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Abstract

The concept of cointegration that enables the proper statistical analysis of
long-run comovements between unit root processes has been of great interest to
numerous economic investigators since it was introduced. However, investigation
of short-run comovement between economic time series seems equally important,
especially for economic decision-makers. The concept of common features and
based on it the idea of two additional reduced rank structure forms in a VEC
model (the strong and the weak one) may be of some help. The strong form
reduced rank structure (SF) takes place when at least one linear combination
of the first differences of the variables exists, which is white noise. However,
when this assumption seems too strong, the weaker case can be considered. The
weak form appears when the linear combination of first differences adjusted for
long-run efects exists, which is white noise.
The main focus of this paper is a Bayesian analysis of the VEC models involving
the weak form of reduced rank restrictions.
After the introduction and discussion of the said Bayesian model, the presented
methods will be illustrated by an empirical investigation of the price - wage
spiral in the Polish economy.
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1 Introduction and basic definitions

The concept of cointegration that enables the proper statistical analysis of long-run
comovements between unit root processes has been of great interest to numerous
economic investigators since it was introduced. However, investigation of short-run
comovement between economic time series seems equally important, especially for
economic decision-makers. The concept of common features, introduced by Engle
and Kozicki (1993), may be of some help. The authors considered features satisfying
three axioms:

1. If only one of two series has the feature, then the sum will also have it.

2. If none of the analysed series has the feature, then the sum will not have it
either.

3. Whether a process has or does not have the feature can not be changed by
multilpying it by a nonzero constant.

As common feature is defined as one, which is present in each of the analysed series,
but there exists a nonzero linear combination of the series that does not have the
feature. As pointed out by Ericsson (1993), common features can be treated as
a generalization of the idea of cointegration. The concept of the serial correlation
common feature (Engle, Kozicki 1993) is another example. In the case of the serial
correlation commmon feature there exists at least one linear combination of the
analysed series, which is an innovation.
As most of the macroeconomic time series can be treated as realisations of unit root
processes it seems to be very important to analyse short-run comovements between
first differences of the original processes together with long-run comovements between
their levels. For this reason Vahid and Engle (1993) considered cointegration and serial
correlation common feature together. Their idea was further developed by Hecq,
Palm, Urbain (2006), who distinguish two additional reduced rank structure forms in
a VEC model: the strong and the weak one. The strong form reduced rank structure
(SF) appears when there exists at least one linear combination of the first differences
of the series, which is white noise. This is the same as serial correlation common
feature analysed by Vahid and Engle (1997). When, however, such assumption seems
to be too strong, the weaker case may be considered. The weak form reduced rank
structure (WF) appears when a linear combination of first differences adjusted for
long-run efects exists, which is white noise.
Additionally, Hecq, Palm, Urbain (2006) introduced the mixed form reduced rank
structure combining the weak form and the strong one.
In this paper we focus our attention on the Bayesian analysis of the weak form reduced
rank structure.
Restrictions imposed on short-run parameters lead to a more parsimonious VEC
model, which is of great importance in such "parametr consuming" models. If they are
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correctly imposed their occurrence may improve forecasting accuracy, especially that
for short- and medium run periods. In such a case we could also expect more precise
estimation of impulse response functions and variance decomposition caluculations.

2 Bayesian VEC model with weak form reduced rank
structure

Let us consider the n-dimensional cointegrated process {xt}t=1,2, ...,T , where
xt = (xt1, xt2, . . . , xtn)′, t = 1, 2, . . . , T . According to the Granger representation
theorem, any cointegrated process may by written in the error correction form
(Strachan, van Dijk 2007):

∆xt = α(β+′xt−1 + ϕ′1d1t) + Γ0wt +
k−1∑
i=1

Γi∆xt−i + ϕ2d2t + εt =

= αβ′z1t + Γ′z2t + Γ′sz3t + εt = Πz1t + Γ′z2t + Γ′sz3t + εt (1)

where z′1t = (x′t−1, d
′
1t), z′2t = (∆x′t−1,∆x

′
t−2, . . . ,∆x

′
t−k+1), z′3t = (d′2t, w

′
t),

β = (β+′, ϕ′1)′, Γ = (Γ1, . . . ,Γk−1)′, Γs = (ϕ2,Γ0), Π = αβ′, εt ∼ iiNn(0,Σ)
t = 1, 2, . . . , T . Through d1t, d2t we introduce deterministic trends to the VEC
form, wt contains other non-random regressors, α is the n × r matrix of adjustment
coefficients, β is the m × r matrix containing cointegrating vectors; m ≥ n and
m = n if there are no deterministic components in the cointegrating relations. Both
matrices, α and β, are of rank r, where 0 ≤ r ≤ n. For r = n we assume α = In.
Under the weak form reduced rank structure (WF), there exists a matrix β̃n×s,
whose columns span the cofeature space, so that β̃′(∆xt − αβ′z1t − Γ′sz3t) = β̃′εt
is an s-dimensional vector mean innovation process with respect to the information
available at time t (Hecq, Palm, Urbain 2006). The β̃ matrix must lie in the
intersection of the left null spaces of the matrices describing the short-run dynamics,
so in a VEC model with WF assumption the Γ matrix is of reduced rank n − s = q
and it can be treated in a very similar way to Π. In particular it can be written
as a product of two full rank matrices: Γ = δγ′. This decomposition leads to the
following model:

∆xt = αβ′z1t + γδ′z2t + Γ′sz3t + εt. (2)

As pointed out by Hecq, Palm, Urbain (2006), this definition of weak form reduced
rank structure is not invariant to VEC models reparametrizations such as those where
β′xt−p appears instead of β′xt−1. We have decided to restrict our attention to VEC
forms with β′xt−1. Cubadda (2007) proposed another definition of a weak form.
His definition is based on a first-order polynomial matrix and is invariant to such
reparametrizations (see Cubadda 2007 for details).
In order to simplify the notation let us write the basic model (2) in a matrix form:

Z0 = Z1Π′ + Z2Γ + Z3Γs + E = Z1βα
′ + Z2δγ

′ + Z3Γs + E, (3)
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where Z0 = (∆x1,∆x2, . . . ,∆xT )′, Z1 = (z11, z12, . . . , z1T )′, z′1t = (x′t−1, d
′
1t),

Z2 = (z21, z22, ..., z2T )′, z′2t = (∆x′t−1,∆x
′
t−2, . . . ,∆x

′
t−k+1), Z3 = (z31, z32, . . . , z3T )′,

z′3t = (d′2t ,w
′
t), β = (β+′, ϕ′1)′, Γ = (Γ1,Γ2, . . . ,Γk−1)′, Γs = (Γ0 ,ϕ2)′,

E = (ε1, ε2, . . . , εT )′, εt ∼ iiNn(0,Σ), t = 1, 2, . . . , T . In this model we have
two reduced rank matrices (Π and Γ) and, as we have already said, they can
be both written as products of two full rank matrices: Π = αβ′, Γ = γδ′. It
is commonly known that such decomposition is not invariant, i.e. for any full
rank matrices of adequate dimensions, CΠ and CΓ, the following equalities are
obtained: αβ′ = αCΠC

−1
Π β′, γδ′ = γCΓC

−1
Γ δ′. For this reason we should estimate

spaces spanned by β and δ matrices rather than these matrices. These spaces are
elements of the Grassman manifolds: sp(β) ∈ Gr,m−r and sp(δ) ∈ Gq,l−q, so while
constructing a Bayesian model we have to choose priors for these matrices from
the set of distributions defined on Grassmann manifolds. We have decided to use
the scheme of estimation proposed by Koop, León-González and Strachan (Koop,
León-González, Strachan 2010) for VEC models (see also Wróblewska 2010), which
takes into account the curved geometry of the parameters and at the same time
allows for the use of the parameter-augmented Gibbs sampling scheme to sample
from the posterior distribution.
For Π and Γ two parametrisations will be used:

αβ′ = (αMΠ)(βM−1
Π )′ ≡ AB′, (4)

where MΠ is an r × r symmetric positive definite matrix, and

γδ′ = (γMΓ)(δM−1
Γ )′ ≡ GD′, (5)

where MΓ is a q × q symmetric positive definite matrix.
We assume that A, B, G and D are unrestricted matrices
(A ∈ Rnr,B ∈ Rmr,G ∈ Rnq,D ∈ Rlq,), whilst β and δ have orthonormal columns,
i.e. they are elements of the Stiefel manifolds: β ∈ Vr,m, δ ∈ Vq,l. In this way, using
the many-to-one relationships between Stiefel and Grassmann manifolds (of adequate
dimesions), we will make inference about spaces through matrices with orthonormal
columns.
Imposing on B the matrix Normal distribution B|r,m,τB ∼ mNm×r(0,m−1Ir,PτB )
leads us to the matrix angular central Gaussian (MACG) distribution for β:
β|r,m,τB ∼ MACG(PτB ) (see e.g. Chikuse 2002). Similary - matrix Normal
distribution for D: D|q,l,τD ∼ mNl×q(0,l−1Iq,PτD ) leads to the MACG distribution
for δ: δ|q,l,τD ∼MACG(PτD ). Prior information for spaces spanned by β and δ may
be incorporated into the model via matrices PτB and PτD , which are constructed as
follows: PτB = HBH

′
B + τBH

⊥
BH

⊥′
B , PτD = HDH

′
D + τDH

⊥
DH

⊥′
D , where HB , HD are

matrices with orthonormal columns containing prior information about cointegration
space and the space of common dynamic factors. If we assume that the parameter P.
in the MACG distribution is an identity matrix, we obtain the uniform distribution
over the Stiefel manifold and so the uniform distribution over the Grassmann
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manifold. For matrices A and G we also impose matrix Normal distributions:
A|Σ,νA,r ∼ mN(0,νAIr,Σ), G|Σ,νG,q ∼ mN(0,νGIq,Σ). Parameters νA, νG, τB and
τD control degrees of informativeness of the distributions stated above and may be
set by the researcher or may be estimated. If they are to be estimated, inverted
Gamma prior distributions may be used: νA ∼ iG(sνA ,nνA), νG ∼ iG(sνG ,nνG),
τB ∼ iG(sτB ,nτB ), τD ∼ iG(sτD ,nτD ). For τB and τD it is recommended to settle
such sτB , nτB and sτD , nτD that almost all the prior probability is allocated close to
zero and is restricted to the [0,1] interval. For τ ’s close to zero we impose most of
the prior probability to spaces close to those spanned by H., and for τ ’s equal one
we get noninformative priors for the estimated spaces.
The priors for the remaining parameters are as follows:

1. inverted Wishart for Σ: Σ ∼ iW (S, qΣ) (we opt for the informative prior for Σ,
because, in order to estimate the marginal data density, we will use the Newton
- Raftery method),

2. matrix Normal for Γs: Γs|Σ, h ∼ mN(0,Σ, hI),

3. inverted Gamma for h: h ∼ iG(sh, nh), if the researcher wants it to be estimated.

The joint prior distribution is truncated by the stability condition imposed on the
parameters of the process:
p(A,B,G,D,Σ,Γs,νA,νG,h) ∝ f(A,B,G,D,Σ,Γs,νA,νG,h)I[0,1](|λ|max), where λ
denotes the eigenvalue of the companion matrix.
The imposed joint prior distribution leads to posterior distribution proportional to:

τ
−nτB−1

B |PτB |−
r
2 τ
−nτD−1

D |PτD |−
q
2 ν
−nνA−

nr
2 −1

A ν
−nνG−

nq
2 −1

G h−nh−
nls
2 −1

exp(−sτB
τB
− sτD
τD
− sνA
νA
− sνG
νG
− sh

h
− 1

2
tr(mB′P−1

τB B)− 1
2
tr(lD′P−1

τD D))

|Σ|
−
qΣ + r + q + ls + T + n+ 1

2 exp{−1
2
tr[Σ−1(S +

AA′

νA
+
GG′

νG
+

1
h

Γ′sΓs + E′E)]},

where E = Z0 − Z1BA
′ − Z2DG

′ − Z3Γs.
Thanks to the twofold parametrisations of the matrices Π and Γ given in (4) and (5)
to samlpe from this posterior distribution we can use the parameter-augmented Gibbs
sampler (Koop, León-González, Strachan 2010).
After setting initial values, the s-step in the proposed MCMC algorithm runs as
follows:

1. draw Σ from the inverted Wishart:
iW (S + 1

hΓ′sΓs + 1
νA
AA′ + 1

νG
GG′ + E′E,qΣ + ls + r + q + T ),

2. draw Γs form the matrix Normal:
mN(µΓs ,Σ,ΩΓs), where µΓs = ( 1

hIls + z′3Z3)−1Z ′3(Z0 − Z1BA
′ − Z2DG

′),
ΩΓs = ( 1

hIls + z′3Z3)−1,
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3. draw A from the matrix Normal:
mN(µA,( 1

νA
Ir+B′Z ′1Z1B)−1,Σ), where µA = (Z0−Z2DG

′−Z3Γs)′Z1B( 1
νG
Ir+

+B′Z ′1Z1B)−1,

4. draw vec(B) from the Normal with:
variance ΩvB = ([(A′Σ−1A)⊗ (Z ′1Z1)] + [mIr ⊗ P 1

τB

])−1

and mean µvB = ΩvBvec(Z ′1(Z0 − Z2DG
′ − Z3Γs)Σ−1A),

5. obtain α and β as β = B(B′B)−
1
2 , α = A(B′B)

1
2 ,

6. draw G from the matrix Normal:
mN(µG,( 1

νG
Iq+D′Z ′2Z2D)−1,Σ), where µG = (Z0−Z1BA

′−Z3Γs)′Z2D( 1
νG
Iq+

+D′Z ′2Z2D)−1,

7. draw vec(D) from the Normal with variance
ΩvD = ([(G′Σ−1G)⊗(Z ′2Z2)]+[lIq⊗P 1

τD

])−1 and mean µvD = ΩvDvec(Z ′2(Z0+

−Z1BA
′ − Z3Γs)Σ−1G),

8. obtain γ and δ as δ = D(D′D)−
1
2 , γ = G(D′D)

1
2 ,

9. additionaly νA may be drawn from the inverted Gamma
iG(sνA + 1

2 tr(Σ
−1AA′),nνA + nr

2 ), νG from iG(sνG + 1
2 tr(Σ

−1GG′),nνG + nq
2 ),

h from iG(sh + 1
2 tr(Σ

−1ΓsΓ′s),nh + nls
2 ),

10. in the case of informative prior distribution for β draw τB form the distribution
proportional to: τ

−nτB−1

B |PτB |−
r
2 exp(− 1

τB
(sτB + m

2 trB
′H⊥BH

⊥′
B B)) and, in

the case of informative prior distribution for δ, τD - from the distribution
proportional to: τ−nτD−1

D |PτD |−
q
2 exp(− 1

τD
(sτD + l

2 trD
′H⊥DH

⊥′
D D)).

In the last step we may use e.g. the Metropolis-Hastings algorithm within the
Gibbs sampler with proposal densities iG(sτB + m

2 trB
′H⊥BH

⊥′
B B,nτB ) and iG(sτD +

+ l
2 trD

′H⊥DH
⊥′
D D,nτD ) for τB and τD respectively.

Having the sample from the posterior distribution the mean of β and δ can be
computed with the method proposed by Villani (2006), i.e. by constructing the loss
function, which takes the curved geometry of the Grassmann manifold into account,
e.g. with the projective Frobenius distance between spaces.

3 An empirical example: the price - wage spiral in
the Polish economy

The presented methods will be illustrated with the analysis of the price - wage
spiral in the Polish economy. The seasonally unadjusted quarterly data represent
five variables: average wages (current prices, Wt), price index of consumer goods
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(Pt), labour productivity (constant prices, Zt), price index of imported goods (Mt)
and the unemployment rate (Ut). The analysed data cover the sixteen-year period
ranging from 1995Q1 to 2010Q4. The data are plotted in Figure 1. The visual
inspection of the analysed variables suggests that they may be realisations of the
integrated processes, but they appear to move together in the long-run, so we can
expect cointegration. The first differences of the series also seem to show a similar
short-run behaviour, so it is reasonable to verify the hypothesis of the additional
reduced rank restriction imposed on the short-run parameters of the VEC model.
The seasonality of the analysed series will be modelled in the deterministic manner,
i.e. via zero-mean seasonal dummies.

Figure 1: The analysed data
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We will consider the set of models which differ in the number of lags k ∈ {2,3,4},
deterministic terms d ∈ {1,2}, where d = 1 stands for an unrestricted constant,
d = 2 - a constant restricted to cointegrating relations (see e.g. Juselius 2007 for
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further details), the number of cointegrating relations r ∈ {1,2,3,4} and the rank of
Γ q ∈ {1,2,3,4,5}. We will compare 120 different specifications of VEC-WF model.
As we want to treat them as equally possible we impose on each of them the same
prior probability: p(M(k,d,q,r)) = 1

120 ≈ 0.008. The results are based on the following
priors:

Σ ∼ iW (S, 10 + n+ 1), S = 10


0.05 0 0 0 0

0 0.01 0 0 0
0 0 0.1 0 0
0 0 0 0.05 0
0 0 0 0 1

,

B|r,m ∼ mN(0,m−1Ir, Im), which leads to β|r ∼MACG(Im),

A|νA, r,Σ ∼ mN(0, νAIr,Σ),

D|q, l ∼ mN(0, l−1Iq, Il), which leads to δ|q ∼MACG(Il),

G|νG, q,Σ ∼ mN(0, νGIq,Σ),

Γs|Σ, h ∼ mN(0,Σ, hI),

νA ∼ iG(2, 3) (E(νA) = 1, V ar(νA) = 1),

νG ∼ iG(2, 3) (E(νG) = 1, V ar(νG) = 1),

h ∼ iG(20, 3) (E(h) = 10, V ar(h) = 100),

p(M(k,d,q,r)) = 0.008.

The joint prior resulting from this specification has been truncated by the stability
condition imposed on the parameters of the cointegrated process.
The most probable models (i.e. with posterior probability higher than assumed prior
probability) are presented in Table 2. The sum of posterior probabilities of the listed
models equals 0.917.
The overall posterior probability of the models without additional rank reduction
equals around 0.028, i.e. much less than assumed 0.2 prior probability (see Table 1),
so it seems that the results of the model comparison confirm the empirical relevance
of the imposed short-run restrictions.

Table 1: Marginal prior and posterior probabilities of q

q 1 2 3 4 5
p(q) 0.2 0.2 0.2 0.2 0.2

p(q|x) 0.460 0.198 0.133 0.181 0.028
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As was pointed out in the introduction, the correctly imposed short-run restrictions
should improve forecast accuracy. Figure 2 and Table 3 present predictive means and
standard deviations obtained in models M(4,2,1,3) and M(3,2,5,2) for the four of five
analysed variables. As it does not seem to be reasonable to forecast import prices
in such a model, we decided not to present the obtained results for it, especially
that the conclusions for this variable are similar to that presented for the remaining
variables.

Table 2: The most probable models, p(M(k,d,r,o,e)|x) > p(M(k,d,r,q))

k d q r log10(p̂(x|M(k,d,q,r))) p(M(k,d,r,o,e)|x)

4 2 1 3 129.502 0.146
2 1 3 1 129.321 0.097
2 1 1 3 129.291 0.090
4 2 4 2 129.164 0.067
3 2 1 4 129.129 0.062
2 1 4 1 128.991 0.045
4 2 2 3 128.987 0.045
2 1 2 2 128.961 0.042
3 2 1 3 128.953 0.041
2 2 1 4 128.800 0.029
3 2 5 2 128.779 0.028
2 2 4 1 128.734 0.025
4 2 2 2 128.690 0.023
2 2 2 2 128.676 0.022
2 2 1 2 128.674 0.022
3 2 4 1 128.623 0.019
3 2 3 2 128.607 0.019
2 2 2 4 128.587 0.018
2 2 4 2 128.583 0.018
3 1 1 1 128.580 0.018
4 1 1 2 128.545 0.016
2 1 2 4 128.459 0.013
3 2 2 3 128.447 0.013

The obtained forecast values are compared to the observed ones. This forecast
exercise confirms the claim that in the case of more restricted models we can improve
the precision of forecasting. Visual analysis of the third column of Figure 2 leads
to the conclusion that in this empirical study the imposed restrictions increase the
accuracy of out-of-sample forecast.
As these additional restrictions lead to more parsimonious models, we could also
expect more efficient estimates, e.g. of impulse responses. Now we present a
comparison of chosen impulse response functions obtained in the most probable
models with and without this restriction, i.e. in models M(4,2,1,3) and M(3,2,5,2),
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respectively. As an example, impulse responses of the analysed variables to shock
in unemployment are presented (see Figure 3). It can be easily noticed that the
posterior distributions of impulse responses in the restricted VEC (model M(4,2,1,3)),
are less diffused than those obtained in the unrestritced VEC (model M(3,2,5,2)).
Shapes of the functions of impulse responses obtained in these two specifications
may differ in the short-run whilst in the very long run they should be the same.
And in fact, in Figure 4 we can observe some differences in point estimates of chosen
impulse responses. The analysis of the obtained impulse responses to shocks in other
variables included in the model leads to similar conclusions. They may be presented
upon request.

Figure 2: Predictive means (solid lines) and standard deviations (dashed lines) in
modelsM(4,2,1,3) andM(3,2,5,2) compared to true values of forecasted variables (dots).
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The performed forecast error variance decomposition of import prices/
unemployment/ prices/ productivity/ wages system, which is presented in Figure 5
(see also Table 4), further illustrates the impact of additional short-run restrictions
on the analysis of relationships between the variables in question.
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The main conclusion following from the performed forecast error variance
decompositions is that in the unrestricted VEC model (M(3,2,5,2)) the percentage
share of own innovations in the forecast error variance (for all variables) drops much
faster than in the restricted VEC model (M(4,2,1,3)).

Table 3: Predictive means and standard deviations (in brackets) in models M(4,2,1,3)

and M(3,2,5,2) compared to true values of forecasted variables.

variable model 2011Q1 2011Q2 2011Q3 2011Q4 2012Q1 2012Q2

wages

M(4,2,1,3)
8.147 8.126 8.133 8.187 8.188 8.165
(0.091) (0.129) (0.158) (0.184) (0.210) (0.233)

M(3,2,5,2)
8.147 8.121 8.124 8.169 8.167 8.143
(0.098) (0.141) (0.175) (0.204) (0.232) (0.259)

observed 8.151 8.122 8.136

prices

M(4,2,1,3)
0.295 0.308 0.307 0.315 0.325 0.336
(0.041) (0.059) (0.073) (0.084) (0.096) (0.107)

M(3,2,5,2)
0.293 0.303 0.301 0.307 0.314 0.324
(0.045) (0.064) (0.080) (0.094) (0.107) (0.119)

observed 0.301 0.320 0.315

productivity

M(4,2,1,3)
9.255 9.301 9.332 9.413 9.275 9.321
(0.127) (0.179) (0.221) (0.256) (0.292) (0.324)

M(3,2,5,2)
9.262 9.307 9.335 9.401 9.269 9.314
(0.139) (0.197) (0.244) (0.285) (0.325) (0.361)

observed 9.220 9.284 9.327

import prices

M(4,2,1,3)
0.203 0.201 0.199 0.203 0.217 0.213
(0.093) (0.131) (0.161) (0.186) (0.211) (0.234)

M(3,2,5,2)
0.201 0.197 0.194 0.198 0.210 0.206
(0.101) (0.143) (0.176) (0.204) (0.232) (0.258)

observed 0.203 0.216 0.254

unemployment

M(4,2,1,3)
12.977 12.266 12.374 13.081 13.856 13.192
0.569 0.971 1.358 1.779 2.215 2.635

M(3,2,5,2)
13.091 12.494 12.615 13.222 13.925 13.237
(0.644) (1.192) (1.752) (2.290) (2.822) (3.326)

observed 13.300 11.900 11.800

179 J. Wróblewska
CEJEME 3: 169-186 (2011)



Justyna Wróblewska

Table 4: Posterior mean forecast error variance decomposition of all five analysed
variables in models M(4,2,1,3) and M(3,2,5,2)

forecast horizon m U p z w m U p z w
forecast error in import prices

1 1 0 0 0 0 1 0 0 0 0
2 0.997 0.002 0.000 0.000 0.000 0.904 0.013 0.013 0.046 0.024
3 0.992 0.006 0.000 0.001 0.001 0.811 0.020 0.033 0.084 0.052
4 0.984 0.012 0.001 0.002 0.002 0.750 0.028 0.049 0.099 0.074
5 0.974 0.018 0.001 0.004 0.003 0.708 0.035 0.061 0.106 0.091
6 0.964 0.025 0.001 0.006 0.004 0.670 0.042 0.072 0.111 0.104
7 0.953 0.032 0.002 0.008 0.005 0.639 0.048 0.082 0.115 0.116
8 0.942 0.039 0.002 0.010 0.006 0.612 0.054 0.090 0.118 0.125
9 0.931 0.046 0.003 0.012 0.008 0.590 0.060 0.097 0.120 0.133
10 0.920 0.053 0.003 0.015 0.009 0.570 0.066 0.103 0.121 0.140
11 0.908 0.059 0.004 0.017 0.011 0.553 0.071 0.108 0.122 0.145
12 0.897 0.066 0.005 0.020 0.013 0.538 0.075 0.113 0.123 0.150
13 0.886 0.072 0.006 0.022 0.014 0.525 0.080 0.117 0.124 0.154
14 0.875 0.078 0.006 0.025 0.016 0.513 0.084 0.120 0.125 0.158
15 0.863 0.085 0.007 0.027 0.018 0.502 0.088 0.123 0.125 0.161
16 0.853 0.091 0.008 0.030 0.019 0.493 0.092 0.126 0.126 0.164
17 0.842 0.096 0.009 0.032 0.021 0.484 0.095 0.128 0.126 0.167
18 0.831 0.102 0.009 0.035 0.023 0.475 0.099 0.130 0.126 0.169
19 0.821 0.108 0.010 0.037 0.024 0.468 0.102 0.132 0.127 0.171
20 0.811 0.113 0.011 0.039 0.026 0.461 0.105 0.134 0.127 0.173
21 0.802 0.118 0.012 0.041 0.027 0.454 0.108 0.136 0.127 0.175

forecast error in unemployment
1 0.014 0.986 0 0 0 0.014 0.986 0 0 0
2 0.015 0.981 0.000 0.002 0.001 0.026 0.896 0.006 0.058 0.015
3 0.017 0.975 0.001 0.005 0.002 0.040 0.822 0.012 0.092 0.034
4 0.018 0.970 0.001 0.007 0.004 0.051 0.757 0.020 0.113 0.058
5 0.020 0.963 0.002 0.009 0.005 0.061 0.704 0.030 0.124 0.081
6 0.023 0.956 0.002 0.012 0.007 0.071 0.659 0.039 0.130 0.100
7 0.025 0.949 0.003 0.015 0.009 0.079 0.621 0.049 0.134 0.116
8 0.028 0.941 0.003 0.017 0.010 0.087 0.589 0.059 0.137 0.129
9 0.031 0.932 0.004 0.020 0.012 0.093 0.561 0.069 0.138 0.139
10 0.034 0.923 0.005 0.023 0.014 0.100 0.536 0.077 0.139 0.147
11 0.038 0.913 0.005 0.026 0.017 0.105 0.515 0.086 0.140 0.154
12 0.042 0.903 0.006 0.030 0.019 0.110 0.496 0.093 0.141 0.160
13 0.046 0.892 0.007 0.033 0.021 0.115 0.480 0.100 0.141 0.165
14 0.050 0.881 0.008 0.037 0.024 0.119 0.465 0.106 0.141 0.169
15 0.055 0.870 0.009 0.040 0.026 0.123 0.452 0.112 0.141 0.172
16 0.059 0.859 0.010 0.044 0.029 0.126 0.440 0.117 0.141 0.176
17 0.063 0.847 0.011 0.047 0.031 0.130 0.429 0.121 0.142 0.179
18 0.068 0.836 0.012 0.050 0.034 0.132 0.419 0.125 0.142 0.181
19 0.072 0.825 0.013 0.054 0.036 0.135 0.411 0.129 0.142 0.184
20 0.076 0.815 0.014 0.057 0.038 0.138 0.403 0.132 0.142 0.186
21 0.080 0.804 0.015 0.060 0.041 0.140 0.395 0.135 0.142 0.188

forecast error in prices
1 0.014 0.014 0.972 0 0 0.016 0.015 0.970 0 0
2 0.015 0.016 0.968 0.001 0.000 0.066 0.022 0.858 0.035 0.019
3 0.016 0.020 0.960 0.002 0.001 0.134 0.023 0.750 0.056 0.037
4 0.018 0.026 0.948 0.005 0.003 0.161 0.028 0.685 0.072 0.054
5 0.021 0.034 0.934 0.007 0.004 0.174 0.033 0.639 0.084 0.071
6 0.024 0.041 0.918 0.011 0.006 0.182 0.038 0.602 0.093 0.086
7 0.028 0.049 0.901 0.014 0.008 0.186 0.043 0.572 0.100 0.099
8 0.032 0.057 0.883 0.018 0.010 0.188 0.049 0.547 0.105 0.111
9 0.036 0.065 0.865 0.022 0.013 0.189 0.055 0.527 0.109 0.121
10 0.040 0.072 0.847 0.026 0.015 0.189 0.060 0.510 0.112 0.129
11 0.045 0.080 0.828 0.030 0.017 0.188 0.065 0.495 0.114 0.137
12 0.049 0.088 0.810 0.034 0.020 0.188 0.070 0.482 0.116 0.143
13 0.053 0.095 0.792 0.037 0.022 0.187 0.075 0.471 0.118 0.149
14 0.058 0.103 0.774 0.041 0.024 0.186 0.080 0.461 0.119 0.154
15 0.062 0.110 0.756 0.045 0.027 0.186 0.084 0.451 0.121 0.158
16 0.066 0.117 0.740 0.048 0.029 0.185 0.089 0.443 0.121 0.162
17 0.071 0.123 0.723 0.052 0.031 0.185 0.093 0.435 0.122 0.165
18 0.075 0.129 0.707 0.055 0.033 0.184 0.097 0.428 0.123 0.168
19 0.079 0.135 0.692 0.059 0.035 0.184 0.100 0.421 0.124 0.171
20 0.083 0.141 0.677 0.062 0.037 0.183 0.104 0.415 0.124 0.174
21 0.087 0.146 0.663 0.065 0.039 0.183 0.107 0.409 0.125 0.176
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Table 5: Posterior mean forecast error variance decomposition of all five analysed
variables in models M(4,2,1,3) and M(3,2,5,2)

forecast horizon m U p z w m U p z w

forecast error in producti

1 0.014 0.013 0.013 0.960 0 0.013 0.013 0.014 0.959 0
2 0.014 0.015 0.013 0.957 0.000 0.035 0.025 0.021 0.888 0.031
3 0.015 0.019 0.013 0.952 0.001 0.053 0.030 0.030 0.815 0.071
4 0.016 0.024 0.013 0.945 0.001 0.065 0.037 0.040 0.755 0.103
5 0.017 0.030 0.013 0.936 0.002 0.074 0.043 0.050 0.709 0.124
6 0.019 0.037 0.014 0.927 0.003 0.082 0.050 0.061 0.668 0.140
7 0.021 0.043 0.014 0.917 0.005 0.089 0.056 0.070 0.634 0.151
8 0.023 0.049 0.014 0.907 0.006 0.096 0.062 0.079 0.604 0.159
9 0.026 0.055 0.015 0.897 0.008 0.101 0.067 0.087 0.580 0.165
10 0.028 0.062 0.015 0.886 0.009 0.106 0.072 0.095 0.559 0.169
11 0.031 0.068 0.015 0.876 0.011 0.110 0.076 0.101 0.540 0.173
12 0.033 0.074 0.016 0.865 0.013 0.114 0.081 0.106 0.524 0.175
13 0.036 0.079 0.016 0.854 0.014 0.117 0.085 0.111 0.510 0.178
14 0.038 0.085 0.017 0.844 0.016 0.119 0.088 0.116 0.497 0.179
15 0.041 0.090 0.017 0.833 0.018 0.122 0.092 0.119 0.486 0.181
16 0.044 0.096 0.018 0.823 0.020 0.124 0.095 0.123 0.475 0.182
17 0.046 0.101 0.018 0.813 0.022 0.126 0.098 0.126 0.466 0.184
18 0.049 0.106 0.019 0.803 0.023 0.128 0.101 0.129 0.457 0.185
19 0.051 0.111 0.019 0.793 0.025 0.130 0.104 0.131 0.450 0.186
20 0.054 0.116 0.020 0.784 0.027 0.131 0.107 0.133 0.442 0.186
21 0.056 0.120 0.020 0.775 0.029 0.133 0.109 0.136 0.436 0.187

forecast error in wages

1 0.014 0.014 0.014 0.013 0.946 0.014 0.013 0.014 0.012 0.947
2 0.014 0.016 0.014 0.013 0.943 0.030 0.024 0.020 0.048 0.878
3 0.015 0.019 0.014 0.015 0.937 0.043 0.027 0.026 0.076 0.828
4 0.017 0.025 0.014 0.017 0.927 0.054 0.033 0.036 0.096 0.781
5 0.019 0.032 0.014 0.019 0.916 0.064 0.039 0.046 0.110 0.742
6 0.021 0.039 0.014 0.022 0.903 0.073 0.045 0.057 0.119 0.706
7 0.024 0.047 0.015 0.026 0.889 0.081 0.051 0.068 0.125 0.675
8 0.027 0.054 0.015 0.029 0.875 0.088 0.058 0.077 0.130 0.647
9 0.030 0.061 0.015 0.033 0.861 0.095 0.063 0.086 0.133 0.623
10 0.033 0.068 0.016 0.037 0.846 0.101 0.069 0.094 0.136 0.601
11 0.036 0.075 0.016 0.041 0.831 0.106 0.074 0.101 0.138 0.581
12 0.039 0.082 0.017 0.045 0.817 0.110 0.079 0.108 0.139 0.564
13 0.043 0.088 0.018 0.050 0.802 0.114 0.083 0.113 0.141 0.549
14 0.046 0.094 0.018 0.054 0.788 0.118 0.087 0.118 0.142 0.535
15 0.049 0.100 0.019 0.058 0.774 0.121 0.091 0.123 0.143 0.522
16 0.053 0.106 0.019 0.062 0.760 0.124 0.095 0.127 0.144 0.510
17 0.056 0.111 0.020 0.066 0.747 0.127 0.099 0.130 0.145 0.500
18 0.059 0.116 0.021 0.070 0.734 0.129 0.102 0.133 0.145 0.490
19 0.062 0.121 0.021 0.074 0.721 0.131 0.105 0.136 0.146 0.481
20 0.065 0.126 0.022 0.078 0.709 0.134 0.108 0.139 0.147 0.473
21 0.068 0.131 0.023 0.081 0.697 0.135 0.111 0.141 0.147 0.465
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Figure 3: Posterior results of impulse responses of analysed variables to shock in
unemployment. The solid line represents the posterior median and the dotted lines
are the 10th and 90th percentiles.  
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Figure 4: Posterior medians of impulse responses of analysed variables to shock in
unemployment.  
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Figure 5: Posterior means of forecast error variance decomposition of all five analysed
variables in models M(4,2,1,3) and M(3,2,5,2).
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4 Conclusions

In this paper we proposed a Bayesian treatment (i.e. estimation and comparison) of
VEC models with the additional weak form reduced rank restriction imposed on the
short-run parameters of such models. In the empirical example we used the proposed
method to analyse the price - wage spiral in the Polish economy. The Bayesian
comparison of the models confirmed the hypothesis of the presence of long-run and
short-run relations among the analysed variables.
Additionally, we showed the consequences of such restrictions for forecasting and for
further analysis of the VEC-WF system.
In conclusion it is worth noting that Hecq, Palm and Urbain (2006) showed that the
existence of s weak form common feature vectors with s > r, implies the existence of
s− r strong form common features. In the presented empirical example the posterior
probability of models fulfilling this assumption equals 0.574 and is higher than the
assumed 0.3 prior probability, so in the future it will be useful to extend this analysis
for the strong case.
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