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USING SEMI-ANALITYCAL SOLUTION OF 1D HEAT

DIFFUSION EQUATION

Tomasz Wacławczyk∗,1, Michael Schäfer

Institute of Numerical Methods in Mechanical Engineering, Technische Universität Darmstadt,
Dolivostr. 15, Germany
1 Present address: Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology,
Warszawa, ul. Nowowiejska 24, Poland

The aim of the present work is to verify a numerical implementation of a binary fluid, heat conduction
dominated solidification model with a novel semi-analytical solution to the heat diffusion equation.
The semi-analytical solution put forward by Chakaraborty and Dutta (2002) is extended by taking into
account variable in the mushy region solid/liquid mixture heat conduction coefficient. Subsequently,
the range in which the extended semi-analytical solution can be used to verify numerical solutions is
investigated and determined. It has been found that linearization introduced to analytically integrate
the heat diffusion equation impairs its ability to predict solidus and liquidus line positions whenever
the magnitude of latent heat of fusion exceeds a certain value.
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1. INTRODUCTION

The main difficulty in numerical simulations of casting of metal alloys (e.g. Al-4.1%Cu, Sn-10%Pb) is
the broad range of length and time scales that must be reconstructed. In order to avoid direct simulation
of crystal growth, in engineering applications, problems in the modeling of the smallest length scales are
resolved by the introduction of a volume averaging or mixture assumption. The volume averaging of flow
and heat transfer governing equations give rise to the Darcy–Brinkman model for interstitial fluids (Bars
and Worster, 2006), whereas the mixture theory allows equations for solid-liquid systems to be derived
(Bennon and Incropera, 1987; Kurz and Fischer, 1980; Worster, 1986). In both approaches, the phase
change diagram and the macrosegregation model supply the physics of the phase transition and growth of
the mushy zone at the microstructure level, where the smallest length scale is determined by details of the
dendrite geometry.

After the volume averaging is performed, the smallest time scales which have to be resolved in numeri-
cal simulations are related to the flow phenomena in bulk fluid and porous (mushy zone) regions. Their
accurate reconstruction is crucial for the prediction of a macrosegregation pattern, i.e. nonuniform con-
centration of a solute. Since macrosegregation can lead to a variety of casting defects impairing the final
quality of the product, its determination, monitoring and minimization is of primary interest to casting
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engineers. At the other end, the largest time scales of the solidification process are in the order of hours
or days. They are inherited from a need to model heat conduction during cooling of cast parts, e.g. a ship
engine block. Because alloys have low thermal diffusivity and because macrosegregation needs to be pre-
dicted simultaneously, simulations of the casting and solidification processes in industrial configurations
are computationally demanding and time-consuming.

A multiscale approach, introduced by averaging of the governing equations and by modeling the sub-grid
processes, allows for a reliable approximation of the exact solidification model. However, a solution of
averaged equations requires monitoring of the numerical procedure. This involves making certain the mesh
resolution and grid node distribution are appropriate, as well as a properly selecting the solver parameters,
in particular, ensuring an accurate solution of the energy conservation equation directly coupled with a
solidification model.

To verify the numerical solutions of these averaged equations their semi-analytical solutions, derived with
additional physical constraints, are often used. The semi-analytical solutions to the problem of unidi-
rectional solidification of binary fluids were investigated by Braga and Viscanta (1990), Chakaraborty
and Dutta (2002) and Voller (1997). In this latter work a comprehensive overview of the semi-analytical
solutions for the unidirectional solidification of binary fluids can be found. In spite of their inherent
drawbacks, Voller (1997) concludes the semi-analytical solutions can be considered as a useful tool
for verification of numerical codes. The common feature of aforementioned semi-analytical solutions
is the transformation of the partial differential energy conservation equation into a set of ordinary dif-
ferential equations using the similarity variable η = xg(t), where g(t) = 1/(2

√
αst). Since the result-

ing differential equations in the solid and liquid phase are linear, they are solved analytically therein.
Obtained temperature profiles are used to specify heat fluxes at the solid and liquid sides of both so-
lidification fronts, respectively; these fluxes are dependent on the non-dimensional positions of solidus
ηS and liquidus fronts ηL. The main difference between aforementioned works, lies in the approach to
the solution of the heat diffusion equation in the mushy zone. For example, Braga and Viscanta (1990)
search only for the position of ηL. In their work, data from the experiment are used to set the boundary
conditions for temperature at the cold wall kept above eutectic temperature. Having found the analyt-
ical solution of the heat diffusion equation in the liquid, the heat flux from the liquid side is used in
the convergence criterion, i.e., the boundary condition for heat flux at liquidus line. The ηL is obtained
through corrections in the iterative procedure, once the equality between fluxes on both sides of the liq-
uidus front is achieved, ηL is determined. We note, in the work of Braga and Viscanta (1990) both cM

and kM are variable inside the mushy zone giving rise to the new non-linear terms in the heat diffusion
equation.

Voller (1997) uses another approach, in this work it was assumed that cM = cS = cL and kM = kS = kL

are constant in the whole domain including the mushy zone. However, ρS ̸= ρL which results in a model
allowing to take into account the velocity field generated by the shrinkage and thus predict macroseg-
regation due to different volumes of solidified species of binary mixture. Similar to Braga and Viscanta
(1990), Voller (1997) also solves the heat diffusion equation numerically, avoiding linearization required
to obtain ηS, ηL.

In the present work, we extend the semi-analytical solution to the binary fluid solidification problem put
forward by Chakaraborty and Dutta (2002). Instead of the complex numerical procedure, linearization
to the heat diffusion equation in the mushy zone is introduced such that an analytical solution to the
heat diffusion equation is possible. Subsequently, the derived semi-analytical solution is used to verify
a numerical implementation of the binary fluid solidification model, where the phase-change process is
driven by heat diffusion.
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2. PHYSICAL AND MATHEMATICAL MODELS

The binary fluid solidification model is based on the experimentally determined phase change diagram
shown in Fig. 1. It describes the coexistence of a liquid, a solid and a mushy zone developed as a result of
a flat solidification front instability caused by constitutional supercooling (Worster, 1986). In the mushy
zone, a species B with larger concentration solidifies, whereas the solute species C is rejected to the liquid
solution. The solute C rejection increases its local concentration in the binary liquid and decreases the local
solidification temperature (see the shaded region depicted in Fig. 1). Such local variations in solidification
temperature lead to a solidification front instability and growth of dendrite forest, i.e. the mushy zone.

Fig. 1. A binary fluid phase change diagram, shaded region tags conditions
(temperature and solute species C concentration) for the mushy zone creation.
The dashed, vertical line depicts schematically the default solidification model

in the Star-CD flow solver C = const

The borders of phase change regions are defined in terms of the solidus and liquidus lines given by Tsol =

max(TF +mLCM/kP, TE) and Tliq = TF +mLCM as functions of the mixture solute concentration CM =

CL fL+CS fS and thus the local temperature T . The solid mass fraction fS = 1− fL can be determined from
the lever rule

fS =
CM −CL

CS −CL
=

1
1− kP

T −Tliq

T −TF
(1)

or from the Scheil model

fS =

(
CM

CL

) 1
1−kP

= 1−
[

kP
Tsol −TF

TF −T

] 1
1−kP

(2)

where it was assumed that CS = kPCL (Bennon and Incropera, 1987; Kurz and Fischer, 1980; Worster,
1986). For brevity, in the present paper we use the lever rule given by Eq. (1). However, all derivations
and results presented here can be also obtained for the Scheil model. The coupling of the thermodynamic
relations with a flow field is carried out using the mixture model introduced by Bennon and Incropera
(1987) and Wang and Beckermann (1993). The mixture model assumes that the solid and liquid phases are
uniformly distributed inside the representative control volume with the size large enough to set properties
of the medium inside effectively constant. The latter constraint or direct volume averaging of the phases
allows to define the mass fk = mk/m and the volume gk = Vk/V fractions, where k = L, S; in the present
work, we set ρS = ρL and thus gk = fk. Hence, the thermophysical properties of the solid/liquid mixture
are approximated with the arithmetic mean φ = φSgS + φLgL, where φ represents any of the mixture
material properties (density, specific heat, etc.) or mixture independent variables (velocity, enthalpy) in the
conservation equations. The dynamic viscosity µL of the interstitial fluid in the mushy zone and the liquid
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alloy is assumed to be constant. Furthermore, the velocity of the solid ui,s = 0 and therefore interaction
between solid and interstitial fluid is restricted to the mushy zone. Here, Darcy’s law with the Karman–
Kozeny equation is used for modeling the pressure drop in the porous mushy region, see the last term on
the right hand side of Eq. (4). When taking into account the aforementioned simplifications, the continuity
and the momentum equations become

∂ui

∂xi
= 0 (3)

∂ρui

∂ t
+

∂ρuiu j

∂x j
=

∂
∂x j

[
µL

(
∂ui

∂x j
+

∂u j

∂xi

)]
− ∂ p

∂xi
− µL

K
ui −

∂
∂x j

[ρ(gLui,Lu j,L −uiu j)]+

+ ρ [1−χ(T −TI)−ψ(CL −CI)]gi

(4)

where u j is the mixture velocity, χ and ψ are thermal and solutal expansion coefficients, and the per-
meability K is defined by the Karman-Kozeny equation K = K0g3

L/(1− gL)
2, where K0 = λ 2/180 is a

material constant determined by the secondary dendrite arm spacing λ .

The energy conservation equation governing heat transport during the solidification process can be written
in terms of the mixture enthalpy

∂ρh
∂ t

+
∂ρu jh

∂x j
=

∂
∂x j

(
k

∂T
∂x j

)
− ∂

∂x j
[ρu j(hL −h)] (5)

defined by the arithmetic mean of the solid hS and liquid hL enthalpies h = hLgL +hSgS where:

hS = cST and hL = cLT +Lht (6)

Finally, to reconstruct evolution of the solute concentration in the mixture velocity field ui its transport
equation is introduced. After neglecting molecular diffusion of species in the liquid and solid phases, i.e.,
setting DS = DL = 0, the solute transport equation reads

∂ρC
∂ t

+
∂ρu jC

∂x j
=− ∂

∂x j
[ρu j(CL −C)] (7)

A complete description and formal derivation of the binary fluid solidification model based on the mixture
theory can be found in the works of Bennon and Incropera (1987), Voller and Brent (1989), Wang and
Beckermann (1993), whereas comprehensive derivation of the Darcy-Brinkman model is presented by
Bars and Worster (2006). For further physical models and their numerical implementations taking into
account columnar dendrites and moving equiaxed grains refer for instance to Banaszek and Seredyński
(2013), Seredyński and Banaszek (2014).

The model described above was implemented in a finite volume flow solver Star-CD with the aid of
additional subroutines for extension of the standard user interface supplied by the code developer. Since
in Star-CD both the mixture enthalpy h and the temperature T are used in the energy Eq. (5) a procedure
allowing recalculation of the local temperature T from the given enthalpy hg (which is the solution of
Eq. (5) at the current time step and outer iteration) is required and is essential for the simulation process.
Authors of the present paper implemented a technique using a bi-section method to solve the non-linear
equation h(T , gs(T )) = hg in each control volume to determine the local temperature T required in Eqs. (1)
or (2). The second contribution, was a proper solution of the solute transport equation (Eq. (7)) in the
framework of Star-CD (Jakumeit et al., 2012; Wacławczyk and Schäfer, 2016; Wacławczyk et al., 2011).
In the present work, only 1D numerical and semi-analytical solutions of the energy conservation equation
are studied, respectively, see Eq. (5) and Eq. (11). Therefore herein, we only address the issue of coupling
of the binary-fluid solidification model with the energy conservation equation.
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3. SEMI-ANALYTICAL SOLUTION IN A SEMI-INFINITE DOMAIN

To verify the energy equation solver coupled with the binary fluid solidification model, we consider a
semi-analytical solution of an one-dimensional heat diffusion dominated solidification in a semi-infinite
domain. In what follows, we revisit the semi-analytical solution introduced by Chakaraborty and Dutta
(2002), and next, its modification is introduced. The extended semi-analytical solution allows to take into
account a variation of the thermal conductivity kM ̸= kS ̸= kL coefficient in the mushy zone.

Let us consider 1D solidification in the semi infinite domain ⟨0,∞). We assume additionally ρ = const,
ui = 0, c = const, ∂k/∂x ̸= 0. As enthalpies in solid hS and liquid hL are defined by Eqs. (6), the mixture
enthalpy reads

h = cT +(1−gS)Lht (8)

Using the above assumptions and substituting Eq. (8) into Eq. (5) the energy equation in the form

ρc
∂T
∂ t

−ρLht
∂gS

∂ t
=

∂
∂x

(
k

∂T
∂x

)
(9)

is obtained. Next, it is rewritten using dependence of the solid fraction gS on temperature

∂gS

∂ t
=

dgS

dT
∂T
∂ t

(10)

Hence, the problem of heat diffusion during solidification of a binary fluid is described by the parabolic
partial differential equation (

1
αM

− ρLht

kM

dgS

dT

)
∂T
∂ t

=
∂ 2T
∂x2 +

1
kM

∂kM

∂x
∂T
∂x

(11)

where gS is calculated with Eq. (1). Additionally, it is assumed ρS = ρL and αM = kM/(ρcM) is thermal
diffusivity in the mushy zone. In the semi-infinite domain, the boundary conditions for temperature are
given in Tab. 1.

Table 1. TC is temperature of the cold wall, TI is initial temperature, xS is the position of the solidus line and xL is
the position of the liquidus line, Qliq = (Tliq −Tsol)/(TF −Tsol)

x [m] 0 xS xL ∞

T [K] TC Tsol Tliq TI

η [–] 0 ηS ηL ∞

θ [–] θS = 0 θS = 1, θM = 1 θM = θliq, θL = 1 θL = 0

The conditions for jumps of heat fluxes at solid/mushy (x = xS) and mushy/liquid (x = xL) interfaces read

at x = xS : kS
∂TS

∂x
− kM

∂TM

∂x
= (1−gS,sol)ρLht

dxS

dt
(12)

at x = xL : kM
∂TM

∂x
− kL

∂TL

∂x
= gS,liqρLht

dxL

dt
(13)

where gS,sol and gS,liq are solid fractions calculated for the temperatures Tsol and Tliq using Eq. (1). To
re-scale Eq. (11) non-dimensional temperatures 0 ≤ θk ≤ 1, where k = S, M, L are introduced, in a solid,
a mushy zone and a liquid

θS =
T −TC

Tsol −TC
, θM =

T −Tsol

TF −Tsol
, θL =

T −TI

Tliq −TI
(14)
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Next, the partial differential Eq. (11) is reduced to an ordinary differential equation, using the similarity
variable η = xg(t), g(t) = 1/(2

√
αst); the boundary conditions for non-dimensional temperatures Q are

given in Tab. 1. The variable transformation (see Appendix A) allows us to write Eq. (11) in the mushy
zone (ηS ≤ η ≤ ηL) as

2η
αS

α ′
S

dθM

dη
+

d2θM

dη2 +
1

kM

dkM

dη
dθM

dη
= 0 (15)

where

αS

α ′
S
=

cM −Lht
dgS

dT

cS
kM

kS

(16)

Since the volume fractions gS = 1 in the solid (0 ≤ η ≤ ηS) and gL = 1 in the liquid (ηL ≤ η ≤ ∞) are
constant, we have dgS/dT = 0 and αS/α ′

S = 1 in the solid phase and dgL/dT = 0 and αS/α ′
S = αS/αL in

the liquid phase. Therefore, the heat diffusion equations in the solid and liquid can be written as

2η
dθS

dη
+

d2θS

dη2 = 0 : 0 ≤ η ≤ ηS (17)

2η
αS

αL

dθL

dη
+

d2θL

dη2 = 0 : ηL ≤ η ≤ ∞ (18)

respectively. As Eqs. (17) and (18) are linear ODE’s their direct analytical solution is possible. Because
in the mushy zone dgS/dT , αM, kM are dependent on temperature, in order to obtain a linear form of
Eq. (15), the averaging of the solid fraction derivative dgS/dT in Eq. (16) is introduced

⟨
dgS

dT

⟩
=

1
∆T

Tliq∫
Tsol

dgS

dT
dT, ∆T = Tliq −Tsol (19)

Assuming that the averaged derivative of solid fraction (Eq. (19)) is equal to that resulting from the micro-
segregation model (Eq. (1) or Eq. (2)) for an equivalent temperature Teq (assumed to be constant over
the range ⟨Tsol , Tliq⟩) one obtains condition used for the calculation of equivalent temperature Teq in the
mushy zone ⟨

dgS

dT

⟩
=

dgS

dT
(20)

When the solid fraction gS is calculated from the lever rule, see Eq. (1), the equivalent temperature reads

Teq = TF −
√(

Tliq −TF
)
(Tsol −TF) (21)

if the Scheil model defined by Eq. (2) is used for gS calculation, one obtains

Teq = TF − [(1− kP)A]
− 1−kP

2−kP

A =
1

Tliq −Tsol

[
(TF −Tliq)

− 1
1−kP − (TF −Tsol)

− 1
1−kP

] (22)

Teq calculated with Eq. (21) or Eq. (22) is now used to determine the equivalent solid fraction gS,eq = const
and material properties kM,eq = const, cM,eq = const representative for the whole mushy zone. One notices
when the thermal conductivity kM = kM,eq is constant, the assumption dkM/dη = 0 used by Chakaraborty
and Dutta (2002) to derive Eq. (15) is justified. The averaging introduced in Eq. (19) and the employment
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of the boundary conditions allow for the analytical integration of Eqs. (15)–(18) with dkM/dη = 0 in the
mushy zone, in the solid and in the liquid separately. The result are temperature profiles given by

θS =
erf(η)

erf(ηS)
: 0 ≤ η ≤ ηS (23)

θM = θliq
erf(

√
aη)− erf(

√
aηS)

erf(
√

aηL)− erf(
√

aηS)
: ηS ≤ η ≤ ηL (24)

θL =
erfc

(√
bη

)
erfc

(√
bηL

) : ηL ≤ η ≤ ∞ (25)

where b = cSkL/cLkS and

a =
αS

α ′
S
=

cM,eq −Lht

⟨
dgS

dT

⟩
cS

kM,eq

kS

(26)

is the averaged coefficient, see Eqs. (15)–(16). Finally, the unknown positions of the solidus ηS and liq-
uidus ηL lines are determined from the solution of the equation system obtained after substitution of
Eqs. (23)–(25) into the boundary conditions for the jumps of heat fluxes obtained using Eqs. (12)–(14)

θE
dθS

dη
− rMS

dθM

dη
=

2ηS(1−gS,sol)

St
(27)

rMS
dθM

dη
−θIrLS

dθL

dη
=

2ηLgS,liq

St
(28)

where θE = (Tsol −TC)/(TF −Tsol), rMS = kM,eq/kS, θI = (Tliq−TI)/(TF −Tsol), rLS = kL/kS, St = cS(TF −
Tsol)/Lht are given constants. In Appendix B the derivation of jump conditions given by Eqs. (27)–(28)
can be found.

3.1. Modification of the semi-analytical solution

Since Eq. (5) is solved in the given flow solver, the influence of the term containing the gradient of kM on
the solidification process is always present. Therefore, a direct comparison between the semi-analytical
solution introduced by Chakaraborty and Dutta (2002) and the numerical solution to Eq. (5) is not possible
when kS ̸= kL.

To generalize the solution to Eq. (15), we introduce a number of intervals N > 1 in which T k
eq is deter-

mined, k = 1, . . . , N; the complete description of the solution procedure for N intervals can be found in
Appendix D. In the following, the case of two temperature intervals N = 2 is discussed as it is sufficient
to present the main assumptions and problems of the modified semi-analytical solution.

In the case of two intervals: ⟨Tsol,T1⟩, ⟨T1,Tliq⟩ the averaging introduced by Eq. (19) can be carried out in
each interval separately

⟨
dgS

dT

⟩∣∣∣∣
1
=

1
∆T 1

T1∫
Tsol

dgS

dT
dT , ∆T1 = T1 −Tsol (29)

⟨
dgS

dT

⟩∣∣∣∣
2
=

1
∆T 2

Tliq∫
T1

dgS

dT
dT , ∆T2 = Tliq −T1 (30)
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Fig. 2. A sketch of the modification to the semi-analytical
solution, in this figure kS > kL and N = 2

where T1 is the unknown temperature inside the mushy zone as shown in Fig. 2. Next Eq. (20) must be
solved in the two temperature intervals allowing the calculation of the equivalent temperatures

T 1
eq = TF −

√
(Tliq −TF)/A1 (31)

T 2
eq = TF −

√
(Tliq −TF)(T1 −TF) (32)

where

A1 =
1

Tliq −T1

[
T1 −Tliq

T1 −TF
−

Tsol −Tliq

Tsol −TF

]
(33)

for more details see Appendix C. Using the equivalent temperatures T 1
eq and T 2

eq constant in each inter-
val, we calculate the solid volume fractions g1

S,eq and g2
S,eq. and material properties for each temperature

interval inside the mushy zone, e.g. k1
M,eq, k2

M,eq as is shown in Fig. 2. Here we note that now the kk
M,eq

distribution inside the mushy zone is piecewise constant. Thus, the last term on the RHS of Eq. (15) can be
approximated by forward or backward differences (central differences are used when N > 3 as is shown
in Appendix D), so that

b1 =
1

k1
M,eq

dk1
M

dη

∣∣∣∣∣
1

≈ 1
k1

M,eq

k1
M,eq − k2

M,eq

η1
M −η2

M
=

kS − kL

k1
M,eq

g2
S,eq −g1

S,eq

η2
M −η1

M
(34)

b2 =
1

k2
M,eq

dk2
M

dη

∣∣∣∣∣
2

≈ 1
k2

M,eq

k2
M,eq − k1

M,eq

η2
M −η1

M
=

kS − kL

k2
M,eq

g2
S,eq −g1

S,eq

η2
M −η1

M
(35)

where η1
M = (ηS +η1)/2, η2

M = (η1 +ηL)/2. The above approximation corresponds to the assumption of
a constant thermal conductivity gradient dkM/dx = dkM/dη g(t) = const. Thus, a constant distribution of
kM,eq in each temperature interval allows the introduction of a piecewise linear variation of the thermal
conductivity coefficient kM in the mushy zone. Using the latter assumption, Eq. (15) can be rewritten as

(2ηa1 +b1)
dθ 1

M

dη
+

d2θ 1
M

dη2 = 0 : ηS ≤ η ≤ η1 (36)

(2ηa2 +b2)
dθ 2

M

dη
+

d2θ 2
M

dη2 = 0 : η1 ≤ η ≤ ηL (37)
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where ak, bk, k = 1, 2 are constants determined from Eq. (26) and Eqs. (34)–(35), respectively. Analytical
solutions to Eqs. (36)–(37) read

θ 1
M = θ 1

liq
erf [d1(η)]− erf [d1(ηS)]

erf [d1(η1)]− erf [d1(ηS)]
(38)

θ 2
M = θ 2

liq
erf [d2(η)]− erf [d2(η1)]

erf [d2(ηL)]− erf [d2(η1)]
(39)

where

dk(η) =
√

ak η +
bk

2
√

ak
, k = 1,2 (40)

and θ 1
M = (T − Tsol)/(TF − Tsol), θ 1

liq = (T1 − Tsol)/(TF − Tsol), θ 2
M = (T − T1)/(TF − T1),

θ 2
liq = (Tliq −T1)/(TF −T1). We note, the second term in Eq. (40) is inherited from the finite difference

approximation of the thermal conductivity gradient.

The remaining problem is how to determine the four unknowns depicted in Fig. 2: ηS, ηL, η1 and temper-
ature in the mushy zone T1. An equation required to determine T1 is obtained from the condition of energy
flux continuity inside the mushy zone (see Eq. (B5) in Appendix B). Hence, the boundary conditions for
the heat fluxes at ηS, η1 and ηL become

θE
dθS

dη
− r1

MS
dθ 1

M

dη
=

2ηS(1−gS,sol)

St0
(41)

θ 1
sol

dθ 1
M

dη
− dθ 2

M

dη
= 0 (42)

r2
MS

dθ 2
M

dη
−θIrLS

dθL

dη
=

2ηLgS,liq

St1
(43)

where r1
MS = k1

M,eq/kS, r2
MS = k2

M,eq/kS, θ 1
sol = (TF − Tsol/(TF − T1), St0 = cS(TF − Tsol)/Lht and

St1 = cS(TF − T1)/Lht ; the derivation of Eqs. (41)–(43) is given in Appendix B. Additionally, we note
since the set of Eqs. (41)–(43) is non-linear, η1 may be replaced by a linear combination of ηS and ηL.
Hence, for the two temperature intervals η1 = (ηS +ηL)/2 and thus all four unknowns can be determined.

As in the original solution, the analytically obtained temperature profiles given by Eqs. (23), (25), (38),
(39) are used to build a non-linear set of equations after substitution into the boundary conditions given
by Eqs. (41)–(43) as is shown in Appendix D. The obtained set of equations is solved using the Matlab
fsolve non-linear equation solver, which uses either the Trust-Region Dogleg or Newton-Rhapson method.
We found that the results, i.e. values of ηS, T1 and ηL do not depend on the solver used to obtain the
solution. When N = 2, the initial value of the temperature inside the mushy zone T I

1 is set to T I
1 = (Tliq +

Tsol)/2. When N ≥ 3 the initial values of the temperatures in the mushy zone sub-division points T I
l

where l = 2, . . . , N−1 are determined from the temperature profiles obtained in the previous iteration.
The determination of subsequent T I

l values is crucial for the convergence of the solution procedure with
an increasing number of intervals.

The above semi-analytical solution is generalized with respect to the number of sub-domains N ≤ 8 and its
convergence is investigated. In Fig. 3a, the decreasing distances between the positions of the solidus ηS and
liquidus lines ηL obtained with successively increasing numbers of temperature intervals N are depicted.
Using solutions of successively refined temperature intervals, we are able to determine an interval number
N independent solution with the aid of Richardson extrapolation (Schäfer, 2006). A comparison with a
numerical solution obtained using the Star-CD solver is shown in Fig. 3b.
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a) b)

Fig. 3. a) Temperature profiles obtained with different numbers of averaging intervals N = 1, 2, 4, 8. b) A compar-
ison of the semi-analytical solution with N = 1 (ref.), modified and interval number N independent semi-analytical

solution (ext.) and numerical solution from the Star-CD code (n.s.)

3.2. Verification of the numerical model with the semi-analytical solution

The solidification algorithm was initially verified using material parameters from Voller and Brent (1989)
for an aqueous solution of ammonium chloride NH4 70% H2O (see Tab. 2) and boundary conditions for
temperature at η = 0, TC = 220 K and η → ∞, TC = 310 K as in work of Chakaraborty and Dutta (2002).
The similarity solutions presented in Figs 3, 4 are determined at time t = 5000 s.

Table 2. The material properties of an aqueous solution of ammonium chloride NH4 70% H2O

c ρ kS kL Lht TF Tsol Tliq

[J/(kgK)] [kg/m3] [W/(mK)] [W/(mK)] [J/kg] [K] [K] [K]

3000 1078 0.4 0.1 3.18×105 633.59 257.95 305.95

Because of the disagreement between semi-analytical and numerical solutions obtained for this set of
thermophysical parameters, we studied the influence of Lht magnitude on the positions of the solidus and
liquidus lines, emphasizing that Lht is a continuous parameter in Eq. (26). This study allows us to find a
range of Stefan numbers St = cs(TF −Tsol)/Lht , where the original semi-analytical solution (kS = kL = kM)

and its extension (kS ̸= kL ̸= kM) can be used in the verification procedure. The range of the applicabil-
ity of the semi-analytical solution was not discussed by Chakaraborty and Dutta (2002). In Fig. 3b we
observe that when Lht ≤ 1.12× 104 J/kg, which corresponds to a Stefan number St ≥ 100, the agree-
ment between the interval number independent, semi-analytical solution and the numerical solution is
satisfactory. Moreover, the difference between ηS, ηL positions predicted by the flow solver and the mod-
ified semi-analytical solution is smaller than the difference between the original solution and the present
numerical results. This confirms the need to take into account the variation of the thermal conductivity
coefficient kM in the semi-analytical solution of Eq. (11).

When larger values of Lht ≥ 1.12× 104 J/kg are used, resulting in St ≤ 100, the positions of the solidus
line ηS predicted by the original or modified semi-analytical solutions and the numerical simulation dis-
agree. The coincident shift of the solidus and liquidus lines towards the cold wall can be explained by the
retardation of the solidification process caused by the rejection of a larger amount of the latent heat, see
Fig. 3b. However, in the case of semi-analytical solutions, e.g. for Lht ≤ 3.18×105 J/kg corresponding to
St ≈ 3.5, the change of the solidus line position is too rapid. In the forthcoming section we will show how
the removal of the non-linearity from Eq. (12) affects the ηS, ηL positions.
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3.3. Influence of non-linearity in the heat diffusion equation on mushy zone thickness

To assess the influence of the nonlinear term αS/α ′
S in Eq. (15) on the shift of the solidus line for

Lht ≥ 1.12×104 J/kg, St ≤ 100, we rewrite Eq. (15) as a set of two ordinary differential equations that can
be solved as an initial value problem

dT
dη

= φ (44)

dφ
dη

=− 2ηαS

α ′
S(T )

φ (45)

where the coefficient αS/α ′
S is calculated directly with Eq. (16). The boundary conditions for the set of

Eqs. (44)–(45) are given by T = TC for η = 0 and T = TI for η → ∞. The latter boundary condition is
obtained iteratively, because for the solution of the initial value problem both the temperature and the
temperature gradient are required at η = 0. To remove effects associated with jumps of heat fluxes at the
solidus and liquidus fronts (i.e. possible discontinuity in a temperature gradient profile, see Eqs. (12)–(13))
and disregard the influence of the term ∂k/∂x in this test case, we set the thermal conductivity coefficient
to the constant value kM = kS = kL = 0.4 Wm−2K−1 in the whole domain 0 ≤ η ≤ 8.

The comparison of results obtained from the original semi-analytical solution N = 1, the numerical so-
lutions of the initial value problem in Matlab and the solution of the general energy conservation Eq. (5)
in Star-CD is depicted in Fig. 4. In Fig. 4a, where Lht = 3.18× 103 J/kg and St ≈ 309, we can observe
good agreement between both numerical solutions and the original semi-analytical solution. The main
observation in Figure 4b is the disagreement of the semi-analytical solution and both numerical solutions
when Lht = 3.18× 105 J/kg and St ≈ 3.5. This latter result coincides with results presented in Figure
3b. The second observation to be made from Fig. 4 is good agreement between both numerical solu-
tions independently on the Lht magnitude. These two observations confirm the influence of the lineariza-
tion introduced to the semi-analytical solution of Eq. (15) on the artificial shift of the solidus line ηS,
and thus explain the incorrect prediction of the mushy zone thickness and solidification fronts positions
when St ≤ 100.

a) b)

Fig. 4. Influence of the temperature averaging on the positions of solidus ηS and liquidus ηL lines. The semi-
analytical solution N = 1 (solid line, ref.) is compared with numerical solution Matlab (dashed line) and solution of
Eq. (5) from Star-CD (double-dotted line) obtained for Lht = 3.18×103 J/kg, St ≈ 309 (left), Lht = 3.18×105 J/kg,

St ≈ 3.5 (right)
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4. CONCLUSIONS

In this paper, a verification study of the binary-fluid solidification model coupled with the finite volume
flow solver Star-CD is presented. We extend the semi-analytical solution to the 1D heat diffusion equation
taking into account variable heat conduction coefficient inside the mushy zone. Afterwards, the range
of applicability of this semi-analytical solution is analyzed demonstrating it can be used for verification
of the numerical model of binary fluid solidification only when St > 100. For smaller Stefan numbers the
non-linear effects related to the latent heat rejection become dominant. Hence, the linearization introduced
to integrate the heat diffusion equation is not a sufficient approximation of the binary-fluid solidification
process for large latent heat magnitudes.

This work was funded by the German Research Foundation (DFG) in the framework of the project “Multi-
phase-based modeling, simulation and experimental validation of mold filling and solidification of metallic
melts in the light of foreign particles and porosity.” SCHA: 814/132, AOBJ: 577070. We are also grateful
to Prof. M. Peric and Dr. Huang Jianbo from CD-Adapco for discussions and technical support.

SYMBOLS

c specific heat, Jkg−1K−1

f mass fraction
g volume fraction
gi i-th gravitational acceleration component, ms−2

h mixture enthalpy, Jkg−1

k thermal conductivity, Wm−1K−1

kP partition coefficient
m total mass, kg
mL slope of liquidus line, K%−1

p pressure, Nm−2

q heat flux, Wm−2

t time moment, s
ui i-th velocity component, ms−1

x spatial coordinate, m
xS position of the solidus line, m
xL position of the liquidus line, m
A auxiliary constant
B solvent concentration, m
C solute concentration, %
D diffusion coefficient, m2s−1

K permeability coefficient, m2

K0 relative permeability coefficient, m2

L horizontal dimension of the computational domain, m
Lht latent heat of fusion, Jkg−1

N number of temperature intervals
Nc number of CV’s
T temperature, K
V volume of representative control volume, m3

St Stefan number
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Greek symbols

α thermal diffusivity, m2s−1

η similarity variable
θ non-dimensional temperature
λ secondary dendrite arm spacing, m2

µL liquid alloy dynamic viscosity, kgm−1s−1

ρ mixture density, kgm−3

χ thermal expansion coefficient, K−1

ψ solutal expansion coefficient

Subscripts/Superscripts

C cold wall
E eutectic
F fusion
I initial
L liquid
M mixture
S solid
eq equivalent
liq liquidus
sol solidus

Abbreviations

ODE ordinary differential equation
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APPENDIX A

In this appendix, we describe the change of variables in Eq. (11) inside the mushy zone. The non-
dimensional temperature θ in the solid, the mushy zone and the liquid is given by Eqs. (14). After substi-
tution into Eq. (11) we obtain(

1
αM

− ρLht

kM

∂gS

∂T

)
∂θM

∂ t
=

∂ 2θM

∂x2 +
1

kM

∂kM

∂x
∂θM

∂x
(A1)

The similarity variable η = xg(t), g(t) = 1/(2
√

αst) is used to rewrite temporal and spatial derivatives in
Eq. (A1) in the non-dimensional form. The time derivative in Eq. (A1) becomes

∂θM

∂ t
=

dθM

dη
∂η
∂ t

=−2αSηg2 dθM

dη
(A2)

The first and second order spatial derivatives read

∂θM

∂x
=

dθM

dη
∂η
∂x

=
dθM

dη
g (A3)

∂
∂x

(
∂θM

∂x

)
=

d
dη

(
dθM

dη
∂η
∂x

)
∂η
∂x

=
d2θM

dη2 g2 (A4)

The second term on the RHS in Eq. (A1) can be written as

1
kM

∂kM

∂x
∂θM

∂x
=

1
kM

dkM

dη
dθM

dη
g2 (A5)

Using Eqs. (A1)–(A5) and notation introduced in Eq. (16) we obtain Eq. (15).
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APPENDIX B

Here, we derive the Stefan conditions at the solidus front x = xs, inside the mushy zone at x = xl , l = 1,
. . . , N−1 and at the liquidus front x = xl . Let us integrate Eq. (9) in the N+1 infinitesimal control volumes
δxk = x+k − x−k → 0 where k = S, l, L, respectively. Since the jumps of temperature [T ] = 0 at xS, xl , xL

and the jumps of the solid fraction [gs] = 0 at xl and [gs] ̸= 0 at xS, xL; integrated in N +1 control volumes
Eq. (9) reads

at x = xS : −ρLht
dxS

dt

x+S∫
x−S

∂gS

∂x
dx =

x+S∫
x−S

∂
∂x

(
k

∂T
∂x

)
dx (B1)

at x = xl :

x+l∫
x−l

∂
∂x

(
k

∂T
∂x

)
dx = 0 (B2)

at x = xL : −ρLht
dxL

dt

x+L∫
x−L

∂gS

∂x
dx =

x+L∫
x−L

∂
∂x

(
k

∂T
∂x

)
dx (B3)

where we make an assumption dxk/dt = const in δxk → 0 for k = S, L. After spatial integration, taking
into account the extraction of heat flux from the semi-infinite domain at x = 0 and orientation of normal
vectors at the faces of the 1D control volumes δxk, we obtain

at x = xS : ρLht
dxS

dt
(1−gS,sol) = kS

∂TS

∂x
− kl

M
∂T l

M
∂x

(B4)

at x = xl :
∂T l

M
∂x

− ∂T l+1
M

∂x
= 0 (B5)

at x = xL : ρLht
dxL

dt
gS,liq = kl+1

M
∂T l+1

M
∂x

− kL
∂TL

∂x
(B6)

where gS,sol = gS(Tsol), gS,liq = gS(Tliq) and l = 1, . . . , N−1. Next, we show how non-dimensional temper-
atures θ and similarity variable η are introduced into Eqs. (B4)–(B6). Let us first note that the velocities
of the solidification fronts may be rewritten as

at x = xS :
dxS

dt
=

1
g

∂ηS

∂ t
− ηS

g2
∂g
∂ t

= 2αSgηS (B7)

at x = xL :
dxL

dt
=

1
g

∂ηL

∂ t
− ηL

g2
∂g
∂ t

= 2αSgηL (B8)

since we are searching for a stationary solution to Eq. (11) at large times t. The non-dimensional temper-
atures in the solid, the mushy zone k-th interval and in the liquid read

θS =
T −TC

Tsol −TC
, θ k

M =
T −Tk−1

TF −Tk−1
, θL =

T −TI

Tliq −TI
(B9)

where k = 1, . . . , N and where for k = 1 : T0 = Tsol . Substitution of Eqs. (B7)–(B9) in Eqs. (B4)–(B6)
results in

θE
dθS

dη
− r1

MS
dθ 1

M

dη
=

2ηS(1−gS,sol)

St0
(B10)

θ l
sol

dθ l
M

dη
− dθ l+1

M
dη

= 0 (B11)

rN
MS

dθ N
M

dη
−θIrLS

dθL

dη
=

2ηLgS,liq

StN−1
(B12)

where l = 1, . . . , N−1, rl
MS = kl

M/kS, St0 = cS(TF − Tsol)/Lht , θ l
sol = (TF − Tl−1)/(TF − Tl) where for

l +1 = N : TN = Tliq, θI = (Tliq −TI)/(TF −TN−1), StN−1 = cS(TF −TN−1)/Lht .

http://journals.pan.pl/dlibra/journal/98834 99



T. Wacławczyk, M. Schäfer, Chem. Process Eng., 2018, 39 (1), 85–102

APPENDIX C

In this appendix, we show how to determine the equivalent temperatures T k
eq inside the k = 1, . . . , N

intervals introduced in the mushy zone for averaging. The temperature averaged solid fraction gradient is
calculated in the k-th temperature interval⟨

dgS

dT

⟩∣∣∣∣
k
=

1
∆Tk

Tk∫
Tk−1

dgS

dT
dT, ∆Tk = Tk −Tk−1 (C1)

where for k = 1 : T0 = Tsol and for k = N : TN = Tliq. Since the temperature gradient of the solid fraction
gS defined in Eq. (1) reads

dgS

dT
=

1
1− kP

[
1

T −TF
−

T −Tliq

(T −TF)2

]
(C2)

Eq. (C1) after integration becomes⟨
dgS

dT

⟩∣∣∣∣
k
=

1
(1− kP)∆Tk

(
Tk −Tliq

Tk −TF
−

Tk−1 −Tliq

Tk−1 −TF

)
, ∆Tk = Tk −Tk−1 (C3)

Since all temperatures in Eq. (C3) are known, the expression given by Eq. (C3) is constant in each inter-
val k. Therefore, using approximation given by Eq. (20) and Eq. (C2), we write

Ak = (1− kP)

⟨
dgS

dT

⟩∣∣∣∣
k
=

[
1

T k
eq −TF

−
T k

eq −Tliq

(T k
eq −TF)2

]
(C4)

Finally, from Eq. (C4) the equivalent temperature inside the k - th temperature interval reads

T k
eq = TF −

√
Tliq −TF

Ak
(C5)

One notices that when k = N and TN = Tliq then AN = 1/(TN−1 −TF) and

T N
eq = TF −

√(
Tliq −TF

)
(TN−1 −TF) (C6)

in particular for N = 1 Eq. (21) is recovered. One notices, Ak < 0 as T k
eq < TF and T k

eq < Tliq, thus the
temperature product under square root in Eq. (C5) or (C6) and resulting T k

eq are always positive.

APPENDIX D

Herein, the solution procedure for the set of N +1 non-linear equations obtained from the conditions for
heat fluxes in the mushy zone is described. This solution is required to find the unknowns ηS, . . ., Tl, . . .,
ηL where l = 1, . . . ,N−1 denotes a number of unknown temperatures Tl at points

ηl = ηS +
l
N
(ηL −ηS) (D1)

and N ≥ 2 is the number of temperature intervals introduced for averaging. For simplicity, all following
equations are derived using the lever rule model given by Eq. (1). First, we note the introduction of N
averaging intervals ∆Tl = Tl−Tsol, . . . ,∆Tk = Tk−Tk−1, . . . ,∆TN = Tliq−TN−1 where for k = 1 : T0 = Tsol

and for k = N : TN = Tliq increases the number of the heat diffusion equations that must be solved to obtain
piecewise temperature profiles. The set of N+2 ODE’s that must be solved reads

2η
dθS

dη
+

d2θS

dη2 = 0, 0 ≤ η ≤ ηS (D2)
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(2ηak +bk)
dθ k

M
dη

+
d2θ k

M
dη2 = 0, ηk−1 ≤ η ≤ ηk (D3)

2η
αS

αL

dθL

dη
+

d2θL

dη2 = 0, ηL ≤ η ≤ ∞ (D4)

where for k = 1 : η0 = ηS and for k = N : ηN = ηL. Analytical solutions to Eqs. (D2)–(D4) are given by
non-dimensional temperature profiles, written employing the notation introduced in Eq. (40)

θS =
erf(η)

erf(ηS)
: 0 ≤ η ≤ ηS (D5)

θ k
M = θ k

liq
erf [dk(η)]− erf [dk(ηk−1)]

erf [dk(ηk)]− erf [dk(ηk−1)]
: ηS ≤ η ≤ ηL (D6)

θL =
erfc

(√
bη

)
erfc

(√
bηL

) : ηL ≤ η ≤ ∞ (D7)

where θ k
M, θ k

liq read

θ k
M =

T −Tk−1

TF −Tk−1
, θ k

liq =
Tk −Tk−1

TF −Tk−1
(D8)

The above formulation assures the continuity of temperature at points ηS, . . . , ηl , . . . , ηL, where l = 1,
. . . , N−1 and k = 1, . . . , N.

In the second step, we determine constants ak, bk present in Eqs. (D6), see also Eq. (37). Knowing T k
eq

from Eq. (C5) for k = 1, . . . , N allows the calculation of the representative solid fractions and material
properties inside each of the k-th temperature intervals

gk
S =

1
1− kP

T k
eq −Tliq

T k
eq −TF

(D9)

ck
M = gk

ScS +(1−gk
S)cL (D10)

kk
M = gk

SkS +(1−gk
S)kL (D11)

and hence coefficients αS/α ′
S in Eq. (15) can be also determined

ak =
αS

α ′
S

∣∣∣∣
k
=

ck
M −Lht

⟨
dgS

dT

⟩∣∣∣∣
k

cS
kk

M
kS

(D12)

The contribution from the thermal conductivity coefficient gradient bk is approximated by central differ-
ences for k = 2, . . . , N−1.

bk =
1

kM

dkM

dη

∣∣∣∣
k
≈ 1

kk
M

kk+1
M,eq − kk−1

M,eq

ηk+1
M −ηk−1

M
=

kS − kL

kk
M,eq

gk+1
S,eq −gk−1

S,eq

ηk+1
M −ηk−1

M
(D13)

or forward and backward differences for k = 1 or k = N respectively, see Eqs. (34)–(35). The unknown
positions ηk

M are determined as a linear combination of ηS and ηL

ηk
M = ηk−1 +

1
2
(ηk −ηk−1) (D14)

where ηk is obtained from Eq. (D1).
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In the third step we formulate a set of non-linear equations required to determine the unknowns ηS, . . . ,
Tl , . . . , ηL. After substitution of Eqs. (D5)–(D7) into the boundary conditions for heat fluxes given by
Eqs. (B10)–(B12); the set of N+1 non-linear equations read

θE exp(−η2
S )

erf(ηS)
−

r1
MSθ l

liq
√

a1 exp
(
−d1(ηS)

2
)

erf(d1(η1))− erf(d1(ηS))
=

√
πηS(1−gS,sol)

St0
(D15)

θ l
solθ

l
liq
√

al exp
(
−dl(ηl)

2
)

erf(dl(ηl))− erf(dl(ηl−1))
=

θ l+1
liq

√
al+1 exp

(
−dl+1(ηl)

2
)

erf(dl+1(ηl+1))− erf(dl+1(ηl))
(D16)

rN
MSθ N

liq
√

aN exp
(
−dN(ηL)

2
)

erf(dN(ηL))− erf(dN(ηN−1))
+

θIrLS
√

bexp
(
−bη2

L
)

erfc
(√

bηL

) =

√
πηLgS,liq

StN−1
(D17)

where gS,sol , gS,liq are solid volume fractions obtained for the temperatures Tsol and Tliq, see Eq. (1). The
solution of the set of Eqs. (D15)–(D17) using a non-linear equation solver allows to obtain the vector of
N + 1 unknowns ηS, . . . , Tl , . . . , ηL where l = 1, . . . , N−1. After substitution of ηS, . . . , Tl , . . . , ηL into
the non-dimensional temperatures profiles given by Eqs. (D5)–(D7) the final solution is obtained.
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