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Abstract

In 1993 Engle and Kozicki proposed the notion of common features of which
one example is a serial correlation common feature. We say that stationary, non-
innovation processes exhibit common serial correlation when there exists at least
one linear combination of them which is an innovation. Later on in 1993 Vahid
and Engle combined the notions of cointegration among I(1) processes with
common serial correlation within their first differences. It is commonly known
that cointegrated time series have vector error correction (VEC) representation.
The existence of common serial correlation leads to an additional reduced rank
restriction imposed on the VEC model’s parameters. This type of restriction
was later termed a strong form (SF) reduced rank structure, as opposed to a
weak one introduced in 2006 by Hecq, Palm and Urbain.
The main aim of the present paper is to construct the Bayesian vector error
correction model with these additional strong form restrictions.
The empirical validity of investigating both the short- and long-run co-
movements between macroeconomic time series will be illustrated by the analysis
of the price-wage nexus in the Polish economy.
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1 Introduction
While analysing multivariate time series there is of natural interest to check whether
the examined variables move together in the long and short run. There is a
wide literature explaining and applying the concept of cointegration, which is an
indicator of long-run co-movement between integrated series. The integrated series are
cointegrated when there exists at least one non-zero linear combination of them which
lowers the integration rank. Engle and Kozicki (1993) proposed the notion of common
features, which can be regarded as the extension of the concept of cointegration. They
considered features satisfying three axioms: i. if x has (does not have) the feature,
then λx (λ 6= 0) will have (not have) it; ii. if both series x and y do not have the
feature, then the sum x+ y will not have it either; iii. if only one of the series x or y
has the feature, then the sum x+ y will also have it. According to the definition they
have formulated, a feature that is present in each of a group of series is said to be
common to those series if there exists a non-zero linear combination of the series that
does not have the feature (Engle, Kozicki 1993, p. 370). One of the example of the
common feature idea is a common serial correlation (or a non-innovation co-feature as
proposed by Ericsson 1993). We say that stationary, non-innovation processes exhibit
a common serial correlation when there exists at least one linear combination of them
which is an innovation.
Vahid and Engle (1993) combined the notions of cointegration among processes
integrated of order 1 (I(1)) with common serial correlation among their first
differences, so it is possible to analyse the short- and long-run co-movement of the
series in one model.
It is commonly known that cointegrated time series have vector error correction (VEC)
representation. Vahid and Engle (1993) showed that the existence of a common
serial correlation leads to an additional reduced rank restriction imposed on the VEC
model parameters. Hecq, Palm and Urbain (2006) termed this type of commonality
the strong form reduced rank structures, in opposition to weak and mixed forms
introduced by them. When the first differences of CI(1,1) series (i.e. I(1) processes
which cointegrate to I(0)) exhibit the strong form co-dependence, the adjustment
coefficients matrix and the matrices describing the behaviour of the first differences
have a common left null space, whereas in the case of the weak form only the left null
spaces of matrices for the first differences have to overlap. The mixed form combines
both of the previously mentioned, i.e. in the set of co-feature vectors there is one
group which fulfils the assumptions for the weak form and the second, which also
satisfies conditions for the strong form. All of these types differ also in terms of
interpretation (see Hecq, Palm and Urbain (2006) for details).
The main aim of the paper is to construct the Bayesian vector error correction model
with additional strong form restrictions (Bayesian VEC-SF model). The idea of how
to unambiguously identify the model parameters comes from the papers by Strachan
and Inder (2004), Koop, León-González and Strachan (2010), and Villani (2005), so
the identification will be achieved via imposing orthonormal restrictions on two sets of
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vectors: the one describing the long-run behaviour and the second one - representing
the short-run dependence.
The empirical validity of investigating both the short- and long-run co-movements of
macroeconomic time series will be illustrated by the analysis of the price-wage nexus
in the Polish economy. The research will be based on 72 quarterly observations of
5 economic categories (nominal wages, consumer price index, productivity, rate of
unemployment, import prices) covering the period 1995-2012.

2 The model
Let us write the n-dimensional cointegrated process in the VEC form:

∆xt = αβ′x̃t−1 +
k−1∑
i=1

Γi∆xt−i + ΦDt + εt = αβ′x̃t−1 + Γ′zt + ΦDt + εt, (1)

where x̃t, m×1 = (x′t, dt)′, z′t = (∆x′t−1,∆x′t−2, . . . ,∆x′t−k+1), Γ = (Γ1, . . . ,Γk−1)′,
εt ∼ iiNn(0,Σ), t = 1, 2, . . . , T , Dt and dt contain deterministic components. The
matrices βm×r and αn×r have full column rank, m = n when no deterministic
components are included in the cointegrating relations, otherwise m > n and
β′ = (β(1)′ , β(2)′)′, where β(1) is an n× r matrix and β(2) - (m− n)× r one.
It is commonly known that the VEC model suffers from non-identification, so to
unambiguously estimate matrices β and α one has to imposed a total of r2 restrictions
on these parameters. Most often all the restrictions are put on the cointegration
matrix β. In other words we can say that the cointegration space is the only thing
one could get information from the data about. Following the idea by Strachan
and Inder (2004), and Villani (2005), we assume that β has orthonormal columns, so
β′β = Ir. Additionally we assume that first elements in each column of β are positive.
This last restriction help us to deal with the many-to-one relation between matrices
with orthonormal columns and the space they span.
The cointegrated VAR model allows for modelling of both the long-run relationships
between time series and the short-run dynamics.
The cointegration is an evidence of co-movement among non-stationary time series.
According to the idea of co-dependence, stationary time series can also move together.
In such a case there exists at least one linear combination of them which lowers
the moving average order. As pointed out by Vahid and Engle (1993), the serial
correlation common feature introduced by Engle and Kozicki (1993) is a strong form
of co-dependence. Non-innovation time series share serial correlation common feature
if there exists at least one linear combination of them which is an innovation. In 1993,
Vahid and Engle proposed the model combining both ideas - the cointegration and
the serial correlation common feature.
The existence of serial correlation common features leads to additional rank
restrictions in the VEC model and in the multivariate Beveridge-Nelson trend-cycle
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decomposition of cointegrated series, which reads as follows:

xt = δt + τt + κt = δt + C(1)
t−1∑
i=0

εt−i + C∗(L)εt, (2)

where δt denotes the deterministic component, τt - the trend, κt- the stationary part,
C(1) = β

(1)
⊥ (α′⊥(In −

∑k−1
i=1 Γi)β(1)

⊥ )−1α′⊥, C∗(L)εt =
∑∞
j=0 C

∗
j εt−j , C∗j = −

∑
i>j Ci

and Ci (i = 0, 1, . . . ) are matrices from the Wold representation of ∆xt, which by
our assumptions is I(0), so they fulfil the inequality

∑∞
i=1 i|Ci| <∞. For any (m× s)

full column rank matrix C, C⊥ denotes an (m× (m− s)) matrix of full column rank
such that C ′C⊥ = 0.
In an n-dimensional CI(1,1) process with r cointegrating vectors the matrix C(1)
is of a reduced rank equal to n − r, so the stochastic trend of the process is
defined by n − r random walks. Vahid and Engle (1993) asked similar question
about the stationary (cyclical) part of the process and they proved that it is
possible to eliminate the cyclical part by linear combination when all the matrices
C∗j , j = 0, 1, . . . are of reduced-rank and their left null spaces overlap. This
assumption is equivalent to reduced-rank restrictions for the matrices Ci, i = 1, 2, . . . ,
from the Wald decomposition of the first differences of the analysed process, so the
same transformation that eliminates serial correlation in the differences when applied
to the levels eliminates the common cycles (Vahid and Engle 1993, p. 344). They
also point out that the number of linearly independent vectors which eliminate the
common cycles cannot exceed the number of common trends (n−r) and these vectors
are linearly independent of the cointegrating vectors.
Additionally, Vahid and Engle (1993) demonstrate consequences of common serial
correlation for the VEC representation of cointegrated series. As it was previously
recalled, in the case of the strong co-dependence of ∆xt there exists at least one linear
combination of its components, which does not depend on the past values, so there
should exist at least one vector γ∗⊥ such that γ∗′⊥ (∆xt − ΦDt) = γ∗

′

⊥ εt. The vectors
collected in γ∗⊥ are called co-feature vectors, and the combinations γ∗′⊥ (∆xt − ΦDt)
are called co-feature combinations.
The common serial correlation assumption leads to an additional rank reduction in
the VEC model as γ∗′⊥ (αβ′x̃t−1 +Γ′zt) should equal zero and this equality implies that
α and all Γ’s have a lower than the full rank and their left null spaces must overlap, so
they possess the following representations: α = γ∗δ∗

′

0 , Γi = γ∗δ∗
′

i , i = 1, 2, . . . , k− 1,
where the matrix γ∗ is of full column rank equal to n−s, where s denotes the number
of linearly independent co-feature vectors.
Such factorisations are, of course, not unique, i.e. for any non-singular matrix
(say Mi) of appropriate dimension the following equalities hold: γ∗MiM

−1
i δ∗

′

i =
= γ∗δ∗

′

i , i = 0, 1, . . . , k − 1, so in order to unambiguously estimate the model
parameters we have to impose additional identification restrictions on them. We
will use the method proposed by Koop, León-González and Strachan (2010). Before
explaining the idea of this technique let us write the model combining cointegration
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and common serial correlation features:

∆xt = γ∗δ∗
′

0 β
′x̃t−1+

k−1∑
i=1

γ∗δ∗
′

i ∆xt−i+ΦDt+εt = γ∗δ∗
′
z∗t +ΦDt+εt, εt ∼ iiNn(0,Σ)

(3)
where δ∗′ = (δ∗′0 ,δ∗

′

1 , . . . ,δ
∗′
k−1), z∗t = (x̃′t−1β,∆x′t−1, . . . ,∆x′t−k+1)′, Σ is a positive-

definite and symmetric matrix, the initial conditions x−k+1, . . . , x0 are treated as
known. The matrices βm×r and γ∗n×(n−s) are of full column rank.
Hecq, Palm and Urbain (2006) termed this type of commonality as the strong form
reduced rank structures, in opposition to the weak and mixed forms introduced by
them. We will use their notation and label model (3) as the VEC-SF model. To save
space let us represent the VEC-SF model in matrix notation:

Z0 = (Z1β, Z2) δ∗γ∗
′
+ Z3Γs + E, (4)

where

Z0 = (∆x1, ∆xt, . . . , ∆xT )′,

Z1 = (x̃0, x̃1, . . . , x̃T−1)′,

Z2 = (z′1, z′2, . . . , z′T )′ with zt =
(
∆x′t−1, ∆x′t−2, . . . , ∆x′t−k+1

)
,

Z3 = (D1, D2, . . . , DT )′

and Γs = Φ′.
To complete the definition of the Bayesian VEC-SF model one has to settle the prior
structure. But before that it is necessary to establish the identification restrictions
imposed on γ∗ and δ∗. Following the concept by Koop, León-González and Strachan
(2010) we will consider two equivalent parameterisations of the reduced rank matrix(
α, Γ′

)′:
D∗G∗

′
= δ∗γ∗

′
.

In the first parameterisation D∗(n(k−1)+r)×q ∈ R(n(k−1)+r)q, G∗n×q ∈ Rnq, q = n − s
and r(G∗) = q, whereas in the second one we assume that γ∗ has orthonormal columns
and, additionally, that γ∗ has positive elements in the first row, i.e. γ∗ ∈ Ṽq,n, which
is the 2−qth part of the Stiefel manifold containing n× q matrices with orthonormal
columns (see Chikuse 2002 for a general description). To identify β, which is the
matrix containing vectors spanning the cointegration space, we assume that β′β = Ir
and that it has positive elements in the first row, so β ∈ Ṽr,m.
We impose the following priors of the model parameters:

- a Matrix Angular Central Gaussian Distribution of β (truncated to Ṽr,m):
β|Pτ , r,m ∼ MACG(Pτ )|Ṽr,m . Through Pτ the researcher may incorporate
prior knowledge about the cointegration space. If we define Pτ = HBH

′
B +
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+τHB⊥H
′
B⊥, where τ ∈ [0, 1], H ′BHB = Ir, H

′
B⊥HB⊥ = Im−r, H

′
B⊥HB = 0,

the scalar τ controls the tightness of the prior around the space spanned by
the matrix HB (sp(HB)). The higher the scalar τ the less informative the
prior. Imposing τ = 0 one assumes that the cointegration space is sp(HB).
Assuming τ = 1 one obtains Pτ = Im, so a non-informative distribution of
the cointegration space (see Chikuse 2002, Koop, León-González and Strachan
2010, and Strachan, Inder 2004, for the details);

- a matrix Normal of G∗, which leads to a Matrix Angular Central Gaussian
Distribution of γ∗ (truncated to Ṽq,n): G∗|Pτ∗ , q ∼ mN(0, 1

nIq, Pτ∗), so
γ̃∗ = G∗(G∗′G∗)− 1

2 ∼ MACG(Pτ∗) and, as we have assumed that γ∗

has positive elements in the first row, we truncate this distribution to Ṽq,n
(γ∗ ∼ MACG(Pτ∗)|Ṽq,n). Similarly to the above-stated distribution, prior
knowledge is incorporated via the matrix Pτ∗ = HG∗H

′
G∗+τ∗HG∗⊥H

′
G∗⊥, where

τ∗ ∈ [0, 1], H ′G∗HG∗ = Iq, H
′
G∗⊥HG∗⊥ = In−q, H

′
G∗⊥HG∗ = 0;

- a matrix Normal of D∗: D∗|k, r ∼ mN(µ
D∗
,ΩD∗ , νIn(k−1)+r), where ΩD∗ is a

positive-definite and symmetric matrix, ν is a positive constant, which can be
estimated or set arbitrarily by a researcher;
The assumption that γ∗ is of full column rank is exploited in the construction
of the Bayesian VEC-SF model and will be employed in the calculations of
the posterior model probability. Note that, by imposing absolutely continuous
distributions of D∗ and G∗ (so also of δ∗), we assume that, with probability
1, the matrix δ∗ is of full column rank. Vahid and Engle (1993) proved that
γ∗ is of full column rank and the matrices δ∗i , i = 0, 1, . . . , k − 1, need not be,
admittedly, but note that δ∗ groups all the matrices δ∗i . A detailed reasoning
concerning the rank of δ∗ is a subject of a current research and is not presented
here. Remain that imposing absolutely continuous (with respect to Lebesgue
measure) prior distributions of D∗ and G∗ practically means that we work under
the assumption of full column rank of δ∗.

- a matrix Normal of Γs: Γs|h ∼ mN(µ
s
,Σ, hIls), where h is a positive constant,

which can be estimated or set by a researcher, and ls denotes the number
columns of Γs;

- an inverted Wishart distribution of Σ: Σ ∼ iW (S, qΣ), where S is a positive
definite symmetric matrix;

an inverted Gamma distribution of ν and h (if they are estimated):
h ∼ iG(sh, nh), ν ∼ iG(sν , nν); It follows that

E(h) = sh
nh − 1 for nh > 1

V (h) = s2
h

(nh − 1)2(nh − 2) for nh > 2
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and
E(ν) = sν

nν − 1 for nν > 1

V (ν) = s2
ν

(nν − 1)2(nν − 2) for nν > 2

- the constants τ and τ∗, which measure the informativeness of the MACG
distributions, may be elicited by the researcher or estimated; if they are to
be estimated, their prior densities should allocate most weight to values near
zero and be restricted to [0, 1] (see Strachan and Inder 2004, and Koop, León-
González and Strachan 2010); these could be e.g. inverted gammas truncated
to [0, 1]: τ ∼ iG[0, 1](sτ , nτ ), τ∗ ∼ iG[0, 1](sτ∗ , nτ∗).

The imposed priors lead to the following full conditional posteriors of the model
parameters (see Appendix A for the calculations):

the full conditional posterior of Σ is an inverted Wishart distribution:

Σ|D∗, G∗,Γs, β, q, h,X ∼ iW
(
S + 1

h

(
Γs − µs

)′ (
Γs − µs

)
+ E′E, qΣ + ls + T

)
where E = Z0 − (Z1β, Z2) D∗G∗

′ − Z3Γs;

the full conditional posterior of vec(D∗) is Normal:

vec(D∗)|Σ, G∗,Γs, β, q, h, ν,X ∼ N
(
µvD∗ ,ΩvD∗

)
,

where

ΩvD∗ =
[(
G∗
′
Σ−1G∗ ⊗ Z̃ ′Z̃

)
+
(

Ω−1
D∗ ⊗

1
ν
In(k−1)+r

)]−1
,

µvD∗ = ΩvD∗vec
[
Z̃ ′ (Z0 − Z3Γs) Σ−1G∗ + 1

ν
µ
D∗

Ω−1
D∗

]
,

Z̃ = (Z1β, Z2) and vec(F ) denotes the vectorisation of F;

the full conditional posterior of vec(G∗) is Normal:

vec(G∗)|Σ, D∗,Γs, β, q, h, ν,X ∼ N
(
µvG∗ ,ΩvG∗

)
,

where
ΩvG∗ = [(nIq ⊗ P−1

τ∗ ) + (D∗
′
Z̃ ′Z̃D∗ ⊗ Σ−1)]−1,

µvG∗ = ΩvG∗vec[Σ−1(Z0 − Z3Γs)′Z̃D∗];
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the full conditional posterior of Γs is a matrix Normal:

Γs|Σ, G∗, D∗β, q, h, ν,X ∼ mN
(
µΓs ,Σ,

(
1
h
Ils + Z ′3Z3

)−1
)
,

where

µΓs =
(

1
h
Ils + Z ′3Z3

)−1 [
Z ′3

(
Z0 − Z̃D∗G∗

′
)

+ 1
h
µ
s

]
;

if Pτ = Im, then the full conditional posterior of β is a matrix Bingham-von
Mises-Fisher distribution:

p(β|Σ, G∗, D∗Γs, r, q, h, ν,X) ∝ exp
{
tr
(
F ′β + B̃β′Ãβ

)}
[dβ],

where Ã = Z ′1Z1, B̃ = − 1
2 Γ̃Σ−1Γ̃′, F = Z ′1Z̃Σ−1Γ̃′, Z̃ = Z0 − Z2D∗G∗

′ , D∗G∗′

denotes the last n(k − 1) rows of the matrix D∗G∗
′ and Γ̃ - the first r rows

of D∗G∗′ . The symbol [dβ] denotes the normalised invariant measure on the
Stiefel manifold.
This type of distribution is very flexible as it contains both linear and quadratic
terms. It was introduced by Khatri and Mardia (1997). It combines the von
Mises-Fisher distribution (also known as the matrix Langevin distribution, the
linear term) and the Bingham distribution (the quadratic term), so it is called
the matrix Bingham-von Mises-Fisher distribution or the matrix Langevin-
Bingham distribution. The normalising constant for this distribution was given
by De Waal (1979).
In the case of Pτ 6= Im, the full conditional posterior of β does not belong to
any known class of distributions, but its density is proportional to the one of
the matrix Bingham-von Mises-Fisher:

p(β|Σ, G∗, D∗Γs, q, h, ν,X) ∝ |β′P−1
τ β|−m2 exp

{
tr
(
F ′β + B̃β′Ãβ

)}
[dβ];

the full conditional posteriors of ν and h are inverted Gamma distributions:

ν|Σ, G∗, q,X ∼ iG
(
sν +

tr
[
Ω−1
D∗ (D∗ −D∗)′ (D∗ −D∗)

]
2 , nν + q[n(k − 1) + r]

2

)

h|Σ,Γs, X ∼ iG(sh + 1
2 tr[Σ

−1(Γs − µs)
′(Γs − µs)], nh + nls

2 );

the full conditional posterior of τ∗ is an inverted Gamma truncated to [0, 1]:

τ∗|G∗, q, r,X ∼ iG[0,1]

(
sτ∗ + 1

2 tr
(
nG∗

′
H⊥G∗H

⊥′
G∗G

∗
)
, nτ∗ + 1

2q(n− q)
)

;
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the full conditional posteriors of τ is of a non-standard form:

p(τ |β, r,X) ∝ |β′P 1
τ
β|−m2 exp

(
−sτ
τ

)
τ−nτ−

1
2 r(m−r)−11[0, 1](τ),

where 1[0, 1](a) denotes a function which takes value of 1 for a in [0, 1] and 0
elsewhere.

3 Gibbs sampling algorithm
As the set of full conditional posterior distributions is known, the posterior results
could be obtained by employing the Gibbs sampler. After choosing initial values
(Σ(0), D∗(0), G∗(0), Γ(0)

s , β(0), and, optionally, ν(0), h(0), τ (0), τ∗(0)), the algorithm
repeats the following steps:

Draw Σ from iW

(
S + 1

h

(
Γs − µs

)′ (
Γs − µs

)
+ E′E, qΣ + ls + T

)
.

To obtain draws from the posterior distributions of δ∗ and γ∗ apply the method
proposed by Koop, León-González and Strachan (2010) for VEC models, with
a slight modification to take account of the additional restriction assuming
positive elements in the first row of γ∗:

draw vec(D∗) from N
(
µvD∗ ,ΩvD∗

)
,

draw vec(G∗) from N
(
µvG∗ ,ΩvG∗

)
,

use the transformations:

δ∗ = D∗(G∗′G∗) 1
2OP , γ∗ = G∗(G∗′G∗)− 1

2OP , where OP denotes a
diagonal matrix with 1 or -1 on its main diagonal, i.e. OP = diag(±1).

Draw Γs from mN
(
µs,Σ,

( 1
hIls + Z ′3Z3

)−1
)
.

Draw β from mBMF (Ã, B̃, F ) in the case of the non-informative prior of
cointegrating space (i.e. Pτ = Im).
One can use e.g. the Geodesic Monte Carlo on the Stiefel manifold constructed
by Byrne and Girolami (2013). Another possibility is the Gibbs sampler
proposed by Hoff (2009).
If Pτ 6= Im, one can use the Metropolis-Hastings algorithm with candidate
values drawn frommBMF (Ã, B̃, F ), as in this case the posterior full conditional
density of β is proportional the density of the distribution mBMF (Ã, B̃, F ),
with the proportionality factor |β′P 1

τ
β|−m2 .
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Draw ν and h from the inverted Gamma distributions

iG

(
sν + 1

2 tr
[
Ω−1
D∗ (D∗ −D∗)′ (D∗ −D∗)

]
, nν + q[n(k − 1) + r]

2

)
and

iG

(
sh + 1

2 tr
[
Σ−1

(
Γs − µs

)′ (
Γs − µs

)]
, nh + nls

2

)
,

respectively.

Draw τ∗ from the truncated inverted Gamma distribution

iG[0,1]

(
sτ∗ + 1

2 tr
(
nG∗

′
H⊥G∗H

⊥′
G∗G

∗
)
, nτ∗ + 1

2q(n− q)
)
.

Draws from the non-standard distribution of τ could be obtained with the
help of the Metropolis-Hastings algorithm with candidate values e.g. from
iG[0, 1]

(
sτ , nτ + 1

2r(m− r)
)
, as in this case the posterior full conditional

density of τ differs from the kernel of the density of the distribution
iG[0, 1]

(
sτ , nτ + 1

2r(m− r)
)
only by the multiplicative factor |β′P 1

τ
β|−m2 .

4 The empirical implementation
To illustrate the above-presented methods the analysis of the price-wage nexus in
Poland will be conducted. The data consists of seasonally unadjusted quarterly
observations covering the period 1995q1 - 2012q4. The following variables will be
analysed:

[w] - the log of nominal wages,

[p] - the log of consumer price index,

[z] - the log of productivity,

[m] - the log of import prices,

[U ] - the unemployment rate.

Lower case letters denote natural logarithms of the original variables. Figure (1)
presents the time paths of levels and first differences of the considered variables.
The observed data seems to be the realisations of I(1) processes, appearing to move
together, so they may be cointegrated. Previous analyses of a similar set of data
within the framework of VEC models with weak form reduced rank structures (VEC-
WF) proved that the first differences also display similar behaviour (see Wróblewska
2011, 2012). In this empirical exercise we want to verify the hypothesis of strong
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Figure 1: The analysed data
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co-movement form. The set of VEC-SF models will be compared with the set of
VEC-WF and VEC models.
Additionally, the visual inspection of the analysed variables inclines the researcher
to take the possibility of I(2) behaviour into account. In that case the posterior
probability of models suggested by economic theory i.e. models with two or more
cointegrating relations will be lower than expected. The maximal modulus of
unrestricted eigenvalues of the companion matrix will be close to unity and it will
stay close to one even in the case of lowering the number of cointegrating vectors.
The set of compared models consists of 60 non-nested specifications. The VAR lag
length is assumed to be three. The models may differ in the type of a constant
(d ∈ {1, 2}, d = 1 denotes an unrestricted constant and d = 2 - a constant restricted
to the cointegration space), the number of cointegrating relations (r ∈ {1, 2, 3, 4}), the
type of additional restrictions imposed on the short-run model parameters (SF stands
for a strong form of an additional restriction, WF - for a weak one), the number of the
co-feature vectors (s ∈ {1, 2, 3, 4} in the VEC-WF case, s ∈ {1, . . . , 5−r} in the VEC-
SF model, and s = 0 in the VEC model). There are 8 VEC models without additional
restrictions, 20 VEC-SF models and 32 VEC-WF models in this set. The VEC-WF
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specifications will be analysed by the method similar to that proposed by Wróblewska
(2011), but to preserve the coherence of models, the identifying restrictions will be
imposed in the same way as proposed in this paper for VEC-SF models.
Equal prior probability of each specification is assumed, i.e. p(Mk,d,V EC−.F,s,r) =
= 1

60 ≈ 0.0167, so unequal prior probabilities of different types of co-movement are
assumed. The set of VEC-WF models is a priori the most probable, whereas the
group of pure VEC models is the least probable.
We specify the following priors of the model parameters (the joint priors are truncated
by the stability condition):

VEC-SF’s specific parameters:

[-] β|r, d ∼MACG(Im)|Ṽr,m , m = n in models with d = 1 and m = n+1
for d = 2,
[-] G∗|q ∼ mN(0, 1

nIq, In), which leads to γ∗|q ∼MACG(In); we truncate
this prior to Ṽq,n,
[-] D∗|ν, q ∼ mN(0, Iq, νIn(k−1)+r),

VEC’s specific parameters:
Following Koop, León-González and Strachan (2010), two equivalent
specifications will be considered: αβ′ = AB′, (A ∈ Rnr, B ∈ Rmr, β′β = Ir).
Additionally, we assume that β has positive elements in the first row.

[-] B|r, d ∼ mN(0, 1
mIr, Im), which leads to β|r, d ∼MACG(Im),

where β = B(B′B); we truncate this prior to Ṽr,m,
[-] A|r, νA,∼ mN(0, νAIr, In), α = A(B′B) 1

2 ,
[-] Γ|k, ν ∼ mN(0, νIn(k−1), In),
[-] νA ∼ iG(2, 3), E(νA) = 1, V ar(νA) = 1,

VEC-WF’s specific parameters:

∆xt = αβ′xt−1 +
k−1∑
i=1

γδ′i∆xt−i + ΦDt + εt = αβ′xt−1 + γδ′z2t + ΦDt + εt,

where z2t =
(

∆x′t−1, ∆x′t−2, . . . , ∆x′t−k+1
)′

and δ′ =
(
δ′1, δ′2, . . . , δ′k−1

)
,

[-] B|r, d ∼ mN(0, 1
mIr, Im), which leads to β|r, d ∼MACG(Im),

where β = B(B′B)− 1
2 ; we truncate this prior to Ṽr,m,

[-] A|r, νA,∼ mN(0, νAIr, In), α = A(B′B) 1
2 ,

[-] G|q ∼ mN(0, 1
nIq, In), which leads to γ|q ∼MACG(In),

where γ = G(G′G)− 1
2 ; we truncate this prior to Ṽq,n,
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[-] D|q, k, ν ∼ mN(0, In, νIn(k−1)), δ = D(G′G) 1
2 ,

[-] νA ∼ iG(2, 3), E(νA) = 1, V ar(νA) = 1,

Common parameters:

[-] Σ ∼ iW (In, 1 + n+ 1),
[-] Γs|h,Σ ∼ mN(0,Σ, hIls),
[-] h ∼ iG(2, 3), E(h) = 1, V ar(h) = 1,
[-] ν ∼ iG(2, 3), E(ν) = 1, V ar(ν) = 1.

To compare the above-listed models the Savage-Dickey density ratio (SDDR) will be
used (see e.g. Verdinelli and Wasserman 1995). As the model:

Z0 = E, E ∼ mN(0,Σ) (5)

is nested within each considered specification, the Bayes factors for contrasting it with
other models will be calculated.
Firstly, we have to point the model parameters, whose values restricting to zero leads
to specification (5).
As already mentioned, the entire set of models can be divided into three subsets:
VEC-SF, VEC-WF and VEC.
In the VEC-SF group we will test the hypothesis δ∗ = 0 and Γs = 0 versus δ∗ 6= 0 or
Γs 6= 0; in the VEC-WF group: α = 0 and δ = 0 and Γs = 0 versus α 6= 0 or δ 6= 0
or Γs 6= 0; in the case of VEC models, α = 0 and Γ = 0 and Γs = 0 versus α 6= 0 or
Γ 6= 0 or Γs 6= 0. Note that we cannot test whether β or γ∗ or γ are zero because we
have assumed that their columns are orthonormal.
In each case we need to compute the ratio:

p(ω0|X)
p(ω0) ,

where p(ω0|X) denotes the value of the posterior density of ω evaluated at ω0 and
p(ω0) is the value of its prior density at the same point, ω states for the tested
parameter and ω0 is the specified value. In the present work, ω0 equals 0.
Testing whether α, δ∗ or δ are zero matrices is equivalent to checking whether,
respectively, A, D∗ or D are null matrices, as we have assumed that β, γ∗ and γ
have orthonormal columns and

α = A(B′B) 1
2withdet(B′B) 6= 0

δ∗ = D∗(G∗
′
G∗) 1

2withdet(G∗
′
G∗) 6= 0

and
δ = D(G′G) 1

2withdet(G′G) 6= 0
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This correspondence will be used in the ongoing research. We know the full conditional
posterior densities of the tested models parameters. They can be numerically
marginalised, i.e. we will estimate p(ω0|X) by p̂(ω0|X) = 1

N

∑N
i=1 p(ω0|X,ψi), where

{ψi}Ni=1 denotes the non-tested parameters sample from the posterior distribution
(Verdinelli and Wasserman 1995). If needed, the value p(ω0) can be estimated in the
same way with the use of a sample from the prior distribution.
Table 1 lists the most probable models in each considered group.

Table 1: The most probable models in each analysed group

rank k d type s = n− q r p
(

M(k,d,type,s,r)|X
)

1 3 4 WF 4 1 0.452
2 3 4 WF 3 1 0.435
3 3 4 WF 1 1 0.051
4 3 4 WF 2 1 0.038
5 3 4 WF 2 2 0.023
6 3 4 WF 1 2 7.9 10−6

7 3 4 VEC 0 1 6.6 10−6

...
...

...
...

...
...

23 3 4 SF 1 1 2.7 10−10

Almost all posterior probability mass is gained by the models with the weak form
of common cyclical features. This group strongly dominates the others. VEC-SF
models turned out to be the worst. It is worth noting that, as expected, in each
group, contrary to economic theory, models with only one cointegrating relation
match the data best. Additionally, the absolute value of the maximum free eigenvalue
of the companion matrix is close to one, so as previously mentioned, it might be a
symptom of I(2) behaviour (see e.g. Juselius (2007), pp. 297-302, for a more detailed
discussion), but this is only one possible explanation of these alarming results and
it should be formally tested (e.g. through the Bayesian model comparison in the
enlarged model group). Without additional tests one could only note that each of the
considered models probably lacks describing some important features of the analysed
data.
As the main aim of this section was to examine how many common cyclical features
drive the modelled data, we sum up the obtained results in table (2). One can easily
notice that, in the case of additional reduced rank restrictions, models with three
or four common cycles gathered almost all the posterior probability mass while in
the strong form group models with one co-feature beat the others. As shown by
Hecq, Palm and Urbain (2006), the existence of s weak form common feature vectors
with s greater than the number of cointegrating vectors (r), implies the existence of
s − r strong form common features (see Lemma 2 in Hecq, Palm and Urbain 2006,
p. 122). In our case the best model is the one with four weak form co-features and
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Table 2: Posterior probabilities of the number of co-feature vectors (marginal and in
the SF, WF groups)

s = n− q
type

p(s|X)SF WF
4 1.8 10−11 0.452 0.452
3 3.3 10−12 0.435 0.435
2 1.0 10−11 0.061 0.061
1 2.7 10−10 0.051 0.051

p(type|X) 3.038 10−10 ≈ 1 ≈ 1

one cointegrating relation, so it suggests the presence of three strong form common
feature vectors, more than is implied by the most probable VEC-SF model, so it may
be worth expanding the compared group of models with mixed form common features.
As it goes beyond the main aim of this paper, it is left for future research.

5 Concluding remarks
Based on the idea of common serial correlation feature introduced by Engle nad
Kozicki (1993) and combined with the notion of cointegration by Vahid and Engle
(1993) (see also Hecq, Palm and Urbain 2006), this paper proposed a Bayesian
counterpart for the analysis of this concept. It should be emphasised that owing
to the idea of Bayesian model comparison one is free of deciding whether one should
at first test the number of cointegrating relations or one should start with the tests
for the number and type of short-run restrictions (see the discussions in Hecq, Palm
and Urbain 2006, and Athanasopoulos, Guillén de Carvalho, Issler and Vahid 2011
among others).
The proposed methods were illustrated by the analysis of the price-wage nexus in the
Polish economy based on the quarterly data spanning the period 1995-2012. The data
supported co-feature restrictions, but of the weak rather than the strong form.
Finally, it is worth noting that imposing additional lower rank restrictions could
affect further results which could be obtained in the framework of the VEC model,
such as forecasting (see e.g. Vahid and Issler 2002, and Athanasopoulos, Guillén de
Carvalho, Issler and Vahid 2011), impulse response analysis, permanent-transitory
decomposition. In our example the posterior probability of the VEC-SF model was
negligible so we decided to postpone such an analysis for other researches.

6 Acknowledgements
I would like to thank the anonymous Referee for careful assessment of my work,
valuable comments and suggestions which helped to correct some significant errors

105 J. Wróblewska
CEJEME 7: 91-110 (2015)



Justyna Wróblewska

that appeared in preliminary versions of this paper.
I am also thankful to Jacek Osiewalski and Łukasz Kwiatkowski for the time devoted
to me, invaluable discussions and comments.
All errors and omissions are mine.
Publication was financed from the funds granted to the Faculty of Management
(Department of Econometrics and Operational Research) at Cracow University of
Economics, within the framework of the subsidy for the maintenance of research
potential.

References
[1] Abbas A.E., Bakir N.O., Klutke G-A., Sun Z. (2013), Effects of risk aversion

on the value of information in two-action decision problems, Decision Analysis
10(3), 257–275.

[2] Athanasopoulos G., Guillén O.T. de Carvalho, Issler J.V., Vahid F. (2011), Model
selection, estimation and forecasting in VAR models with short-run and long-run
restrictions, Journal of Econometrics 164, 116–129.

[3] Byrne S. Girolami M. (2013), Geodesic Monte Carlo on embedded manifolds,
Scandinavian Journal of Statistics 40, 825–845.

[4] Chikuse Y. (2002), Statistics on special manifolds, Lecture Notes in Statistics,
vol. 174, Springer-Verlag, New York.

[5] De Wall D.J. (1979), On the normalizing constant for the Bingham-von Mises-
Fisher matrix distribution, South African Statistical Journal 13, 103–112.

[6] Engle R.F., Kozicki S. (1993), Testing for common features, Journal of Business
and Economic Statistics 11, 369–380.

[7] Ericsson N.R. (1993), Comment (to the paper Testing for common features by
Engle and Kozicki), Journal of Business and Economic Statistics 11, 380–383.

[8] Hecq A., Palm F.C., Urbain J.P. (2006), Common cyclical features analysis in
VAR models with cointegration, Journal of Econometrics 132, 117–141.

[9] Hoff P.D. (2009), Simulation of the Matrix Bingham-von Mises-Fisher
Distribution, with applications to multivariate and relation data, Journal of
Computational and Graphical Statistics 18, 438–456.

[10] James (1954), Normal multivariate analysis and the orthogonal group, Annals of
Mathematical Statistics 25, 40–75.

[11] Juselius K. (2007), The Cointegrated VAR Model. Methodology and Applications,
Oxford University Press, second edition

J. Wróblewska
CEJEME 7: 91-110 (2015)

106



Common Trends and Common Cycles – Bayesian Approach

[12] Khatri C.G., Mardia K.V. (1977), The von Mises-Fisher matrix distribution in
orientation statistics, Journal of the Royal Statistical Society, Series B, 39, 95–
106.

[13] Koop G., León-González R., Strachan R. (2010), Efficient posterior simulation for
cointegrated models with priors on the cointegration space, Econometric Reviews
29, 224–242.

[14] Strachan R., Inder (2004), Bayesian analysis of the error correction model,
Journal of Econometrics 123, 307-0325.

[15] Villani M. (2005), Bayesian reference analysis of cointegration, Econometric
Theory 21, 326–357.

[16] Vahid F., Engle R.F. (1993), Common trends and common cycles, Journal of
Applied Econometrics 8, 341–360.

[17] Vahid F., Issler J.V. (2002), The importance of common cyclical features in VAR
analysis: a Monte-Carlo study, Journal of Econometrics 109, 341–363.

[18] Verdinell I., Wasserman L. (1995), Computing Bayes factors using a
generalization of the Savage-Dickey Density Ratio, Journal of the American
Statistical Association 90, 614–618.

[19] Wróblewska J. (2011), Bayesian analysis of weak form reduced rank structure
in VEC models, Central European Journal of Economic Modelling and
Econometrics 3, 169–186.

[20] Wróblewska J. (2012), Bayesian analysis of weak form polynomial reduced rank
structures in VEC models, Central European Journal of Economic Modelling and
Econometrics 4, 253–267.

[21] Zellner A. (1971), An introduction to Bayesian inference in econometrics, J.
Wiley, New York.

107 J. Wróblewska
CEJEME 7: 91-110 (2015)



Justyna Wróblewska

Appendix A – The full conditional posteriors of
model parameters
The full conditional posteriors are proportional to the joint posterior density function,
which is obtained as a product of the joint prior and the likelihood function. It has
the following kernel:

p(Σ,Γs, G∗, D∗, β, ν, h, τ, τ∗|X) ∝

Σ|− 1
2 (qΣ+ls+T+n+1)|Pτ |−

r
2 |β′P−1

τ β|−m2 |Pτ∗ |−
q
2×

×h−
nls
2 −nh−1ν−

[n(k−1)+r]q
2 −nν−1 exp

(
−sh
h

)
exp

(
−sν
ν

)
×

× exp
{
−1

2 tr
[
Σ−1

(
S + 1

h

(
Γs − µs

)′ (
Γs − µs

)
E′E

)]}
×

× exp
{
−1

2 tr
(
nG∗

′
P−1
τ∗ G

∗
)}

exp
{
−1

2 tr
[

1
ν

Ω−1
D∗

(
D∗ − µ

D∗

)′ (
D∗ − µ

D∗

)]}
×

×τ∗−nτ∗−1exp
(
− sτ∗τ∗

)
1[0,1](τ∗)τ−nτ−1exp

(
− sττ

)
1[0,1](τ),

where E = Z0− (Z1β, Z2) D∗G∗
′ −Z3Γs, 1[0,1](a) denotes a function which takes

1 for a in [0, 1] and 0 elsewhere, ls stands for the column dimension of Γs and [dβ]
denotes the normalised invariant measure on the Stiefel manifold (see e.g. James
1954).
It is straightforward to see that the full conditional posterior of Σ is the inverted
Wishart distribution, i.e.

p(Σ|., X) = fiW

(
S + 1

h

(
Γs − µs

)′ (
Γs − µs

)
+ E′E, qΣ + ls + T

)
.

It is also obvious that the full conditional posteriors of ν and h are inverted Gamma
distributions:

p(ν|., X) = fiG

(
sν + 1

2 tr
[
Ω−1
D∗

(
D∗ − µ

D∗

)′ (
D∗ − µ

D∗

)]
, nν + [n(k − 1) + r]q

2 )
)

and
p(h|., X) = fiG

(
sh + 1

2 tr
[
Σ−1

(
Γs − µs

)′ (
Γs − µs

)]
, nh + nls

2

)
The full conditional distribution of τ is proportional to

|Pτ |−
r
2 |β′P 1

τ
β|−m2 exp

(
−sτ
τ

)
τ−nτ−11[0,1](τ).

J. Wróblewska
CEJEME 7: 91-110 (2015)

108



Common Trends and Common Cycles – Bayesian Approach

Let us recall that Pτ = HBH
′
B + τHB⊥H

′
B⊥ with H ′BHB = Ir, H ′B⊥HB⊥ = Im−r

and H ′BHB⊥ = 0, so HBH
′
B is a projection matrix on the space spanned by HB

(sp(HB)) and HB⊥HB ⊥′ is a projection matrix on the orthogonal complement of
sp(HB), then HB⊥H

′
B⊥ = Im −HBH

′
B . Using the last relation we get

|Pτ | = |HBH
′
B + τ(Im −HBH

′
B)| = |HBH

′
B + τIm − τHBH

′
B |

= |(1− τ)HBH
′
B + τIm| = τm|1− τ

τ
HBH

′
B + Im|

= τm|1− τ
τ

H ′BHB + Ir| = τm|1− τ
τ

Ir + Ir| = τm|1
τ
Ir|

= τm−r.

Finally, the full conditional posterior of τ is proportional to

|β′P 1
τ
β|−m2 exp

(
−sτ
τ

)
τ−nτ−

1
2 r(m−r)−11[0,1](τ),

which is non-standard.
Using the very same calculations for |Pτ∗ | as for |Pτ |, we obtain the full conditional
posterior distribution of τ∗:

p(τ∗|., X) = iG[0,1]

(
sτ∗ + 1

2 tr
(
D∗
′
HD∗⊥H

′
D∗⊥D

∗
)
, nτ∗ + 1

2q[n(k − 1) + r − q]
)
.

Adopting the commonly known calculations for multivariate regressions (see e.g.
Zellner 1971, pp. 224-227), we get the full conditional posterior of Γs as

mN

(
µs,Σ, (

1
h
Ils + Z ′3Z3)−1

)
,

where

µs =
(

1
h
Ils + Z ′3Z3

)−1 [ 1
h
µ
s

+ Z ′3

(
Z0 − (Z1β, Z2) D∗G∗

′
)]
.

The full conditional posteriors of D∗ (δ∗) and G∗ (γ∗) could be obtained with the
methods presented and discussed in Koop, León-González and Strachan (2010) in the
context of the VEC model.
To get the full conditional posterior of β let us denote the last n(k − 1) rows
of the matrix D∗G∗

′ by D∗G∗′ and the first r rows of D∗G∗′ by Γ̃. Rewrite
exp{− 1

2 tr[Σ
−1E′E]} as exp{− 1

2 tr[Σ
−1(Z̃ − Z1βΓ̃)′(Z̃ − Z1βΓ̃)]}, where

Z̃ = Z0 − Z2D∗G∗
′ − Z3Γs
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The last expression is proportional to

exp
{
−1

2 tr
(
−2Σ−1Z̃ ′Z1βΓ̃ + Σ−1Γ̃′β′Z ′1Z1βΓ̃

)}
=

= exp
{
tr

(
Γ̃Σ−1Z̃ ′Z1β −

1
2Γ̃Σ−1Γ̃′β′Z ′1Z1β

)}
.

Finally,
p (β|Σ, G∗, D∗Γs, q, h, ν) ∝ exp

{
tr
(
F ′β + B̃β′Ãβ

)}
[dβ],

where F = Z ′1Z̃Σ−1Γ̃′, Ã = Z ′1Z1, B̃ = − 1
2 Γ̃Σ−1Γ̃′. The obtained function is the

kernel of the Bingham-von Mises-Fisher distribution.
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