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Abstract: This paper presents the application of a recent meta-heuristic optimization tech-
nique named a crow search algorithm (CSA) in solving the problem of an optimal power
flow (OPF) for electric power systems. Various constrained objective functions, total fuel
cost, active power loss and pollutant emission are proposed. The generators’ output pow-
ers, generators’ terminal voltages, transmission lines’ taps and the shunt capacitors’ reac-
tive powers are considered as variables to be designed. The proposed methodology based
on the CSA is applied on an IEEE 30-bus system and IEEE 118-bus system. The obtained
results via the CSA are compared to others and they ensure the superiority of the CSA in
solving the OPF problem in electric power systems.
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1. Introduction

In the last decades, the utilities faced a rapid increase in the number of participating con-
sumers with limited expansion of electric generating stations due to financial and political is-
sues. Some aspects must be taken in consideration during the operation of electric power system;
minimizing the total fuel cost of generation, reducing the system loss, maximizing the system
reliability and security and reducing the pollutant emission released from the generators. An im-
portant study of an optimal power flow (OPF) is performed to achieve the previously mentioned
issues. The main objective of the OPF study is minimizing the required operational aspects sub-
ject to constraints, to obtain a reliable operation of the power system. Many studies have been
reported, Frank et al. [1, 2] presented a complete survey on the different methods used in solving
the OPF problem; these methods can be classified into two main categories, traditional optimiza-
tion [3–10]. In [3], a linear programming (LP) to minimize the greenhouse gas-emission from the
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generation plant has been presented. Alsac et al. solved the problem of the OPF based on non-
linear programming (NLP) [4]. In [5], the Newton–Raphson method was presented to solve both
constrained and unconstrained OPF problems. Grudinin presented reactive power optimization
solved by a quadratic programming method [6]. An integer programming has been presented in
[7] to minimize greenhouse-gas emission. In [8] a decomposition method for solving the OPF
has been presented. A multi-objective economic dispatch solved by a fast-successive linear pro-
gramming algorithm has been given in [9]. Sousa et al. [10] presented an interior-point method
for solving the OPF problem. These conventional methods are suffering falling in local minimum
points. The second category is the meta-heuristic optimization algorithm [11–34], Osman et al.
[11] employed a genetic algorithm (GA) to solve the OPF for minimizing the generation fuel
cost. Sayah et al. [12] presented a modified differential evolution (MDE) algorithm for solving
the OPF with non-smooth and non-convex generator cost curves. A fuzzy rule presented in [13]
is employed to vary the crossover and mutation probabilities of the GA to solve the OPF prob-
lem. Niknam et al. [14] used honey bee mating optimization (HBMO) and modified honey bee
mating optimisation (MHBMO) for solving the OPF to minimize the generator fuel cost with
valve-point effects, Abido [15] solved the OPF using Tabu search (TS) which is applied on dif-
ferent objective functions with different forms of the generator cost functions. In [16], the Fuzzy
based PSO has been presented to solve the OPF for a system containing wind energy. Hinojosa
et al. [17] introduced an algorithm based on the PSO to evaluate the optimum values of generator
power, generator voltage, transformer tap position and shunt reactive power so as to minimize
the generator fuel cost and system active power loss. Simulated annealing (SA) has been given
in [18] to solve the OPF composed by a load flow and economic dispatch problem. An enhanced
genetic algorithm (EGA) has been used in [19] to solve the OPF. In [20], a hybrid algorithm
that combined the decoupled quadratic load flow solution with the enhanced GA, is presented
to solve the problem of the OPF. In [21], ant colony optimization (ACO) has been presented
to minimize the total generation cost and evaluate the optimal generators’ power. Khorsandi et
al. [22] presented a modified artificial bee colony via Fuzzy rules to solve the OPF problem to
minimize the total generation cost considering the valve point effect. An evolutionary program-
ming (EP) algorithm has been used in [23] to solve the OPF problem. Reddy et al. [24] presented
Glowworm swarm optimization to solve the multi-objective OPF problem of minimization of
the total generation cost and emission. In [25], a backtracking search optimization algorithm has
been presented to solve the OPF considering different objectives. Pandiarajan et al. [26] used a
hybrid algorithm of Fuzzy logic with a harmony search algorithm to obtain the optimal solution
for the OPF problem with minimum fuel cost. The harmony search algorithm has been used to
solve the multi-objective OPF problem in [27], the Fuzzy based technique is used to select the
optimum solution from the Pareto set. In [28], differential evolution and a grey wolf optimizer
have been presented to solve the multi-objective and single objective OPF problem. Niknam et
al. presented a shuffle frog leaping algorithm (SFLA) and modified the shuffle frog leaping algo-
rithm (MSFLA) in [29] to solve the multi-objective OPF. In [30], a modified teaching-learning
based optimization algorithm (MTLBO) has been presented to solve the OPF. Mahdad et al.
[31] presented an adaptive flower pollination algorithm (APFPA) for solving the OPF problem to
achieve a secure power system, In [32], the multi-objective OPF problem is solved via a modified
decomposition algorithm to minimize the fuel cost, emission, power loss and voltage deviation.
Mukherjee et al. [33] introduced a krill herd algorithm with opposition based learning to solve
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the transient stability constrained OPF problem. In [34], a group search optimization (GSA) and
its adaptive version has been used for solving the OPF problem. Most of the reported approaches
suffer from complexity and consume a lot of time.

In this paper, a proposed solution methodology based on a crow search algorithm (CSA) is
presented to solve the problem of the OPF for an electric power system. The CSA is selected due
to its simplicity in programming, requirement of less controlling parameters, less time consump-
tion and guarantee of a global optimum solution. Various forms of constraint objective functions
such as total fuel cost, active power loss and pollutant emission are studied. The proposed ap-
proach is applied on an IEEE 30-bus system and IEEE 118-bus system. The CSA is compared to
other reported approaches; the obtained results encourage the usage of the proposed methodology
based on the CSA in solving the OPF.

2. OPF problem formulation

In this work three different objective functions are studied which are total generation fuel
cost, active power loss of the network and the pollutant emission from the generators.

2.1. Total fuel cost function

The fuel cost of generators can be expressed in quadratic form as follows [29]:

min J1(x) =
Ng

∑
i=1

(
aiP2

gi +biPgi + ci
)

$/h, (1)

where: Ng is the number of generators, ai, bi, ci are the fuel cost coefficients of generator i and x
is the design variables.

x = [Pg1, Pg2, . . . , Pgi] ∀i ∈ Ng , (2)

where Pgi is the MW output from generator i.

2.2. Active power loss

The active power loss of the electric power system can be expressed as given in [28]:

min J2(x) =
N

∑
i=1

N

∑
j=1
j ̸=i

Ri j

(
|Vi|2 + |Vj|2 −2|Vi| |Vj|cos(δi j)

)
|Zi j|2

MW, (3)

where: N is the total number of buses, Ri j is the resistance of the line between bus i and j, Vi and
Vj are the voltage magnitudes at bus i and j, δi j is the angle between voltages at bus i and j and
Zi j is the impedance of the line between bus i and j.

2.3. Pollutant emission

There atmospheric pollution emissions such as nitrogen oxides (NOX) and sulpher oxides
(SOX) are caused due to the usage of fossil fuel thermal generation stations. The objective func-
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tion that represents such emission can be expressed as follows [36]:

min J3(x) =
Ng

∑
i=1

(
γiP2

gi +βiPgi +αi +ζi exp(λiPgi)
)

t/h, (4)

where: γi, βi, αi, ξi and λi are the emission coefficients of generator i.

2.4. Constraints

The applied constraints are given as follows:

Pgi −Pdi =
N

∑
i=1

|Vi| |Vj|(Gi j cos(δi j)+Bi j sin(δi j)) ∀i ∈ N, (5)

Qgi +Qci −Qdi =
N

∑
i=1

|Vi| |Vj|(Gi j sin(δi j)−Bi j cos(δi j)) ∀i ∈ N, (6)

V min
i ≤Vi ≤V max

i ∀i ∈ N, (7)

Pmin
gi ≤ Pgi ≤ Pmax

gi ∀i ∈ Ng , (8)

Qmin
gi ≤ Qgi ≤ Qmax

gi ∀i ∈ Ng , (9)

tmin
k ≤ tk ≤ tmax

k ∀k ∈ NTrans , (10)

Qmin
ci ≤ Qci ≤ Qmax

ci ∀i ∈ Ncap , (11)

where: Pdi is the load demand at bus i, Gi j and Bi j are the conductance and susceptance of
branch i j, V min

i and V max
i are the minimum and maximum voltages at bus i, Pmin

gi and Pmax
gi are the

minimum and maximum limits of output power from generator i, Qmin
gi and Qmax

gi are the minimum
and maximum limits of reactive power from generator i, Smax

li is the maximum allowable capacity
of branch i,Nbr is the total number of branches, tmin

k and tmax
k are the minimum and maximum

limits of kth transformer tap, Qmin
ci and Qmax

ci are the minimum and maximum limits of reactive
power of ith compensator capacitor.

3. Crow search algorithm

A crow search algorithm (CSA) is a novel metaheuristic optimization algorithm presented by
Askarzadeh [34]. The main idea of the CSA is derived from the social behavior of crows, which
are characterized by extreme intelligence. The process of getting food is based on observing other
crows hide their foods in the hive, pending the departure of the crows (food-owners) and then on
the theft of the food. After that the thief crow tries to hide the food obtained, to prevent being a
victim of other crows in the future. In the search process followed in the CSA, it is assumed that
in a flock of N crows, each one has a position xk

i at an iteration number k. The primary mission of
each crow is to evaluate the best food in the search plane which is defined as mk

i via two probable
scenarios. The first one is based on the assumption that the crow j, owner of the food source mk

j
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doesn’t know that the thief crow i follows it; therefore, the theft process takes place successfully.
The updating process of the thief crow position can be performed as follows:

xk+1
i = xk

i + ri × f lk
i ×

(
mk

j − xk
i

)
. (12)

where: ri is a random number in the range from 0 to 1, f lk
i is the flight length of the crow i at

an iteration k. The second probable scenario is that the owner crow j knows that the thief crow
i follows it; therefore, the owner crow will trick the crow i by transferring the food to another
position. The position of the crow i is updated by a random position. In CSA the scenario is
determined by the following expression:

i f r j ≥ ρk
j Update postion by Equation 10

Else

Update to random position

, (13)

where: ρk
j is the probability of awareness of the crow j at an iteration k, the parameter f lk

i plays
an important role in catching the global optimal solution, as a small value of f lk

i leads to a local
minimum, while a large value leads to a global minimum, Fig. 1 shows the effect of f lk

i in the
searching process.

(a) (b)

Fig. 1. The effect of f l on search process: (a) f l < 1; (b) f l > 1

The main steps followed in the CSA are shown in Fig. 2(a). At recent days, the CSA has
gained great attention in the application of the power system analysis due to its simplicity in
construction and consuming less time in operation. In [37], the CSA has been used in allocating
the capacitors in the power system to reduce the network power loss and improve the voltage
profile of buses.

4. The proposed solution methodology

The proposed algorithm that incorporated a CSA is shown in Fig. 2(b). The algorithm starts
by defining the data of the electrical power system including line data, bus data, generators’
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(a) (b)

Fig. 2. (a) The flowchart of CSA; (b) the proposed methodology steps

cost data and generators’ emission data. The second step defines the controlling parameters of
the CSA and the lower and upper limits of the variables to be designed, then performing the
flow chart steps given in Fig. 2(a). After that, the constraints are checked to ensure a reliable
operation of the power system. In the case of achieving the constraints, the optimal solution is
obtained, else the steps of the CSA shown in Fig. 2(a) are repeated. The updating process takes
place based on comparing the obtained objective function with that obtained in the previous
iteration. The steps are repeated until the last iteration is reached and then the optimal solution is
obtained.
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5. Simulation results

The proposed CSA algorithm is programmed in the MATLAB R2013a environment and
applied on two systems, an IEEE 30-bus network and an IEEE 118-bus network. The analysis
is performed on the Intel R⃝Core i3 CPU M370 @ 2.40 GHz processor, 4.00 GB RAM, 64-bit
operating system, PC. Four scenarios are studied, as the three presented objective functions are
studied on the IEEE 30-bus system while the only objective function of the total generation fuel
cost is applied on the IEEE 118-bus system. The controlling parameters of the CSA for both
systems are given in Table 1.

Table 1. Controlling parameters of CSA

Parameter Value

Flock (population) size 50

Awareness probability 0.1

Flight length 2

Max. iteration 500

5.1. Scenario (1)

In this section, the minimization of the total generation fuel cost is the main target that is ap-
plied on an IEEE 30-bus system; the data of this system is given in [38]. The IEEE 30-bus system
has 6 generators, 41 branches and 4 transformers to serve about 21 customers of 310.2289 MVA.
The fuel cost coefficients and the generator limits are tabulated in Table 2 [14], the minimum and
maximum generator voltages are considered as 0.9 and 1.1 pu, respectively. The obtained results
via the proposed CSA are compared to others as given in Table 3. It is clear that a minimum cost
of 801.728 $/h. is obtained via the proposed CSA with minimum total loss of 9.3953 MW with
a consuming time of 18.26 s. The CSA response is shown in Fig. 3. Additionally, the variables

Table 2. The cost coefficients and generation limitation of IEEE 30-bus system [14]

Unit Installed
a b c

Pmin
g Pmax

g Qmin
g Qmax

g
number bus (MW) (MW) (MVAr) (MVAr)

G1 1 0.00375 2.00 0.00 50 200 −20 200

G2 2 0.01750 1.75 0.00 20 80 −20 100

G3 5 0.06250 1.00 0.00 15 50 −15 80

G4 8 0.00830 3.25 0.00 10 35 −15 60

G5 11 0.02500 3.00 0.00 10 30 −10 50

G6 13 0.02500 3.00 0.00 11 40 −15 60
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obtained via the CSA compared with the others are given in Table 4. In order to guarantee good
results obtained via the CSA, several runs are performed and the obtained results are tabulated in
Table 5. It is derived that the CSA gives the best solution for several runs. Statistical parameters
(mean, standard division and median) of the objective function evaluated by the CSA after sev-
eral runs are given in Table 6. The responses of objective functions after several runs are given
in Fig. 4.

Table 3. Results obtained via CSA compared to others for minimizing fuel cost

Pg1 Pg2 Pg5 Pg8 Pg11 Pg13
Total

Loss
CPU Fuel

Method
(MW) (MW) (MW) (MW) (MW) (MW)

generation
(MW)

time cost
(MW) (s) ($/h)

NLP [4] 176.26 48.84 21.51 22.15 12.14 12 292.9 9.48 – 802.4

GA [11] 170.1 53.9 20.6 18.8 12 17.7 293.1 – – 805.94

DE [12] 176.009 48.801 21.334 22.262 12.46 12 292.866 9.466 36.61 802.394

MDE [12] 175.974 48.884 21.51 22.24 12.251 12 292.859 9.459 23.07 802.376

GA-Fuzzy[13] 175.137 50.353 21.451 21.176 12.667 12.11 – 9.494 – 802.0003

HBMO [14] 178.4646 46.274 21.4596 21.446 13.207 12.0134 292.8646 9.466164 28.56 802.211

MHBMO [14] 177.0431 49.209 21.5135 22.648 10.4146 12 292.8242 9.49 21.34 801.985

SA [18] 192.5105 48.3951 19.5506 11.6204 10 12 294.0766 – – 804.1072

EGA [19] 176.2 48.75 21.44 21.95 12.42 12.02 292.7800 – – 802.06

ACO [21] 181.945 47.001 20.553 21.146 10.433 12.173 293.2510 9.852 – 802.578

GSO [34] 176.033 48.6549 21.1301 22.2710 12.6965 12.0202 292.8057 – – 802.188

AGSO [34] 178.704 46.712 20.756 22.252 12.025 12.342 292.7910 – – 801.75

CSA 177.1066 48.9171 21.4972 21.8525 12.1700 11.2469 292.7903 9.3953 18.26 801.7280

Fig. 3. Convergence plot of generation fuel cost for IEEE 30-bus system
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Table 4. The CSA results for IEEE 30-bus system compared to others for scenario (1)

Method
Vg1 Vg2 Vg5 Vg8 Vg11 Vg13 T6-9 T6-10 T4-12 T27-28 QC10 QC24

(p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (MVAr) (MVAr)

NLP [4] 1.05 1.0382 1.0114 1.0194 1.0912 1.0913 0.275 −3.98 0.474 −5.837 – –

MDE [12] 1.05 1.0382 1.0113 1.0191 1.0951 1.0837 0.9866 0.9714 0.9972 0.9413 – –

GA-Fuzzy [13] 1.05 1.034 1.006 1.003 1.071 1.048 1.0032 0.9645 1.0161 0.9645 – –

HBMO [14] 1.05 1.0394 1.0117 1.0235 1.0482 1.0437 0.99 0.98 0.98 0.97 12.784 13.975

MHBMO [14] 1.05 1.0421 1.0119 1.0274 1.0496 1.0435 0.99 0.96 0.99 0.98 13.074 18.942

EGA [19] 1.05 1.038 1.012 1.02 1.082 1.067 1.0125 0.95 1 0.9625 – –

CSA 1.06 1.0430 1.0100 1.0100 1.0820 1.0710 0.978 0.969 0.932 0.968 19 4.3

Table 5. Results obtained via CSA after several runs for minimizing fuel cost

No. of Pg1 Pg2 Pg5 Pg8 Pg11 Pg13 Loss Fuel cost
runs (MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/h)

100 178.6176 48.5076 21.5911 19.2988 12.8959 11.0001 9.3991 801.8267

200 177.2012 49.0161 21.3159 20.4346 12.8361 11.0217 9.3956 801.8215

300 176.7943 49.0212 21.3751 21.3335 12.2566 11.0107 9.3934 801.8209

400 177.2048 49.1105 21.6367 20.5652 12.2048 11.0001 9.3922 801.8194

500 177.5115 49.3159 21.3962 20.0901 12.4964 11.0510 9.3911 801.8189

Fig. 4. Convergence plot of generation fuel cost after several runs
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Table 6. Statistical analysis of the CSA after several runs

No. of runs Mean Std. dev. Median

100 802.3 0.6873 802

200 802.1 0.4927 801.9

300 802.2 0.3371 801.9

400 802.0 0.2551 801.9

500 802.0 0.1747 801.9

5.2. Scenario (2)

In this section, the focus is on minimizing the system active power loss; the obtained results
compared to other optimization algorithms are given in Table 7.

Table 7. Results obtained via CSA compared to other optimization algorithms for minimizing power loss

Pg1 Pg2 Pg5 Pg8 Pg11 Pg13
Total

Loss
CPU Fuel

Method
(MW) (MW) (MW) (MW) (MW) (MW)

generation
(MW)

time cost
(MW) (s) ($/h)

NSGA-II [27] – 79.06 50 35 29.53 36.134 – 3.6294 – 956.45

HSA [27] 66.2759 79.6413 46.8835 34.8880 29.1213 30.0558 286.8658 3.5165 – 928.5099

CSA 51.8973 80.0000 50.0000 35.0000 30.0000 40.0000 286.8973 3.4973 9.1300 1072.1

Fig. 5. Convergence plot of Active power loss for IEEE 30-bus system
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The system active loss obtained via the proposed CSA is 3.4973 MW, which is the best com-
pared to the other optimization algorithms, this solution is obtained after 9.13 s. The convergence
curve obtained in this case is shown in Fig. 5 and the obtained variables are given in Table 8.

Table 8. The obtained variables of IEEE 30-bus system for scenario (2)

Vg1 Vg2 Vg5 Vg8 Vg11 Vg13 T6-9 T6-10 T4-12 T27-28 QC10 QC24
(p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (MVAr) (MVAr)

1.0068 1.0179 1.0294 1.0482 1.0820 1.0541 1.0572 1.0134 1.0143 1.0717 5.9332 11.8417

5.3. Scenario (3)

Minimizing the total pollutant emission is an important issue in power system operation, in
this section the proposed CSA is applied for minimizing the pollution emitted from the generators
for an IEEE 30-bus system. The emission coefficients are given in Table 9.

Table 9. Emission coefficients of IEEE 30-bus system [30]

Unit number γγγ βββ ααα ξξξ λλλ

G1 0.0649 −0.0555 0.0409 0.0002 2.8570

G2 0.05638 −0.0605 0.0254 0.0005 3.3330

G3 0.04586 −0.0509 0.0426 0.0000 8.0000

G4 0.0338 −0.0355 0.0533 0.0020 2.0000

G5 0.04586 −0.0509 0.0426 0.0000 8.0000

G6 0.05151 −0.0556 0.0613 0.0000 6.6670

The obtained results via the proposed CSA are tabulated in Table 10, it is clear that the less
emission is 0.2010 t/h. obtained via the proposed methodology. The CSA response curve for the

Table 10. Results obtained via CSA compared to other optimization algorithms for minimizing emission

Pg1 Pg2 Pg5 Pg8 Pg11 Pg13
Total

Loss
Fuel

EmissionMethod
(MW) (MW) (MW) (MW) (MW) (MW)

generation
(MW)

cost
(t/h)(MW) ($/h)

MSLFA[29] 65.7798 68.2688 50 34.9999 29.9982 39.9970 289.0437 – 951.5106 0.2056

SLFA [29] 64.4840 71.3807 49.8573 35.0000 30.0000 39.9729 290.6949 – 960.1911 0.2063

MTLBO[30] 64.2924 67.625 50.0000 35.0000 30.0000 40.0000 286.9174 – – 0.20493

GSO [34] 66.3163 68.7716 49.9998 34.9994 29.9995 39.9998 290.0864 – – 0.206

AGSO [34] 67.004 68.036 50 35 30 40 290.0400 – – 0.2059

CSA 61.0193 70.9515 50.0000 35.0000 30.0000 40.0000 286.9708 3.5708 950.9308 0.2010
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emission obtained from the generators is shown in Fig. 6. The obtained variables after minimizing
the pollutant emission are given in Table 11.

Fig. 6. Convergence plot of pollutant emission for IEEE 30-bus system

Table 11. The obtained variables of IEEE 30-bus system for scenario (3)

Vg1 Vg2 Vg5 Vg8 Vg11 Vg13 T6-9 T6-10 T4-12 T27-28 QC10 QC24
(p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (p.u.) (MVAr) (MVAr)

1.0600 1.0430 1.0100 1.0100 1.0820 1.0710 0.8492 1.0947 1.0097 1.0137 6.8629 5.36789

5.4. Scenario (4)

In order to check the validity of the proposed CSA in solving the OPF for any system, the
algorithm is applied on a large-scale power system of the IEEE 118-bus. In this scenario, the
minimization of the total generation fuel cost is the main target to be achieved. The data of this
system is given in [38]; the system has 54 generators, 186 branches, 9 transformers to serve about
99 customers of 4479.1 MVA. The CSA is performed and the optimal generated power and the
corresponding controlling variables are tabulated in Table 12. It is shown that the total generation
fuel cost is 129400 $/h. with system active power loss of 77.401 MW. A comparison to other
optimization algorithms is given in Table 13, as the best solution is obtained via the proposed
CSA. From the presented analysis, one can derive that the proposed methodology incorporated
the CSA is efficient, reliable in solving the problem of the optimal power flow compared to
others as it gives the best optimal solution for minimizing the total fuel cost, active power loss
and pollutant emission for both studied systems.
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Table 12. Results obtained via CSA for IEEE 118-bus system for minimizing the fuel cost

Control
CSA

Control
CSA

Control
CSA

Control
CSA

Control
CSAvariables variables variables variables variables

PG1 (MW) 11.4 PG65 (MW) 220.1947 V1 (p.u.) 1.0296 V61 (p.u.) 1.0364 V111 (p.u.) 1.0527

PG4 (MW) 2.5189 PG66 (MW) 201.0445 V4 (p.u.) 1.0418 V62 (p.u.) 1.0502 V112 (p.u.) 1.1063

PG6 (MW) 11.4936 PG69 (MW) 436.1827 V6 (p.u.) 1.0358 V65 (p.u.) 1.0521 V113 (p.u.) 1.0801

PG8 (MW) 0.0619 PG70 (MW) 59.7256 V8 (p.u.) 1.0869 V66 (p.u.) 1.0597 V116 (p.u.) 1.0417

PG10 (MW) 0.0023 PG72 (MW) 24.3827 V10 (p.u.) 1.0976 V69 (p.u.) 1.0504 T5−8 (p.u.) 0.985

PG12 (MW) 124.5337 PG73 (MW) 74.5509 V12 (p.u.) 1.0269 V70 (p.u.) 1.0900 T25−26 (p.u.) 0.96

PG15 (MW) 19.5939 PG74 (MW) 8.3226 V15 (p.u.) 1.0253 V72 (p.u.) 1.0520 T17−30 (p.u.) 0.96

PG18 (MW) 24.8812 PG76 (MW) 34.6640 V18 (p.u.) 1.0379 V73 (p.u.) 1.1055 T37−38 (p.u.) 0.935

PG19 (MW) 7.7568 PG77 (MW) 74.6901 V19 (p.u.) 1.0269 V74 (p.u.) 1.0722 T59−63 (p.u.) 0.96

PG24 (MW) 48.7838 PG80 (MW) 147.4332 V24 (p.u.) 1.0547 V76 (p.u.) 1.0627 T61−64 (p.u.) 0.985

PG25 (MW) 107.1875 PG85 (MW) 99.4061 V25 (p.u.) 1.0907 V77 (p.u.) 1.0720 T65−66 (p.u.) 0.935

PG26 (MW) 195.5876 PG87 (MW) 17.0301 V26 (p.u.) 1.0708 V80 (p.u.) 1.0978 T68−69 (p.u.) 0.935

PG27 (MW) 37.2393 PG89 (MW) 299.9715 V27 (p.u.) 1.0441 V85 (p.u.) 1.0762 T80−81 (p.u.) 0.935

PG31 (MW) 50.8580 PG90 (MW) 53.3827 V31 (p.u.) 1.0364 V87 (p.u.) 1.0836 QC34 (MVAr) 1.0002

PG32 (MW) 99.3890 PG91 (MW) 10.8769 V32 (p.u.) 1.0502 V89 (p.u.) 1.0730 QC44 (MVAr) 1.0280

PG34 (MW) 94.9050 PG92 (MW) 55.1368 V34 (p.u.) 1.0521 V90 (p.u.) 1.1256 QC45 (MVAr) 1.0454

PG36 (MW) 100.0000 PG99 (MW) 55.5188 V36 (p.u.) 1.0597 V91 (p.u.) 1.0680 QC46 (MVAr) 1.0109

PG40 (MW) 51.9858 PG100 (MW) 204.5296 V40 (p.u.) 1.0504 V92 (p.u.) 1.0255 QC48 (MVAr) 0.9849

PG42 (MW) 42.9328 PG103 (MW) 23.0027 V42 (p.u.) 1.0900 V99 (p.u.) 1.0374 QC74 (MVAr) 1.0222

PG46 (MW) 47.2488 PG104 (MW) 25.1934 V46 (p.u.) 1.0520 V100 (p.u.) 1.0338 QC79 (MVAr) 1.0178

PG49 (MW) 74.3148 PG105 (MW) 67.7487 V49 (p.u.) 1.1055 V103 (p.u.) 1.0048 QC82 (MVAr) 1.9167

PG54 (MW) 148.0000 PG107 (MW) 33.5919 V54 (p.u.) 1.0722 V104 (p.u.) 1.0089 QC83 (MVAr) 0.99432

PG55 (MW) 16.4742 PG110 (MW) 23.2359 V55 (p.u.) 1.0627 V105 (p.u.) 1.0807 QC105 (MVAr) 1.0535

PG56 (MW) 32.1441 PG111 (MW) 41.7063 V56 (p.u.) 1.0720 V107 (p.u.) 1.0884 QC107 (MVAr) 1.00394

PG59 (MW) 161.0960 PG112 (MW) 59.3044 V59 (p.u.) 1.0441 V110 (p.u.) 1.0608 QC110 (MVAr) 994560

PG61 (MW) 208.2879 PG113 (MW) 78.4926

PG62 (MW) 37.1254 PG116 (MW) 4.0774

Fuel cost ($/h) 129400

Ploss (MW) 77.401

Qloss (MW) 483.52
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Table 13. Comparison between the CSA results and other optimization
algorithms for IEEE 118-bus

Algorithm Plosses (MW) Fuel cost ($/h)

DE [28] 79.41 129582

GWO [28] 79.58 129720

CSA 77.401 129400

Finally, one can derive that the proposed CSA is efficient in solving the OPF for the three
presented objective functions for both the IEEE-30 system and IEEE-118 bus system.

6. Conclusions

The optimal power flow problem acts as one of the most important issues that must be taken
in consideration during the operation of the electrical power systems. This paper proposes a new
solution methodology based on a recent meta-heuristic algorithm of crow search (CSA) to solve
the problem of the OPF. Different case studies are performed on the IEEE 30-bus system and
IEEE 118-bus network with minimization of generation fuel cost, system active power loss and
emission injected from the generators. The obtained results are compared to other meta-heuristic
optimization algorithms. The comparison ensures the validity and efficiency of the proposed
methodology via the CSA in solving the OPF in electrical power systems.
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