www.czasopisma.pan.pl P N www.journals.pan.pl
TN

Central European Journal of Economic Modelling and Econometrics

Copula-based Stochastic Frontier Model with
Autocorrelated Inefficiency

Arabinda Das*

Submitted: 7.02.2015, Accepted: 29.05.2015

Abstract

The paper considers the modeling and estimation of the stochastic frontier
model where the error components are assumed to be correlated and the
inefficiency error is assumed to be autocorrelated. The multivariate Farlie-
Gumble-Morgenstern (FGM) and normal copula are used to capture both
the contemporaneous and the temporal dependence between, and among, the
noise and the inefficiency components. The intractable multiple integrals that
appear in the likelihood function of the model are evaluated using the Halton
sequence based Monte Carlo (MC) simulation technique. The consistency
and the asymptotic efficiency of the resulting simulated maximum likelihood
(SML) estimators of the present model parameters are established. Finally,
the application of model using the SML method to the real life US airline
data shows significant noise-inefficiency dependence and temporal dependence
of inefficiency.
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1 Introduction

Assumption of independence between the two error components of stochastic frontier
model (hereafter SFM) is an important assumption that is commonly made in the
specification and estimation of SFM since its introduction by Aigner et al. (1977),
Meeusen and van den Broeck (1977) and Battese and Corra (1977) in the late
seventies. This assumption is described as ‘innocuous’ in the literature of SFM
(Kumbhakar and Lovell, 2000, pp. 75). However, in some of the studies of recent
years, the validity of this assumption has been questioned, particularly in the context
of inefficiency in a dynamic setup. For example, Pal and Sengupta (1999, pp. 338)
argued “in the multiple cropping agricultural productions, natural calamity in one
season may affect decision making in subsequent seasons and even the managerial
decisions may be affected by such a random factor as weather”. This indicates that
in some situations inefficiency at a time point may depend on the inefficiency and/or
noise of past time points. Secondly, in absence of any empirical evidence supporting
the noise-inefficiency independence, an SFM with correlated error components can be
developed at least for empirical verification of this assumption. Moreover, the random
error which may include some important variable due to mis-specification of model
can cause the noise-inefficiency dependence.

Some researchers have modeled the SFM with correlated error components and
estimated the model in cross section and panel data setup (see, for example, Pal
and Sengupta, 1999; Burns, 2004 and Bandyopadhyay and Das, 2006; Smith, 2008).
Among these studies Burns (2004) and Smith (2008) used the copula approach to
model the joint distribution of noise and inefficiency by combining the appropriate
marginal distributions of the noise and the inefficiency through a copula function. Pal
and Sengupta (1999) and Bandyopadhyay and Das (2006) used truncated bivariate
normal distribution as joint distribution of noise and inefficiency to find the correlation
structure between noise and inefficiency. Pal (2004) assumed half-normal for the
conditional distribution of inefficiency given noise and normal for the marginal
distribution of noise to generate the noise-inefficiency joint distribution.

Among the above three approaches, the copula approach is most flexible as a wide
range of joint distributions can be obtained from various marginal distributions and
the copula functions. Consequently, in the copula approach one can build SFM with
varied location, dispersion, skewness and kurtosis that can be used to explain a wide
range of variation in the observed output. One difficulty with this approach, however,
is that the likelihood function of a copula based SFM, in majority of the cases, involves
analytically intractable integrals which are evaluated either by the numerical or by the
Monte Carlo simulation method. Smith (2008) was first to use the copula approach to
model noise-inefficiency correlation in a cross-section and a panel data SFM, and used
numerical optimization techniques to evaluate the intractable integrals involved in the
maximum likelihood estimation of the model parameters. Subsequently Burns (2004)
applied the simulated maximum likelihood (SML) method using Halton sequence to
evaluate the intractable integral appearing in the cross section SFM of Smith (2008).
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The complexity of stochastic frontier models makes numerical integration methods
inevitable. As a result, Bayesian methods are also commonly used for estimation
of the model (see, among others, van den Broeck et. al, 1994; Koop et. al, 1994,
1995, 1997; Ferndndez et. al, 1997). The most appropriate method in this context is
clearly Markov chain Monte Carlo (MCMC), and in particular Gibbs sampling. More
recently, Griffin and Steel (2007) estimated stochastic frontier model using Bayesian
approach through a commonly available but powerful and flexible computer software
WinBUGS.

Both Burns (2004) and Smith (2008), in their studies, assumed that there is no lag
effect of inefficiency in a panel data setup. In reality, however, the effect of noise on
inefficiency need not be restricted only to the current period and may be distributed
over time. One advantage of using panel data is that it gives an opportunity to
examine the behavior of technical inefficiency over time. The earlier models (Pitt
and Lee, 1980; Schmidt and Sickles, 1984; Kumbhakar, 1987; among others) treated
technical efficiency as time invariant. Subsequent researchers allowed the technical
efficiency to vary over time, but they model efficiency as a systematic function of time
(Kumbhakar, 1990; Cornell, Schmidt and Sickles, 1990; Battese and Coelli, 1992; Lee
and Schmidt, 1993). None of these models is formulated in a dynamic framework
thereby meaning that an inefficient firm is not allowed to correct its inefficiency from
the past. The problem with this approach is that, in most econometric models using
time series data, technical change is also specified as an explicit function of time. As
a result, one cannot distinguish between technical change and efficiency change in
these models. In the present paper we extend the panel data model to include the
lag effect of inefficiency and apply SML method to estimates the model parameters.
It allows inefficiency in one period to be influenced by past levels of inefficiency.

On the other end of the possible spectrum of SFM for panel data are models assuming
that inefficiency terms are independent over time. In particular, Osiewalski and Steel
(1998) as well as Koop et al. (1999) proposed to estimate the technical inefficiency
in a panel setup assuming that inefficiencies are independent over firms and time
(and using Bayesian approach). However, stochastic independence over time seems
too strong an assumption. Autocorrelated inefficiencies allows to consider situations
more reasonable than the extremes of constancy over time, non-random dynamic
behaviour or full independence.

The paper is organized as follows: In the next section, we briefly describe the
statistical modeling using copula. In section 3 we present a panel data SFM where
noise-inefficiency dependence and temporal dependence among inefficiency is modeled
using the multivariate FGM and normal copulas that allow the lag effect of noise on
inefficiency. In section 4, we construct simulated likelihood function of the model
using Halton sequence based simulators. We estimate our model using the real life
data of US airlines in section 5. The contributions, the conclusions and the limitations
of the present work are noted in the final section of the paper.
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2 Statistical modeling using copula

Various multivariate distributions can be obtained from the marginal probability
distributions of a set of random variables using various copula functions. The copula
functions provide the different dependence structure among the random variables. Let
an m-variate copula function, Cy (u1, ..., Uy, ), be a multivariate distribution function
whose support is [0, 1]™ and the marginals are uniform U(0, 1), i.e. symbolically:

Colus, ... um) < [0,1]™ = [0,1] (1)

where u; ~ U(0,1); i = 1,2,...,m and « € §, the parameter vector which provides
the dependence structure among u;’s. Statistical modeling through copula function
is based on Sklar’s (1959, 1973) representation theorem which states that for a
multivariate distribution function there is a unique copula function that captures
the dependence structure among the random variables and can be uniquely expressed
as a function of this copula function and marginal distribution functions of these
random variables. Let F(x1,...,%m,;7) be the joint distribution function of the
random variables Xi,...,X,,. Then, according to Sklar’s representation theorem,
there should be a unique copula function, Cy(u1, ..., u,;,) so that

F(xy,...xm;y) = Co (F1(21501), .oy Fr (T 0m)) (2)

where F;(xz;; 0;) is the distribution function of X;, i=1,...,m, 0 = (6,..., Gm), and
~v = (0, a). The multivariate distribution function F'(z1,...,Zm;y) given in (2 can be
obtained using the marginal distribution functions Fy(x1),..., F(xm) of z1,..., 2y
and an m-variate copula function, Cy(u1,...,u,). The corresponding multivariate
density function, f(z1,...,Zm;7) is obtained by differentiating with respect to
LlyeeosLym,

f(xlu cee 7$m;9) = Ca (Fl (1'1;91), cee aFm<xm;9m)) fl(xﬂel) oo fm (xm§9m) (3)
where f;(x;;0;) is the marginal density function of z;,

omC,
ouy ... O0uy,

Ca(Uty. o Uy) =

is the multivariate copula density function.

3 A panel data stochastic frontier model with
correlated noise and inefficiency
In this section we explain the copula based statistical modeling to build noise-

inefficiency dependence and temporal dependence among the inefficiency appearing
in a panel data stochastic frontier model. As noted earlier, in this approach, the
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joint probability distribution of noise and inefficiency is obtained by combining
their marginal probability densities through an independently given copula function
depicting their dependence structure.

A typical panel data stochastic production frontier model is given by

Yit = fﬁ(xit) eXp(Uit - Uit) (4)
Eit = Vit — U4t
i=1,....,n,t=1,...,T,—co < v; <0, 0 < u; <o

where y;; is the value of output for the ¢th firm at time period ¢, fg(-) is the
deterministic production frontier, indexed by the technological parameter vector
B, x; is the non-stochastic inputs. Among the error components, wu; is the
inefficiency and v;; is the statistical noise. The deterministic frontier subject to noise
fg (xit) = fa(wit) exp(vie) is called the stochastic frontier. It gives the maximum
possible production (except for random noise) that can be produced from the given
input bundle z;;. It is assumed that the actual production y;; is always below this
(stochastic) potential production i.e. y;; < fg (z4¢) Vi,t. The shortfall of the actual
production from the potential production is measured by

—ugy _ _ Yit

15 (@)

e

Since
Yit

=[5 T
u;; is non-negative. Inference regarding the parameters of the probability distribution
of u;; is one of the major concerns in the stochastic frontier analysis.
Let Fr,, (vit), Gp, (uit) and fr, (vit), gn, (ui) be the distribution function and
probability density function of the noise and the inefficiency associated with the
1th firm at time ¢ respectively where m;; is the parameter vector of wu;; and 7;; is
the parameter vector of v;. Also, let u; = (u;, .. .,uiT)/, v; = (i1, .. ,UiT)/ and
i = (i1, - - - ,mT),, m = (T, - - - ,mT)l. Now if we assume that the dependency of u;
and v; can be adequately represented by a 27T-variate copula, then, for the ith firm,
the joint probability density function of (u;,v;) is given by

T
fon (uiyvi) = (H Inir (Wit) fres, (Uit)> Ca; (G(uin),...,G(uir), F(vir), ..., F(vir)) (5)

t=1

where,y; = (7, M, ), and «; is the vector of copula parameters.

It can be noted that the joint density function of noise and inefficiency accounts for
the temporal dependencies among inefficiency and noise and the dependence structure
between noise and inefficiency of a given production unit 7. No dependence among
production units is assumed.
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3.1 Correlated Noise-Inefficiency Modeling Using FGM and
Normal Copula

Since in this paper our main concern is to model the noise-inefficiency dependence and
temporal dependence among the inefficiency we assume, for each firm, that there is
no temporal dependence among noise. We make the following assumptions regarding
the nature of noise-inefficiency dependence for the ith firm, ¢ =1,... n:

A1l: The noise and the inefficiency associated with any two firms have same
stochastic dependence across all time points i.e. Corr(u;,vi) = p for all ¢ and
t. There is no time dependence of orders one or more between the noise and the
inefficiency i.e. Corr(uit, vit—s) = Corr(vit,u;4—s) =0 forall s=1,...,T.

A2: Time dependence of inefficiency for the ith firm at any two consecutive
periods is of order one and same for all firms i.e. Corr(u;,u;—1) = 1 for
all 4 = 1,...,n. There is no time dependence of orders two or more among
inefficiencies i.e. Corr(u,u;t—s) =0forall s=2,...,T.

A3: There is no time dependence of orders one or more among the noise i.e.
Corr(vit,vi4—s) =0forall s=1,...,T.

The following assumptions regarding the distributions of u; and v; are made as:

B1: Time dependence of a firm’s inefficiency can be captured by an FGM or
normal copula.

B2: vy ~ N(0,02) Vi, t i.e. the marginal distribution of the noise is
identical over time and firms. The density function and distribution function are
respectively given by fr,, (vit) = fr(vit) = ¢(vit/00) /0w, Fryy(vit) = Fr(vie) =
= ®(vy/oy) Vi, t

B3: wy; ~ N*t(0,02) Vi, t ie. the marginal distribution of inefficiency
is identical over time and firms. The density function and distribution
function are respectively given by gy, (uit) = gn(uir) = 20(uit/0u)/0u,
G, (uir) = Gylui) = 2®(uie fo,) — 1 Vi, t

Under these assumptions, the joint density function of u; and v; under FGM copula
becomes

(i, v; _<Ha' (b(%t) ¢<th>> 1+pZH”K”+¢ Z HitHyy

Tv t=1,t =t+1
(6)

where H;y = 3 — 49 (ult> Ki;=1-29 (), ®(+) is the distribution function of

Ou v
a standard normal variable and v = (B/, 02,02, p, 1/1)/.
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Similarly, the joint density function of u; and v; under normal copula becomes

o= ({1 20(2) 20(2)) ol e -d o

where
e= (o (20 () 1) o a(a (22) 1),
o (o () ot (0 ()
re (g R,
1 ¥ 0 0
0 0 0 1
R12:R21— ; !
0 0 0 »p
and
1 0 0
Ry — 0 1 0

0 0 0 1
and p is a copula parameter associated with contemporaneous dependence between
noise and inefficiency independent and 1 is a copula parameter associated with lagged
dependence among inefficiency.

Substituting v;; = €;; + u;; into above and integrating with respect to u;, one can get
the density function of ¢; as follows:

h(ei) = /OOO /000 <H f(ei +U¢t)> Co, (HQ(Wt)) duit,

Ca

where
i = Ca; (G(uin), ..., Gluir), Fen + wir), ..., Feir + wir)) -
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The Jondrow et al. (1982) estimator of technical inefficiency, for the SFM with
correlated error components under copula approach can be expressed as follows:

1 o}
h(e;) /0 ui fry (i, €5)dus

1 o0
B m/o i (1:[ flei+ uit)) Co; (H g(uit)> du;.

t

TIE;

Eluilei] =

The density function of £; under FGM and normal copula can be obtained using @
and are respectively as follows:

o = [ ()

T T
L+pY HuKiu+v¢ > HyHy (H id) (?)) du;
t=1 “

o
t=1,t'=t+1 t U

o - [ ()

o] e ([ 2e(2)) o

t

(8)

and

(9)

4 Estimation of the proposed copula-based panel
data SFM

Estimation of the parameters of a copula based multivariate model is usually done
by inference function for margins (IFM) method (see, among others, Xu, 1996; and
Nelson, 1999) where the parameters of the marginal distributions are first estimated
by maximizing the univariate likelihood functions and the resulting estimates are
substituted back in the full likelihood function and the ML estimates of the copula
parameters are then obtained using the resulting full likelihood function. The IFM
method, however, cannot be used to estimate the parameters of our model, as we
do not have observations on v; and u;. The ML estimation in our case, therefore,
has to be necessarily based on the full likelihood of the model which is based on the
observational error €; as presented in and @D

The likelihood functions given in and @ involve a mathematically intractable
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multiple integral. For ML estimation one has to evaluate this integral either by
quadrature or adaptive quadrature methods (Haan and Uhlendorff, 2006) or by
MC simulation based methods (Gourieroux and Monfort, 1996). The simulation
based methods, however, are known to perform better and faster than the adaptive
quadrature methods in case of multiple integral. The ML estimates based on MC
simulation more appealing with its good statistical asymptotic properties over the ML
estimates based on likelihood functions approximated by numerical methods which
does not have any known statistical sampling properties.

In simulated maximum likelihood (SML) method the parameters are estimated by
maximizing the likelihood function approximated by a simulation technique (see,
among others, Gourieroux and Monfort (1996) for description of the SML estimation
and the properties of the resulting estimators). This approximated likelihood function
is called the simulated likelihood function which can be written as an expectation
of a smooth function of a random variable. The SML method, because of their
computational advantage and good asymptotic properties, are increasingly being used
in ML estimation of complicated statistical models (see, among others: Lee, 1995; and
Hajivassiliou and McFadden, 1998).

The exact likelihood functions based on the observation error €; for the models under
FGM and normal copula can be written as respectively

T T
1 €it + U;
L(ylei) = Bu, (Haé <t0t>> Lt p) HuKi+v Y, HaHy
t v v t=1

t=1,t' =t+1

(10)

(H 1, (:“>> e |3 (R - I)f” (11)

t v

and

L(’Y|€z) = Eul

where E,, denotes expectation w.r.t. the joint distribution of the random vector u;
consisting of u;; ~ N*(0,02). This can be written as the dependence structures and
the density function of v; share a multiplicative structure with the density function
of u; in the above equations and . Therefore, collecting for all i = 1,....,n
the exact likelihood-function of our model can be expressed as

n

L(y) =T L0 (12)

=1

4.1 Simulated Likelihood Function of the Model

For estimation of the copula based frontier model developed in this paper, the SML
method is the preferred method as the intractable integrals appearing in the log-
likelihood functions is actually expectation of a well behaved function of random
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vector u; following a distribution (half-normal) that can be easily simulated. Thus
asymptotically unbiased simulators for the integrals can be easily obtained for use in
the construction of the simulated likelihood functions.

An unbiased and consistent estimator for L;(y|y;, z;) given in and (LI), based
on a sample {u?}2 ,, of size R, where

ugr) = (ug), e ui(-;))l

drawn from the joint density function of w;, for FGM and normal copula are

respectively
) ()
1 Yit — T, 0 + ugy
| | | B .
0y Oy

T T
e HORD v > HPRD)
t=1

t=1,t'=t+1
) (r) /
<H o—i¢ (yzt Z‘;—ﬁ + Uiy )) |R|11/2 exp |:_;€ (R_l - I)&:l]
: (14)

ul(»r) = (ug),,u%))’ for r=1,2,...,R,

()
Hg>:3_4¢<%t>
Oy

(git — UE:))]

1 R
Litvlyi,zi) = 5 >

r=1

LR
Li(vlys @) = & >
r=1

where

K7 =1-29

Oy

(r)y _ (1 + wikr)au
Y=g
and w;g, is kth Halton draw from U(0, 1).
Simulating the samples from the distribution of u;, we have used the Halton sequences.
A d-dimensional Halton sequence of length m is given by {z1,..., 2}, for d different
prime numbers by, bo, ..., by with the kth element of the sequence is

zp=lep,(k—1),...,00,(k—1)], k=1,....m

where ¢p(k) = do/b' + d1/b* + --- + d;j /BT is a base-b radical inverse function,
op(k) € [0,1] and k = d;b/ + d;—1b7' + -+ + dib + dp, a base-b representation of
any integerk, (k > 0) for a prime number b (see Halton (1960) for more details). As
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recently shown by Bhatt (2001) and Greene (2003), the computational burden and
the convergence time of the BHHH or BFGS algorithms used for solving the likelihood
equations are significantly reduced when these MC techniques are based on Halton
sequences rather than quasi-random sequences. It has also been recently shown that
use of these numbers, can significantly reduce the size of the simulated sample required
to achieve a given level of accuracy in the approximation of the likelihood function
(see: Bhat, 2001 for description of Halton numbers).

Substituting and in , we get the simulated likelihood functions of our
models

Hﬁ (YNyi, ). (15)
The SML estimate of v is given by

’A}/SML = arg Mﬂyax log j;(’y)

Although the asymptotic properties of the SML estimator depend on the accuracy of
the initial approximations, in the limit, as the approximations become exact, they are
identical to the properties of the exact maximum likelihood estimator (properties of
simulated maximum likelihood method are discussed in Geweke et al. (1994)). The
following theorem due to Lee (1999) establishes the consistency and the asymptotic
efficiency of the SML estimator Y4s,s7,. Under the regularity conditions stated in Lee
(1999, pp. 353) and as n — oo and R — oo with fracy/nR — 0,

i) plimdsayr =~
i) vr(Asar —7) = N(0,[I(7)]~!) where I(7) is the information matrix at ~.

The simulated estimator of Jondrow et al. (1982) estimator of technical inefficiency
can be found using the simulation and estimating the parameters of the model.

5 Empirical evidence

In this panel data example, a correlated error component production function is fitted
to an unbalanced panel of n = 10 firms sampled from the US airline industry over
T = 15 years, listed in Greene (1995, pp. 683-685) and described in Greene (1997,
Sec. 6.2). The model is given by

log yi;t = Po + B1log By + Bolog Fyy + f3log Ly + Balog My + Bslog Py + vy — iy

where output y is a function of inputs: equipment F, fuel F', labour L, materials M
and property P. For the purposes of this example, specify the margins as follows: The
inefficiency component u is distributed as half-normal (with mean zero and variance
o2 of the underlying normal distribution) and v is distributed as normal with mean
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zero and variance o2.

To simulate the likelihood function of the two selected copula models, R = 50 Halton
draws are used per observation, where each draw is taken from the Halton sequence
with base b = 7. The simulated log likelihood function is then maximized using the
BHHH algorithm. In a similar way, the technical inefficiencies of the selected copulas
are obtained. In Table [I] we present the simulated ML estimates with their standard
errors and simulated log likelihood values for the copula models. The product copula
model with the independence assumption between noise and inefficiency and the
traditional SFM with independent assumption and no lagged dependence among
inefficiency are also included. The result shows that signs of the estimated slope
coefficients across different models are the same and they do not differ much in
magnitude. There is little variation in the estimates of variance parameters and they
tend to increase when the error components are correlated. It is also evident from
the result that there is statistically significant correlation exist between the two error
components noise and inefficiency. The estimates of 1 across different copula models
suggest a significant amount of time-dependence of technical inefficiency i.e. technical
inefficiency at any time point ’t’ is significantly positively influenced by its previous
value at time point ’t — 1. Furthermore, the model under FGM copula is better
than the other models as indicated by the values of log-likelihood. The Jondrow et
al. (1982) estimator of technical inefficiency were calculated using simulation for all
three copula-based models. In Table [2] we provide the time averages of the estimates
of technical inefficiency of 10 firms and there is substantial change seen in presence
of noise-inefficiency correlation.

Table 1: Airline Production Parameter Estimates using Copula Based SFMs panel
data

Parameters of Normal-Half-normal Error Components

the model ||Standard SFM[Product copula[ FGM copula [Normal Copula
Bo -0.148 (0.314) | -0.146 (0.317) |-0.156 (0.326)| -0.158 (0.323)
51 0.387 (0.079) | 0.399 (0.076) |0.385 (0.099) | 0.377 (0.097)
B2 -0.150 (0.244) | -0.148 (0.265) [-0.145 (0.238)| -0.142 (0.227)
B3 -0.090 (0.138) | -0.091 (0.140) |-0.096 (0.147)| -0.096 (0.121)
Ba 0.800 (0.232) | 0.808 (0.225) |0.825 (0.218) | 0.816 (0.227)
Bs 0.079 (0.089) | 0.082 (0.078) |0.086 (0.085) | 0.087 (0.084)
ou 0.102 (0.073) | 0.097 (0.083) |0.102 (0.089) | 0.106 (0.098)
o 0.101 (0.080) | 0.109 (0.097) |0.113 (0.067) | 0.112 (0.075)
P 0 0.191 (0.074) | 0.218 (0.094) | 0.223 (0.106)
«a 0 0 0.263 (0.078) | 0.234 (0.114)

Log-L 56.94 59.78 68.01 67.24
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Table 2: Technical inefficiency under different copula for the 10 US Airlines firms

Technical inefficiency
Standard SFMHProduct copula[FGM copula[Normal copula

0.2135 0.2489 0.2163 0.2696
0.2148 0.2064 0.2276 0.2762
0.2027 0.2059 0.2367 0.2825
0.2073 0.2096 0.2165 0.2721
0.1989 0.2077 0.2526 0.2909
0.2187 0.2176 0.2795 0.2949
0.1782 0.1789 0.2463 0.2826
0.2014 0.2084 0.2732 0.2936
0.1921 0.2074 0.2578 0.2935
0.181 0.1794 0.2373 0.2879

6 Conclusions

In this paper we have studied the consequences of relaxing the assumption of
independence of the error components and the temporal dependence of inefficiency
in a panel data SFM. The copula based statistical modelling is used to show various
types of noise-inefficiency dependence and temporal dependence among inefficiency in
a SFM. The intractable integrals appearing in the likelihood functions of the copula-
based SFMs are expressed as expectations of some smooth functions of random
variables that can be easily simulated and, consequently, the simulated maximum
likelihood (SML) method is used as an effective alternative method to estimate the
copula based SFM. Finally, the application of the model to the real life data of Greene
(1990) shows the significant positive correlation exists between noise and inefficiency.
Also, the result shows a significant positive temporal dependence among inefficiency.
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