory
give accurate results, but the Mindlin plate theory requires more efforts, similarly
as other methods available in the literature, than the present CDF method. For the
sake of comparison and validation of the proposed method, the same results ob-
tained by the other researchers are included in Table 2, Table 3 for all edges S-S-S-S
and Table 4, Table 5 for all edges C-C-C-C plate boundary conditions. Table 6,
Table 7 shows the frequency parameter values for S-C-S-C boundary condition for
different modes.

Table 2 shows frequency parameter values at fundamental and higher modes
for thin and moderately thick square and rectangular plates with all edges S-S-S-S
boundary condition resting onWinkler foundation. Different combinations of plate
thickness ratios such as h/a = 0.01, 0.1, 0.15, 0.2; and Winkler foundation param-
eters such as K f = 100, 200, 300, 400, 500, 1000; Pasternak foundation parameters
such as KS = 0, for various aspect ratios as a/b = 1, 1.5, 2 were considered. To
show the accuracy and convergence rate of the present CDF method, the results
are examined by varying the non-dimensional foundation parameters to find the
influence of foundation parameter on non-dimensional frequency parameter and
are compared with other researchers [4, 23] and [16]. It is observed from Table 2
that the frequency parameter value increases with the increase in Winkler foun-
dation parameter for a given plate thickness ratio and aspect ratio. It is noticed
from Table 2 that the fundamental frequency parameter value decreases with the
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Table 2.
λ1/2 values of thin and moderately thick S-S-S-S Mindlin square and rectangular plates resting on

Winkler foundation

a/b h/a K f Ks
Mode (1,1) Mode (1,2) Mode (2,1) Mode (2,2)

CDF Ref. CDF Ref. CDF Ref. CDF Ref.

1

0.01

100 0 2.2413 2.2413a
2.2413b

5.0971 5.0973a
5.0971b

5.0971 5.0973a
5.0971b

8.0523 8.0527a
8.0523b

200 0 2.4596 – 5.1968 – 5.1968 – 8.1157
300 0 2.6601 – 5.2946 – 5.2946 – 8.1787
400 0 2.8465 – 5.3906 – 5.3906 – 8.2412
500 0 3.0214 3.0214a

3.0215b
5.4850 5.4850a

5.4850b
5.4850 5.4850a

5.4850b
8.3032 8.3035a

8.3032b

1000 0 3.7764 – 5.9343 – 5.9343 – 8.6065

0.1

100 0 2.1778 – 4.7154 – 4.7154 – 7.1422
200 0 2.3989 2.3951a

2.3989b
4.8197 4.8262a

4.8194b
4.8197 4.8262a

4.8194b
7.2107 7.2338a

7.2093b

300 0 2.6012 – 4.9219 – 4.9219 – 7.2786
400 0 2.7889 – 5.0220 – 5.0220 – 7.3459
500 0 2.9647 – 5.1201 – 5.1201 – 7.4125
1000 0 3.7213 3.7008a

3.7212b
5.5849 5.5661a

5.5844b
5.5849 5.5661a

5.5844b
7.7371 7.7335a

7.7353b

0.15

100 0 2.1086 – 4.3580 – 4.3580 – 6.3890 –
200 0 2.3332 – 4.4685 – 4.4685 – 6.4640 –
300 0 2.5380 – 4.5762 – 4.5762 – 6.5381 –
400 0 2.7274 – 4.6815 – 4.6815 – 6.6114 –
500 0 2.9046 – 4.7844 – 4.7844 – 6.6839 –
1000 0 3.6639 – 5.2692 – 5.2692 – 7.0352 –

0.2

10 0 1.7958 1.8020a
1.7955b
1.8020c

3.8825 3.9103a
3.8780b
3.9103c

3.8825 3.9103a
3.8780b
3.9103c

5.6086 –

100 0 2.0273 2.0216a
2.0268b
2.0216c

3.9924 4.0090a
3.9875b
4.0090c

3.9924 4.0090a
3.9875b
4.0090c

5.6849 –

1000 0 3.6002 3.4793a
3.5972b
3.4793c

4.9595 4.8499a
4.9499b
4.8499c

4.9595 4.8499a
4.9499b
4.8499c

6.3977 –

1.5

0.01
100 0 1.5126 – 4.4636 – 4.4636 – 5.7892 –
1000 0 2.0280 – 4.6635 – 4.6635 – 5.9447 –

0.1
100 0 1.4777 – 4.1542 – 4.1542 – 5.2846 –
1000 0 1.9972 – 4.3625 – 4.3625 – 5.4488 –

0.15
100 0 1.4379 – 3.8557 – 3.8557 – 4.8266 –
1000 0 1.9628 – 4.0749 – 4.0749 – 5.0023 –

0.2
100 0 1.3889 – 3.5420 – 3.5420 – 4.3685 –
1000 0 1.9215 – 3.7762 – 3.7762 – 4.5596 –
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Table 2.
[cont.]

a/b h/a K f Ks
Mode (1,1) Mode (1,2) Mode (2,1) Mode (2,2)

CDF Ref. CDF Ref. CDF Ref. CDF Ref.

2

0.01
100 0 1.2751 – 4.2542 – 4.2542 – 5.0018 –
1000 0 1.4843 – 4.3215 – 4.3215 – 5.0592 –

0.1
100 0 1.2484 – 3.9691 – 3.9691 – 4.6154 –
1000 0 1.4596 – 4.0393 – 4.0393 – 4.6756 –

0.15
100 0 1.2175 – 3.6913 – 3.6913 – 4.2519 –
1000 0 1.4313 – 3.7651 – 3.7651 – 4.3159 –

0.2
100 0 1.1788 – 3.3965 – 3.3965 – 3.8778 –
1000 0 1.3962 – 3.4755 3.4755 – 3.9470 –

Note: a, b, c, values are taken from Ref.: [4], [23], [16]

increase in plate aspect ratio for a given plate thickness ratio and Winkler founda-
tion parameter. And also it can be observed that as mode sequence increases, the
frequency parameter value increases for a particular aspect ratio, plate thickness
ratio and Winkler foundation parameter.

Table 3 shows frequency parameter values at fundamental and higher modes
both for thin and moderately thick square and rectangular plates with all edges S-
S-S-S boundary condition resting on Winkler and Pasternak foundation. Different
combinations of (thickness to length ratio) h/a = 0.01, 0.1, 0.15, 0.2 and Winkler
foundation parameters K f = 100, 200, 300, 400, 500, 1000; Pasternak foundation
parameter KS = 10 for different aspect ratios like a/b = 1, 1.5, 2 were considered.
It is observed from Table 3 that frequency values are increasing with the increase
of Winkler foundation parameter for a given plate aspect ratio, plate thickness
ratio, Pasternak foundation parameter and mode sequence. The results obtained by
present CDF method are very closely matching with those of the existing literature
[4, 7, 16, 23].

Table 4 shows frequency parameter values for thin and moderately thick square
and rectangular plates with all edges C-C-C-C boundary condition resting on Win-
kler foundation. Different combinations of thickness to length ratio h/a = 0.01,
0.015, 0.1 and foundation parameters K f = 100, 200, 300, 400, 500, 1000; KS = 0
for a/b = 1, 1.5, 2 were considered. It can be observed that the more frequency
parameter values are found in case of all edges clamped (C-C-C-C) boundary
condition compared to all edges simply supported (S-S-S-S) plate boundary con-
dition. Table 5 shows the frequency parameter values for thin and moderately thick
square and rectangular plates with all edges C-C-C-C boundary condition resting
on Winkler and Pasternak foundation.

Different combinations of thickness to length ratio h/a = 0.01, 0.015, 0.1 and
foundation parameters K f = 100, 200, 300, 400, 500, 1000; KS = 10 for a/b = 1,
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Table 3.
λ1/2 values of thin and moderately thick S-S-S-S square and rectangular plates resting on Pasternak

foundation

a/b h/a K f Ks
Mode (1,1) Mode (1,2) Mode (2,1) Mode (2,2)

CDF Ref. CDF Ref. CDF Ref. CDF Ref.

1

0.01

100 10 2.6551 2.6551a
2.6551b
2.6551e

5.5717 5.5717a
5.5718b
5.5717e

5.5717 5.5717a
5.5718b
5.5717e

8.5405 8.5406a
8.5405b
8.5404e

200 10 2.8418 – 5.6631 – 5.6631 – 8.6003 –

300 10 3.0170 – 5.7530 – 5.7530 – 8.6598 –

400 10 3.1825 – 5.8415 – 5.8415 – 8.7188 –

500 10 3.3399 3.3398a
3.3400b
3.3400e

5.9287 5.9285a
5.9287b
5.9287e

5.9287 5.9285a
5.9287b
5.9287e

8.7774 8.7775a
8.7775b
8.7774e

1000 10 4.0357 – 6.3466 – 6.3466 – 9.0649 –

0.1

100 10 2.5961 – 5.2101 – 5.2101 – 7.6666 –

200 10 2.7842 2.7756a
2.7842b
2.7837e

5.3048 5.2954a
5.3043b
5.3013e

5.3048 5.2954a
5.3043b

7.7305 7.7279a
7.7287b
7.7215e

300 10 2.9603 – 5.3978 – 5.3978 – 7.7938 –

400 10 3.1265 – 5.4892 – 5.4892 – 7.8567 –

500 10 3.2843 – 5.5791 – 5.5791 – 7.9190 –

1000 10 3.9806 3.9566a
3.9805b
3.9802e

6.0085 5.9757a
6.0078b
6.0052e

6.0085 5.9757a
6.0078b
6.0052e

8.2236 8.1954a
8.2214b
8.2148e

0.15

100 10 2.5329 – 4.8787 – 4.8787 – 6.9591 –

200 10 2.7227 – 4.9776 – 4.9776 – 7.0280 –

300 10 2.9001 – 5.0746 – 5.0746 – 7.0963 –

400 10 3.0672 – 5.1697 – 5.1697 – 7.1638 –

500 10 3.2257 – 5.2631 – 5.2631 – 7.2308 –

1000 10 3.9234 – 5.7073 – 5.7073 – 7.5567 –

0.2

10 10 2.2729 2.2539a
2.2722b
2.2539c

4.4520 4.4150a
4.4452b
4.4150c

4.4520 4.4150a
4.4452b
4.4150c

6.2460 –

100 10 2.4600 2.4300a
2.4591b
2.4300c

4.5482 4.4986a
4.5409b
4.4986c

4.5482 4.4986a
4.5409b
4.4986c

6.3146 –

1000 10 3.8604 3.7111a
3.8567b
3.7112c

5.4169 5.2285a
5.4043b
5.2285c

5.4169 5.2285a
5.4043b
5.2285c

6.9633 –
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Table 3.
[cont.]

a/b h/a K f Ks
Mode (1,1) Mode (1,2) Mode (2,1) Mode (2,2)

CDF Ref. CDF Ref. CDF Ref. CDF Ref.

1.5

0.01
100 10 1.7141 – 4.6823 – 4.6823 – 6.0096 –

1000 10 2.1825 – 4.8732 – 4.8732 – 6.1595 –

0.1
100 10 1.6813 – 4.3821 – 4.3821 – 5.5173 –

1000 10 2.1522 – 4.5800 – 4.5800 – 5.6748 –

0.15
100 10 1.6443 – 4.0954 – 4.0954 – 5.0752 –

1000 10 2.1187 – 4.3024 – 4.3024 – 5.2425 –

0.2
100 10 1.5992 – 3.7981 – 3.7981 – 4.6385 –

1000 10 2.0786 – 4.0174 – 4.0174 – 4.8189 –

2

0.01
100 10 1.3937 – 4.3789 – 4.3789 – 5.1268 –

1000 10 1.5874 – 4.4443 – 4.4443 – 5.1828 –

0.1
100 10 1.3682 – 4.0990 – 4.0990 – 4.7465 –

1000 10 1.5633 – 4.1669 – 4.1669 – 4.8051 –

0.15
100 10 1.3389 – 3.8278 – 3.8278 – 4.3910 –

1000 10 1.5359 – 3.8990 – 3.8990 – 4.4530 –

0.2
100 10 1.3025 – 3.5423 – 3.5423 – 4.0279 –

1000 10 1.5021 – 3.6181 – 3.6181 – 4.0945 –

Note: a, b, c, e values are taken from Ref.: [4], [23], [16], [7]

1.5, 2 were considered. Similar trend is observed for C-C-C-C plate resting on
Pasternak foundation. It is observed that the frequency parameter values are in
excellent agreement with the other researchers [4, 16].

Table 6 shows frequency parameter values for thin and moderately thick square
and rectangular plates with all edges S-C-S-C plate boundary condition resting on
Winkler foundation. Different combinations of thickness to length ratio h/a = 0.01,
0.015, 0.1, 0.2 and foundation parameters K f = 100, 200, 300, 400, 500, 1000;
KS = 0 for a/b = 1, 1.5, 2 were considered. It is noticed that the frequency pa-
rameter values are increasing with the increase in plate thickness ratio andWinkler
foundation parameter for a given particular aspect ratio, Winkler foundation pa-
rameter and plate thickness ratio. Table 7 shows frequency parameter values for
thin and moderately thick square and rectangular plates with all edges S-C-S-C
boundary condition resting on Winkler and Pasternak foundation. Different com-
binations of thickness to length ratio h/a = 0.01, 0.015, 0.1, 0.2; and foundation
parameters K f = 100, 200, 300, 400, 500, 1000; KS = 10 for a/b = 1, 1.5, 2; were
considered.
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Table 4.
λ1/2 values of thin and moderately thick C-C-C-C Mindlin square and rectangular plates resting on

Winkler foundation

a/b h/a K f Ks
Mode (1,1) Mode (1,2 ) Mode (2,1) Mode (2,2)

1

0.01

CDF Ref. CDF Ref. CDF Ref. CDF Ref.
100 0 3.7824 – 7.5993 – 7.5993 – 11.0548 –
200 0 3.9157 – 7.6665 – 7.6665 – 11.1011 –
300 0 4.0446 – 7.7332 – 7.7332 – 11.1472 –
400 0 4.1696 – 7.7992 – 7.7992 – 11.1931 –
500 0 4.2909 – 7.8647 – 7.8647 – 11.2389 –
1000 0 4.8522 – 8.1844 – 8.1844 – 11.4648 –

0.015

100 0 3.7783 – 7.6035 – 7.6035 – 11.0780 –
200 0 3.9118 – 7.6707 – 7.6707 – 11.1241 –
300 0 4.0408 – 7.7372 – 7.7372 – 11.1701 –
400 0 4.1658 – 7.8032 – 7.8032 – 11.2159 –
500 0 4.2872 – 7.8687 – 7.8687 – 11.2615 –
1000 0 4.8488 – 8.1880 – 8.1880 – 11.4867 –
1390.2 0 5.2455 5.2446a 8.4288 8.3156a 8.4288 8.3156a 11.6595 11.5410a

0 5.2588d 8.4322d 8.4322d 11.6740d

2780.4 0 6.4638 6.4629a 9.2359 9.1324a 9.2359 9.1324a 12.2553 12.1420a
0 6.4601d 9.2482d 9.2482d 12.2630d

0.1

100 0 3.4999 – 7.1966 – 7.1966 – 10.0721 –
200 0 3.6417 – 7.2656 – 7.2656 – 10.1210 –
300 0 3.7781 – 7.3339 – 7.3339 – 10.1696 –
400 0 3.9098 – 7.4016 – 7.4016 – 10.2180 –
500 0 4.0372 – 7.4687 – 7.4687 – 10.2662 –
1000 0 4.6217 – 7.7954 – 7.7954 – 10.5038 –

1.5

0.01
100 0 4.3048 – 5.3190 – 5.3190 – 8.9517 –
1000 0 4.5117 – 5.4878 – 5.4878 – 9.0530 –

0.1
100 0 4.3617 – 5.7215 – 5.7215 – 9.3249 –
1000 0 4.5580 – 5.8696 – 5.8696 – 9.4153 –

0.15
100 0 4.3951 – 6.1888 – 6.1888 – 9.4881 –
1000 0 4.5807 – 6.3130 – 6.3130 – 9.5707 –

0.2
100 0 4.3788 – 6.6632 – 6.6632 – 9.3566 –
1000 0 4.5540 – 6.7598 – 6.7598 – 9.4352 –

2

0.01
100 0 2.7444 – 3.0085 – 3.0085 – 7.0543 –
1000 0 2.8476 – 3.1030 – 3.1030 – 7.0951 –

0.1
100 0 2.8212 – 3.1006 – 3.1006 – 7.3791 –
1000 0 2.9099 – 3.1903 – 3.1903 – 7.4165 –

0.15
100 0 2.8949 – 3.1955 – 3.1955 – 7.4712 –
1000 0 2.9891 – 3.2801 – 3.2801 – 7.5071 –

0.2
100 0 2.9615 – 3.2908 – 3.2908 – 7.3321 –
1000 0 3.0513 – 3.3700 – 3.3700 – 7.3679 –

Note: a, d values are taken from Ref.: [4], [16]
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Table 5.
λ1/2 values of thin and moderately thick C-C-C-C Mindlin square and rectangular plates resting on

Pasternak foundation

a/b h/a K f Ks
Mode (1,1) Mode (1,2 ) Mode (2,1) Mode (2,2)

1

0.01

CDF Ref. CDF Ref. CDF Ref. CDF Ref.
100 10 4.0949 – 7.9693 – 7.9693 – 11.4573 –
200 10 4.2183 – 8.0334 – 8.0334 – 11.5020 –
300 10 4.3383 – 8.0970 – 8.0970 – 11.5465 –
400 10 4.4550 – 8.1601 – 8.1601 – 11.5908 –
500 10 4.5688 – 8.2228 – 8.2228 – 11.6350 –
1000 10 5.0996 – 8.5290 – 8.5290 – 11.8534 –

0.015

100 10 4.0908 – 7.9742 – 7.9742 – 11.4853 –
200 10 4.2144 – 8.0382 – 8.0382 – 11.5268 –
300 10 4.3344 – 8.1018 – 8.1018 – 11.5712 –
400 10 4.4512 – 8.1648 – 8.1648 – 11.6154 –
500 10 4.5650 – 8.2274 – 8.2274 – 11.6594
1000 10 5.0961 – 8.5333 – 8.5333 – 11.8771
1390.2 166.83 8.2787 8.1675a 12.9371 12.823a 12.9371 12.823a 16.9739 16.833a

8.1375d 12.898d 12.898d 16.932d
8.1397e 12.899e 12.899e 16.934e

0.1

100 10 3.8145 – 7.5987 – 7.5987 – 10.5308 –
200 10 3.9450 – 7.6640 – 7.6640 – 10.5775 –
300 10 4.0712 – 7.7288 – 7.7288 – 10.6241 –
400 10 4.1937 – 7.7931 – 7.7931 – 10.6704 –
500 10 4.3127 – 7.8568 – 7.8568 – 10.7166 –
1000 10 4.8643 – 8.1680 – 8.1680 – 10.9444 –

1.5

0.01
100 10 4.5617 – 5.5867 – 5.5867 9.1931 –
1000 10 4.7575 – 5.7476 – 5.7476 9.2918 –

0.1
100 10 4.6182 – 5.9899 – 5.9899 9.5858 –
1000 10 4.8041 – 6.1315 – 6.1315 9.6738 –

0.15
100 10 4.6527 – 6.4583 – 6.4583 9.7850 –
1000 10 4.8284 – 6.5774 – 6.5774 9.8651 –

0.2
100 10 4.6403 – 6.9325 – 6.9325 9.7120 –
1000 10 4.8060 – 7.0255 – 7.0255 9.7878 –

2

0.01
100 10 2.8545 – 3.1292 – 3.1292 7.1642 –
1000 10 2.9538 – 3.2201 – 3.2201 7.2044 –

0.1
100 10 2.9363 – 3.2257 – 3.2257 7.5015 –
1000 10 3.0312 – 3.3119 – 3.3119 7.5384 –

0.15
100 10 3.0173 – 3.3274 – 3.3274 7.6152 –
1000 10 3.1078 – 3.4087 – 3.4087 7.6504 –

0.2
100 10 3.0956 – 3.4338 – 3.4338 7.5086 –
1000 10 3.1816 – 3.5098 – 3.5098 7.5436 –

Note: a, d values are taken from Ref.: [4], [16], [7]
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Table 6.
λ1/2 values of thin and moderately thick S-C-S-C Mindlin square and rectangular plates resting on

Winkler foundation

a/b h/a K f Ks

Mode Mode Mode Mode
(1,1) (1,2 ) (2,1) (2,2)
CDF CDF CDF CDF

1

Method Method Method Method

0.01

100 0 3.1467 7.2128 6.5051 10.2609
200 0 3.3058 7.2836 6.5835 10.3108
300 0 3.4576 7.3537 6.6610 10.3604
400 0 3.6029 7.4232 6.7376 10.4098
500 0 3.7427 7.4920 6.8133 10.4590
1000 0 4.3749 7.8269 7.1800 10.7014

0.015

100 0 3.1479 7.2197 6.4954 10.2483
200 0 3.3069 7.2903 6.5738 10.2982
300 0 3.4585 7.3603 6.6514 10.3478
400 0 3.6038 7.4297 6.7280 10.3972
500 0 3.7435 7.4984 6.8038 10.4464
1000 0 4.3755 7.8328 7.1708 10.6889

0.1

100 0 3.2245 7.5324 5.7184 9.1961
200 0 3.3773 7.5979 5.8047 9.2494
300 0 3.5236 7.6629 5.8898 9.3025
400 0 3.6640 7.7274 5.9736 9.3552
500 0 3.7993 7.7913 6.0563 9.4076
1000 0 4.4137 8.1033 6.4538 9.6654

0.2

100 0 3.3366 7.3525 4.0152 6.8726
200 0 3.4794 7.4174 4.1354 6.9431
300 0 3.6166 7.4817 4.2522 7.0129
400 0 3.7487 7.5455 4.3659 7.0820
500 0 3.8764 7.6087 4.4766 7.1504
1000 0 4.4602 7.9173 4.9938 7.4831

1.5

0.01
100 0 2.8684 7.0638 3.2386 7.3416
1000 0 3.1705 7.1918 3.5090 7.4648

0.1
100 0 2.9224 7.3034 3.3708 7.7208
1000 0 3.2140 7.4229 3.6245 7.8329

0.15
100 0 2.9639 7.2866 3.5009 7.8428
1000 0 3.2464 7.4035 3.7376 7.9494

0.2
100 0 2.9863 7.0440 3.6148 7.7038
1000 0 3.2611 7.1634 3.8346 7.8099

2

0.01
100 0 2.4457 6.5797 2.5235 6.6531
1000 0 2.5610 6.6235 2.6355 6.6963

0.1
100 0 2.5201 6.8968 2.6196 7.0225
1000 0 2.6308 6.9373 2.7261 7.0622

0.15
100 0 2.5842 6.9410 2.7125 7.1233
1000 0 2.6908 6.9804 2.8137 7.1615

0.2
100 0 2.6329 6.7496 2.7992 6.9808
1000 0 2.7362 6.7897 2.8955 7.0193
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Table 7.
λ1/2 values of thin and moderately thick S-C-S-C Mindlin square and rectangular plates resting on

Pasternak foundation

a/b h/a K f Ks

Mode Mode Mode Mode
(1,1) (1,2 ) (2,1) (2,2)
CDF CDF CDF CDF

1

Method Method Method Method

0.01

100 10 3.4875 7.5882 6.9173 10.6823
200 10 3.6317 7.6555 6.9911 10.7302
300 10 3.7704 7.7222 7.0641 10.7779
400 10 3.9041 7.7884 7.1364 10.8254
500 10 4.0334 7.8540 7.2079 10.8726
1000 10 4.6261 8.1741 7.5555 11.1060

0.015

100 10 3.4890 7.5957 6.9072 10.6699
200 10 3.6331 7.6629 6.9810 10.7178
300 10 3.7717 7.7295 7.0541 10.7655
400 10 3.9053 7.7956 7.1264 10.8130
500 10 4.0346 7.8611 7.1980 10.8603
1000 10 4.6269 8.1807 7.5458 11.0937

0.1

100 10 3.5921 7.9714 6.1016 9.6441
200 10 3.7299 8.0334 6.1826 9.6949
300 10 3.8629 8.0949 6.2625 9.7455
400 10 3.9914 8.1559 6.3414 9.7959
500 10 4.1159 8.2165 6.4194 9.8459
1000 10 4.6890 8.5129 6.7957 10.0926

0.2

100 10 3.7960 8.0142 4.3546 7.4288
200 10 3.9222 8.0738 4.4657 7.4941
300 10 4.0443 8.1329 4.5741 7.5588
400 10 4.1629 8.1916 4.6799 7.6229
500 10 4.2782 8.2499 4.7834 7.6865
1000 10 4.8135 8.5353 5.2706 7.9969

1.5

0.01
100 10 3.0633 7.2469 3.4673 7.5430
1000 10 3.3479 7.3717 3.7211 7.6629

0.1
100 10 3.1254 7.5097 3.6119 7.9475
1000 10 3.3997 7.6260 3.8497 8.0565

0.15
100 10 3.1791 7.5306 3.7590 8.1107
1000 10 3.4440 7.6438 3.9804 8.2139

0.2
100 10 3.2207 7.3424 3.8974 8.0321
1000 10 3.4770 7.4571 4.1021 8.1339

2

0.01
100 10 2.5302 6.6736 2.6180 6.7507
1000 10 2.6419 6.7167 2.7260 6.7933

0.1
100 10 2.6109 7.0046 2.7207 7.1344
1000 10 2.7179 7.0444 2.8233 7.1735

0.15
100 10 2.6837 7.0707 2.8227 7.2579
1000 10 2.7866 7.1093 2.9201 7.2954

0.2
100 10 2.7452 6.9105 2.9234 7.1482
1000 10 2.8445 6.9497 3.0157 7.1857
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5. Conclusions

In the present study, another attempt is made by the author to evaluate vibration
characteristics by considering the foundation effect of uniform plates (shear flexible
plates with edges immovable), i.e., resting on Winkler and Pasternak foundation.
Elegant and accurate closed form expression for λ for all edges simply supported
boundary condition is obtained in terms of plate thickness ratio, aspect ratio and
Winkler and Pasternak foundation parameters. The frequency parameter values
for C-C-C-C and S-C-S-C boundary conditions are also calculated by the above
formulation for different various modes and are compared with the results given by
other researchers. Higher order plate theories give more accurate results than clas-
sical plate theories without using shear correction factor, but more computational
efforts are to be required to get even small amount of accuracy. This problem can
be overcame by using CDF method, and is applied successfully by the authors to
study the vibration response of thin and moderately thick rectangle plates resting
on Pasternak foundation.The results obtained using the present (CDF method) for-
mulation are found to be in good agreement with those results obtained by the other
researchers for a wide range of plate thickness ratios,Winkler, Pasternak foundation
parameters and for different aspect ratios including the thin plates and moderately
thick plates.The authors derived two coupling equations for Mindlin rectangular
plates for two dimensional shear deformable structural members and the effec-
tiveness of the Coupled Displacement method has been successfully applied and
demonstrated for most practically used different edge boundary conditions of the
plate such as all edges simply supported, clamped and two opposite edges simply
supported and clamped.The numbers of undetermined coefficients are reduced to
the half in the proposed Coupled Displacement method when compared to the
famous conventional Rayleigh-Ritz method. The proposed Coupled Displacement
method also involves less computational efforts when compared to the famous
conventional Rayleigh-Ritz method.
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