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Abstract. The infinite time suboptimal control problem for continuous-time nonlinear positive systems is formulated and solved. A solution 
to the problem using input-state linearization and state-dependent Riccati equation method (SDRE) is established, a procedure for solving the 
problem is proposed and illustrated with a numerical example.
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This paper presents an SDRE-based suboptimal control 
strategy for locally positive continuous-time nonlinear systems 
with separation of linear and nonlinear state functions. The 
approach to the suboptimal control using nonlinear feedback 
controller enables determination of suboptimal control allowing 
nonlinear control theory.

2.	 Controllability of nonlinear positive systems

Consider the continuous-time nonlinear system

	 x·  = F(x) + B(x)u� (1)

where x 2 ℜn, u 2 ℜm are the state and input vectors, respec-
tively, F(x) 2 ℜn and B(x) 2 ℜn×m are nonlinear function of x. 
Let the system (1) be locally positive. The system is called 
locally positive in the neighborhood of zero (x = 0, u = 0) if 
there exists a neighbourhood of the zero U0 such that for any 
x0 2 U0 ∩ ℜ+

n we have x(t) 2 U0 ∩ ℜ+
n for t ¸ 0 [20]. This defi-

nition performs systems for which

	
t

0
∫
∂fi
∂xj

dτ  ¸ 0� (2)

for i  6= j, i, j = 1, …, n and t ¸ 0. Nonlinear functions fi are 
elements of the vector F(x) and are smooth in their arguments, 
i.e., they are real-valued functions of state variables xi.

Let us rewrite the system (1) as a sum of state-independent 
and nonlinear state-dependent coefficient (SDC) forms [6]:

	 x·  = Ax + Ψ(x)x + B(x)u ,� (3)

where Ax + Ψ(x)x is a sum of parametrized linear and non-
linear state equations (obtained by Taylor series, for instance). 

1.	 Introduction

Mathematical models for biological, medical systems [1, 2], as 
well as those for computer science [3] and engineering systems 
[7, 8], economics and social sciences [4], aircraft and satellite 
systems [5, 15, 16], are inherently nonlinear and have externally 
or internally positive properties.

An overview of the state of the art in positive system theory is 
given by Farina and Rinaldi [21] as well as Kaczorek [11, 20, 23]. 
The optimal control problems of standard and fractional linear 
positive continuous-time systems are formulated and solved by 
Kaczorek and Klamka [11, 22]. In this research area, also the 
reachability and controllability conditions of standard and sin-
gular internally positive linear systems are analysed [11]. The 
work related to locally positive systems [20] presents necessary 
and sufficient conditions for the local positiveness of nonlinear 
time-varying systems and is an inspiration for searching optimal 
or suboptimal control methods for such systems.

In literature, there are many techniques for nonlinear sys-
tems, such as Jacobian linearization [17] and feedback linear-
ization used in conjunction with gain scheduling [12], Hamil-
tonian system [26], dynamic inversion methods [10], L1-op-
timal feedback controller synthesis for positive systems with 
given weighing vectors [27], recursive backstepping [18], 
sliding mode control and adaptive control [10]. Recently, 
one of the promising and rapidly emerging methodology 
for designing nonlinear controllers is the state-dependent 
Riccati equation (SDRE) approach [6‒8, 13]. It is dedicated 
for designing the suboptimal controller and compensator for 
a certain class of nonlinear systems. By using Taylor series 
numerical technique, this controller design method can sig-
nificantly reduce the online computational burden like the 
recently popular SDRE methods [6].
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There are many ways of SDC parameterization. Each parame-
trization should be true for all 0 ∙ α ∙ 1.

	
α[A1 + Ψ1(x)]x + (1 ¡ α)[A2 + Ψ2(x)]x = 
αA1x + (1 ¡ α)A2x + αΨ1(x)x + (1 ¡ α)Ψ2(x)x =
αF1(x) + (1 ¡ α)F2(x) = F(x).

� (4)

To design a control system and define control law, first we 
should determine whether or not control of the complete state 
of the dynamical system is possible. This information can be 
obtained checking controllability of the dynamical system. 
Roughly, controllability informs about control possibility of the 
dynamical system from an arbitrary initial state to an arbitrary 
final state using set of admissible controls. However, the trajec-
tory of the dynamical system (1) between initial and final state 
is not specified. Furthermore, there are no constraints posed on 
the control vector u and the state vector x. In order to formu-
late easily computable algebraic controllability criteria, let us 
introduce the state-dependent controllability matrix W(x) [6]:

	
W(x) = [B(x)  (A + Ψ(x))B(x)  …

W(x) = (A + Ψ(x))n–1B(x)].
� (5)

If W(x) (a state-dependent in this case) has full rank then the 
system is controllable for all x 2 ℜn. In practice, we must seek 
a parameterization that gives W(x) full rank and monomial for 
the entire domain for which the system is to be controlled.

3.	 Control problem solution

We wish to find an admissible control u(t) 2 ℜm that minimizes 
performance index [9, 14]

	 J(u) = 1
2

1

0
∫ (xTQx + uTRu)dt� (6)

where Q 2 ℜn×n is a symmetric semi positive-definite matrix, 
R 2 ℜm×m is a symmetric positive-definite matrix. 

The control problem for the nonlinear continuous-time sys-
tems (1) can be stated as follows. Given nonlinear functions 
F(x) 2 ℜn, B(x) 2 ℜn×m and Q 2 ℜn×n, R 2 ℜm×m of the per-
formance index (2), find a control u(t) 2 ℜm for [t0, 1] that 
controls the system state vector from x0 to x1 while minimizing 
the performance index (6).

If the integral function xTQx + uT Ru and Ax + Ψ(x)x +  
+ B(x)u be continuously differentiable functions of each of 
their arguments, then we may suppose that u 2 C[t0, 1] is an 
control that minimizes the functional J(x): C[t0, 1] → ℜ+. To 
solve the problem, we define the Hamiltonian

	H = 1
2
(xTQx + uTRu) + pT(Ax + Ψ(x)x + B(x)u).� (7)

Let xTQx + uT Ru and Ax + Ψ(x)x + B(x)u be continu-
ously differentiable functions of each of their arguments. If 
u 2 C[t0, 1] is a control for the functional (6) subject to the 
state equation (3) and if x denotes the corresponding state, then 
there exists a p 2 C[t0, 1] such that

	 ∂H
∂u

(p, x, u, t) = 0 for  t 2 [t0, 1]� (8)

and

	p·  = – ∂H
∂u

(p, x, u, t) for t 2 [t0, 1] and p(1) = 0.� (9)

where p is the co-state nonlinear function and (9) is the adjoint 
differential equation.

It follows that any optimal input u(t) 2 ℜm and the corre-
sponding state x 2 ℜn satisfies (8) that is

	 ∂H
∂u

 = Ru + BT(x)p = 0.� (10)

Thus optimal control is

	 u = – R–1BT(x)p� (11)

the adjoint differential equation is following

	p·  = – ∂H
∂x

 = –

A +  ∂(Ψ(x)x)

∂x
 +  ∂(B(x)u)

∂x




T

p ¡ Qx.� (12)

Consequently, we have nonlinear differential system of equation

	
x·  = Ax + Ψ(x)x ¡ B(x)R–1BT(x)p

p·  = – ∂H
∂x

 = –

A +  ∂(Ψ(x)x)

∂x
 +  ∂(B(x)u)

∂x




T

p ¡ Qx
� (13)

for t 2 [t0, 1], x(t0) = x0, Ψ(x0) = Ψ0 and p(1) = 0, where:

	 ∂(Ψ(x)x)
∂x

 = Ψ(x) +  ∂Ψ(x)
∂x

x,� (14)

	 ∂(B(x)u)
∂x

 = Ψ(x) +  ∂B(x)
∂x

u.� (15)

Let p be a combination of linear and nonlinear state of the 
system (3)

	 p = K1(x)x + K2(x)Ψ(x)x ,� (16)

and let x be the solution of nonlinear state equation 

	
x·  = bA ¡ B(x)R–1BT(x)K1(x)cx + 

x·  + [I ¡ B(x)R–1BT(x)K2(x)]x + Ψ(x)x
� (17)

for t 2 [t0, 1], x(t0) = x0, Ψ(x0) = Ψ0.
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Employed approach (16) splits the feedback effort into two 
components. It enables to eliminate Ψ(x)x from the system (17) 
by solving state-dependent gain matrix

	 K2(x) = [B(x)R–1BT(x)]
–1

.� (18)

Matrix B(x)R–1BT(x) is singular, thus state-dependent matrix 
gain K2(x) may be computed only by the pseudoinverse opera-
tion. This way we have nonlinear state equation (17) reduced to

	 x·  = [A ¡ B(x)R–1BT(x)K1(x)]x .� (19)

Equating adjoint differential equation (12) and differential form 
of (16) we have

∂
∂t
[K1(x) + K2(x)Ψ(x)]x + K2[K1(x) +

+ K2(x)Ψ(x)]x·  =

– 

A + Ψ(x) +  ∂Ψ(x)

∂x
x 



T

[K1(x)x + K2(x)Ψ(x)x] ¡

– 


∂B(x)
∂x

u 



T

[K1(x)x + K2(x)Ψ(x)x] ¡ Qx.

� (20)

Consequently, employing (19) to (20) we have

∂
∂t
[K1(x) + K2(x)Ψ(x)]x + [K1(x) + K2(x)Ψ(x)]Ax ¡

–[K1(x) + K2(x)Ψ(x)]B(x)R–1BT(x)K1(x)x = 

– 

A + Ψ(x) +  ∂Ψ(x)

∂x
x 



T

[K1(x) + K2(x)Ψ(x)]x ¡

– 


∂B(x)
∂x

u 



T

[K1(x) + K2(x)Ψ(x)]x ¡ Qx

� (21)

and rearranging terms in (21) we find 





 
∂
∂t
[K1(x) + K2(x)Ψ(x)] + 




∂Ψ(x)
∂x

x 



T

[K1(x) + K2(x)Ψ(x)] ¡




∂B(x)
∂x

u 



T

[K1(x) + K2(x)Ψ(x)]




x +






[K1(x) + K2(x)Ψ(x)]A ¡

[K1(x) + K2(x)Ψ(x)]B(x)R–1BT(x)K1(x) +

[A + Ψ(x)]
T
[K1(x) + K2(x)Ψ(x)] + Q 



x = 0.

� (22)

If we assume that K1(x) solves the state-dependent Riccati equa-
tion (SDRE), which using (18) is given by

K1(x)A + ATK1(x) ¡

K1(x)B(x)R–1BT(x)K1(x) +

 [B(x)R–1BT(x)]
–1
Ψ(x)A + ATΨT(x)[B(x)R–1BT(x)]

–1
 +

K1(x)Ψ(x) + ΨT(x)K1(x) +

ΨT(x)[B(x)R–1BT(x)]
–1
Ψ(x) + Q = 0,

� (23)

then the following condition must be satisfied for optimality [6, 13]

	

∂
∂t
[K1(x) + K2(x)Ψ(x)] +



 ∂Ψ(x)

∂x
x 



T

[K1(x) + K2(x)Ψ(x)] ¡



 ∂B(x)

∂x
u 



T

[K1(x) + K2(x)Ψ(x)] = 0.

� (24)

So, the suboptimal control

	 u = – R–1BT(x)[K1(x) + K2(x)Ψ(x)]x � (25)

for index (6) subject to (1) can be found solving state-dependent 
Riccati equation (23). In general, the solution of (23) cannot be 
found analytically. One approach for solving the SDRE is via 
symbolic software packages such as Matlab [24]. However, for 
complex systems, the solution may become complicated and 
then it is necessary to approximate the solution. To approximate 
we may use interpolation method or Taylor series method, for 
instance [6].

4.	 Numerical example

Consider the nonlinear locally positive system (1) with non-
linear state function and input matrix

	 F(x) = 


x2

x1
2


,  B(x) = 



0
1


� (26)

with state vector x = 

x1
x2



 and performance index (6) with ma-

trices

	 Q = 


	0.5	 0
	0	 0.5



,  R =  [0.5].� (27)

Nonlinear system (26) satisfies the condition (2) since

	
t

0
∫
∂f1
∂x2

dτ  = 
t

0
∫1dτ  ¸ 0, 

t

0
∫
∂f2
∂x1

dτ  = 0.� (28)

An SDC parameterization of (26) is given by

	 F(x) = 


	0� 1
	x1� 0







x1

x2



 = 



0� 1
0� 0







x1

x2



 + 



	0� 0
	x1� 0







x1

x2



,� (29)
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where

	 A =  


0� 1
0� 0



, Ψ(x) =  



	0� 0
	x1� 0



.� (30)

This parameterization has state-dependent controllability matrix 
(5) given by

	 W(x) =  


0� 1
1� 0



� (31)

which has full rank for all x(t) 2 ℜ2. Therefore the system (26) 
is controllable with the SDC parameterization (29).

Using symbolic software package we obtain solution of Ric-
cati equation (23) as following gains functions:

	 K1(x1, x2) = 




k1, 11(x1, x2)� k1, 12(x1, x2)

k1, 21(x1, x2)� k1, 22(x1, x2)




� (32)

where

4 

Using symbolic software package we obtain solution of 
Riccati equation (23) as following gains functions: 
 

 








),(),(
),(),(

),(
2122,12121,1

2112,12111,1
211 xxkxxk

xxkxxk
=xxK  (32) 

where 
 

32
1211

2
21

42
12

2
1

42
12

2
1

2
21

2
12122

2
21

2
21

2122,1

22
32

1211
2
21

42
12

2
12

21

2
21

2
121

12
2121,1

22
32

1211
2
21

42
12

2
12

21

2
21

2
121

12
2112,1

32
1211

2
21

42
12

2
1

42
12

2
1

2
212

12122
2
21

12
2
21

11
2
21

22
1

2111,1

2

4
1),(

222

112

2
1),(

222

112

2
1),(

24

2
),(

raqbrax

raxb

raxrqb

b
xxk

rqraqbrax
b

b
rax

ra
xxk

rqraqbrax
b

b
rax

ra
xxk

raqbrax

raxb
raxrqb

rab
rqbrx

xxk



























































































 (33)  
 
The gain matrix (18) is computed by using 

pseudoinverse operation and results  

 









20
00

)(2 xK . (34) 

For the example purpose, the closed-loop system with 
nonlinear plant (26) was computed with feedback  
compensator gains (32) and (34).  
We first consider the system behavior when the initial 
condition is  T210 x . Figure 1 depicts the state 
dynamics of the controlled system. Figure 2 presents 
SDRE formulated control and Figure 3 shows the value 
of the cost functional integrand over time span 100  t
seconds. 

 
 Fig. 1 Closed-loop state dynamics of the first system 

 
Fig. 2 SDRE closed-loop control of the first system 

 
Fig. 3 Cost functional integrand  

 
Next we consider control problem for reference state 

 Tref 05,0x , in other we transfer the system (26) 

from initial state 00,1 x to state  in infinite 5,0,1 x

.

� (33)

The gain matrix (18) is computed by using pseudoinverse 
operation and yields

	 K2(x) =  


0� 0
0� 2



.� (34)

As an example, the closed-loop system with nonlinear plant 
(26) was computed with feedback compensator gains (32) and 
(34).

We first consider the system behavior when the initial con-
dition is x0 = [1  2]T. Figure 1 depicts the state dynamics of the 
controlled system. Figure 2 presents SDRE formulated control 
and Fig. 3 shows the value of the cost functional integrand over 
time span 0 ∙ t ∙ 10 seconds.

Fig. 1. Closed-loop state dynamics of the first system

t [s]

2

1.5

1

0.5

0

–0.5

–1

–1.5
0 2 4 6 8 10

x 1
, x

2

Fig. 2. SDRE closed-loop control of the first system

t [s]
0 2 4 6 8 10

2

0

–2

–4

–6

–8

–10

–12

u

Fig. 3 Cost functional integrand

t [s]
0 2 4 6 8 10

80

60

40

20

0

uT R
u 
+ 
xT Q

x

x1

x2



21

Suboptimal control of nonlinear continuous-time locally positive systems using input-state linearization and SDRE approach

Bull.  Pol.  Ac.:  Tech.  66(1)  2018

	 [3]	 R. Shorten, F. Wirth, and D. Leith, “A positive systems model 
of tcp-like congestion control: Asymptotic results”, IEEE/ACM 
Transactions on Networking 14(3), 616–629 (2006).

	 [4]	 J. von Neumann, “A model of general economic equilibrium”, 
The Review of Economic Studies 13(1), 1–9 (1945).

	 [5]	 I. Chang, S.Y. Park, and K.H. Choi, “Nonlinear attitude control 
of a tether-connected multi-satellite in three-dimensional space”, 
IEEE Trans. Aeros. Electron. Syst. 46(4), 1950–1968, (2010).

	 [6]	 H.T. Banks, B.M. Lewis, and H.T. Tran, “Nonlinear feedback 
controllers and compensators: a state-dependent Riccati equation 
approach”, Comput. Optim. Appl. 37, 177–218, (2007).

	 [7]	 T. Do, S. Kwak, H. Choi, and J. Jung, “Suboptimal control 
scheme design for interior permanent-magnet synchronous mo-
tors: an SDRE-based approach”, IEEE Trans on Power Electron. 
29(6), 3020‒3030, (2014).

	 [8]	 T.D. Do, H.H. Choi, and J.W. Jung, “SDRE-based near optimal 
control system design for PM synchronous motor”, IEEE Trans. 
Ind. Electron. 59(11), 4063–4074 (2012).

	 [9]	 B.D.O. Anderson and J.B. Moore, Optimal Control Linear Qua-
dratic Methods, Prentice-Hall, Englewood Cliffs, 1990.

	[10]	 A. Isidori, Nonlinear Control Systems. Springer, New York, 
1995.

	[11]	 T. Kaczorek, “Minimum energy control of positive continu-
ous-time linear systems with bounded inputs”, Int. J. Appl. Math. 
Comput. Sci. 23(4), 725–730, (2013).

	[12]	 J.S. Shamma and M. Athens, “Analysis of gain scheduled con-
trol for nonlinear plants”, IEEE Trans. Autom. Control 35(8), 
898–907, (1990).

	[13]	 J.R. Cloutier, C.N. D’Souza, and C.P. Mracek, “Nonlinear regu-
lation and nonlinear h∞ control via the state-dependent Riccati 
equation technique: part 1”, Proceedings of the First Interna-
tional Conference on Nonlinear Problems in Aviation and Aero-
space, Daytona Beach, (1996).

	[14]	 A. Wernli and G. Cook, “Suboptimal control for the nonlinear 
quadratic regulator problem”, Automatica 11, 75–84, (1975).

	[15]	 W.L. Garrard, “Design of non-linear automatic flight control 
system”, Automatica 13(5), 497–505, (1977).

Fig. 4 Closed-loop state dynamics of the second system Fig. 5 SDRE closed-loop control of the second system

Next, we consider control problem for reference state 
xref = [0.5  0]T, in other we transfer the system (26) from ini-
tial state x1, 0 = 0 to state x1, 1 = 0.5 in infinite time. For the 
problem solution, the control law has been modified to

	 u = – R–1BT(x)[K1(x) + K2(x)Ψ(x)](x ¡ xref).� (35)

In order to demonstrate the usefulness of the control method, 
closed-loop state dynamics and SDRE control are presented in 
Figs. 4 and 5, respectively.

During this process both states are positive, while the second 
state reaches the zero value in steady state.

Numerical simulations prove that the proposed method is 
useful for control of nonlinear locally positive systems. The 
methodology can be successfully applied to find suboptimal 
control of nonlinear systems described by state equation (1).

5.	 Conclusions

The infinite time control problem for nonlinear locally positive 
continuous-time systems with nonlinear feedback compensator 
was formulated and solved. The method for computation of 
suboptimal control input that minimizes performance index was 
proposed. The effectiveness of presented technique was demon-
strated on numerical examples. The presented method can be 
extended to finite time problem and discrete-time systems.
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