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Abstract: Population density varies sharply from place to place on the whole territory of
Poland. The largest number of people per 1 km2 is 21,531, while uninhabited areas account
for about 48% of the country. Such uneven, non-Gaussian distribution of the data causes
some difficulty in choosing the classification method in geometric choropleth maps. A thor-
ough evaluation of a geometric choropleth map of population data is not possible using
only traditional indicators such as the Tabular Accuracy Index (TAI). That is why the aim
of the article is to develop an innovative index based on distance analysis and neighbour
analysis of grid cells. Two indexes have been suggested in this paper: the Spatial Distance
Index (SDI) and the Spatial Contiguity Index (SCI). The paper discusses the use of five
classification methods to evaluate choropleth maps of population data, like head-tail breaks,
natural breaks, equal intervals, quantile, and geometrical intervals. A comprehensive as-
sessment of such geometric choropleth maps is also done. The research was conducted for
the whole territory of Poland, using data from the 2011 National Census of Population and
Housing. Population data are presented in the 1km grid. The results of the analysis are
shown on thematic maps. A compatibility of the choropleth maps with urban-rural typol-
ogy of the OECD (Organisation for Economic Co-operation and Development) was also
checked.

Keywords: data classification, choropleth map, neighbourhood analysis, spatial conti-
guity analysis, head-tail breaks method

1. Introduction

The choropleth map is one of the quantitative methods of cartographic presentation used
for data in different types of measurement scales (ratio, or interval). The data are gener-
ally related to administrative units or grid cells. It seems that this cartographic method is
easy to use, but it requires attention to many factors, such as the nature of the data, adop-
tion of an appropriate reference unit, and an appropriate graphic form of the choropleth
map (Müller, 1976; Medyńska-Gulij, 2011; Jiang, 2013; Cromley et al., 2015). Depend-
ing on the data distribution it is possible to use different methods of their classification.
A method, on the one hand should, yields a map containing relevant information for the
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user and, on the other, should be easily readable (Bregt et al., 1990; Adrienko et al.,
2001). It can therefore be said that these are very important aspects in drawing thematic
choropleth maps.

There is a wide range of methods used for data classifications such as quantile, equal
intervals, standard deviation, maximum breaks, optimal classification, or Jenks natural
breaks method (Jenks and Coulson, 1963; Pasławski, 1984; Coulson, 1987; Cromley,
1995; Robinson et al., 1995). In general, the objective of classification is not only to
group data in such a way so that similar objects (observations) are in the same classes,
but the classes themselves should be dissimilar (Pasławski, 1984). Detailed reviews of
classification methods can be found in Robinson et al. (1995), Murray and Shyy (2000),
and Brewer and Pickle (2002). There are two groups of classification methods. The first
group is based on data distribution analysis, like natural breaks or head-tail breaks meth-
ods. The other group of classification methods use statistical measures, e.g. the quantile
method with the equal number of units, or the equal interval method, with each class
having an equal range of values. For data with non-Gaussian distribution a classification
method called head-tail breaks (Jiang, 2013) and the concentration-based classification
method (Cromley et al., 2015) are suggested. The head-tail breaks method is based on
dividing data into two parts around the arithmetic mean (Foss et al., 2013; Lin, 2013).
The partitioning of the data continues for data above the mean, until data in the head are
no longer heavy-tailed distributed. Based on a review of literature on the subject Table 1
presents the methods of data classification most often used, together with their main
advantages and disadvantages.

Data classification determines map readability. That is why researchers work in-
tensely on elaborating choropleth map assessing (Jenks and Caspall, 1971; Jenks, 1977;
Pasławski, 2003; Armstrong et al., 2003; Medyńska-Gulij, 2010; Wei et al., 2017). Jenks
introduced three assessment criteria to evaluate choropleth maps: the Overview Accu-
racy Index (OAI), based on area of entities, the Tabular Accuracy Index (TAI), based on
sum of absolute deviations about class means, and the Boundary Accuracy Index (BAI),
based on analysis of neighbourhood of entities (Jenks, 1971). Accuracy of a choropleth
map can be measured also using the GV F – Goodness of Variance Fit (Coulson, 1967).
Alternative classification accuracy indexes are: the Goodness of Deviation around the
Median Fit (GDMF), in which squared deviations from the class and array median are
calculated, as well as the Goodness of Absolute Deviation Fit (GADF), in which abso-
lute deviations from the class and array median are calculated (Robinson et al, 1984).
Most indexes intend to minimise data variation within particular classes and maximise
differences between classes. Classification of geospatial data should consider two per-
spectives: statistical and geographical. This allows forming geographical regions with
small data variation within (Bregt, 1990).

The analysis of spatial patterns is used by many authors in their research (Diggie,
1983; Li and Zhang, 2007; Calka et al., 2017). Diggie (1983) presented the definition of
a spatial pattern as a set of locations, irregularly distributed within a region of interest,
which have been generated by random mechanisms. The analysis is based on measuring
the distance between each feature centroid and its nearest neighbour’s centroid location.
In case when the average distance is less than the average for a hypothetical random



Comparing continuity and compactness of choropleth map classes 23

Table 1. Classification methods with advantages and disadvantages

Classification
method Advantages Disadvantages

Equal
Intervals

The legend limits contain no missing
values (or gaps).
The results are easy to interpret for the
map user.
The class limits can be computed man-
ually.

The class limits fail to consider how data are
distributed.
May produce classes with zero observations.
Features with similar values may end up in
different classes, exaggerating their differ-
ences. Wide range of values can end up in the
same class, minimizing differences.

Quantile Classes are not left empty nor do they
have limited or excessive number of
values.
The class limits can be computed man-
ually.
Applicable to ordinal data.

The class limits fail to consider how data are
distributed.
Variable class width and/or gaps in legend.
Distribution unequal when division of obser-
vations by the number of classes does not re-
sult in a whole number.
Duplicate data values at class break requires
manual adjustments.
Value of an observation could be closer to
value in a different class than its own.
Features with similar values may end up in
different classes, exaggerating their differ-
ences. Wide range of values can end up in the
same class, minimizing differences.

Standard
Deviation

Seeing which features are above or be-
low an average value.
The class limits consider how data are
distributed.
Produce constant class intervals.

Map doesn’t show actual values, only how far
values are from the mean.
Very high or low values can skew the mean.
Good only for normal distributed data.

Natural Breaks
(Jenks)

Consider the distribution of the data.
Good for the data not evenly dis-
tributed.
Uses grouping based on break points
visible graphically.
Intuitive.

Class breaks are subjective.
Breaks are not necessarily obvious.
Difficulty to determine breaks increases with
large data set.
Can be difficult to choose optimum number
of classes, especially if data are evenly dis-
tributed.

Geometrical
Intervals

It works well on data that are not dis-
tributed normally.
Good for data with significantly large
ranges.
Break points determined by rate of
change in the data.
This ensures that each class range has
approximately the same number of val-
ues with each class and that the change
between intervals is fairly consistent.

Not appropriate for data with small ranges or
linear trends.

Head-tail
Breaks

It works well on data that are not dis-
tributed normally.
It is easy to choose optimum number
of classes.
Good for data with significantly large
ranges.

Not appropriate for data with normal distribu-
tion.
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distribution, the distribution of the features being analysed is considered clustered. Oth-
erwise, the features are considered dispersed (Mitchell, 2005). The author intends to treat
fields of reference ascribed to a given class as geographical objects occurring in a given
location. Spatial patterns of choropleth maps has been studied by several cartographers
(Olson, 1972; Müller, 1975; Bregt, 1990). Müller (1975) defined the aggregation index
(AG) based on an analysis of adjacent units, and the boundary contrast index (BI) based
on the amount of adjacent units.

Problems with the development of choropleth maps presenting population density,
signalled earlier in the paper of Calka et al. (2017), was an inspiration to undertake
the present research. A large number of small mapping units, a very high range of
data (from 0 to more than 23,000 per 1 km2) and non-Gaussian distribution cause
difficulty in data classification, and thus the development of choropleth maps. Litera-
ture shows that the head-tail breaks method brings the best results for the classifica-
tion of data with other than the normal distribution. However, this does not resolve
the difficulty in visualization, because grid cells assigned to each class do not form
dense clusters. The problem, however, could not be identified with the help of the most
commonly used TAI index. Therefore, the purpose of the article is to develop novel
indicators or to apply existing ones to assess geometric choropleth maps of popula-
tion density, with an emphasis on continuity and compactness of grid cells in each
class. Continuity refers to the fact that there are no gaps in spatial data (Goodchild,
1992), and the compactness is acknowledged as one of the most intriguing and im-
portant properties of a shape (Angel et al., 2010). Those indicators are based on dis-
tance analysis and neighbourhood analysis of grid cells. The SCI index has been de-
veloped by the author of this paper, while SDI is an innovative application of the
existing ANN indicates (Average Nearest Neighbor) for the assessment of class divi-
sion on choropleth mapps. Additionally, the correctness of rural and urban area por-
trayal in line with the OECD (Organisation for Economic Co-operation and Develop-
ment) are analysed (Brezzi, 2011). The paper is structured as follow: section 2 de-
scribes methods, section 3 deals with study area and data used in analysis, section
4 demonstrates population data classification and its assessment with different meth-
ods using the indexes proposed in this paper. Finally, conclusions are drawn in sec-
tion 5.

2. Methods

The spatial pattern of choropleth maps was assessed using two new indexes: the Spa-
tial Distance Index (SDI) and the Spatial Contiguity Index (SCI), while readability was
evaluated with the Tabular Accuracy Index (TAI). The Spatial Distance Index is based
on existing index called Average Nearest Neighbor (ANN) existing in literature. It is cal-
culated as the observed average distance divided by the expected average distance. The
expected average distance is based on a hypothetical random distribution with the same
number of features covering the same total area. The statistical significance of obtained
results is tested with the use of p-value. The SDI ratio value lower than 1 means that the
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pattern of each class exhibits clustering. Otherwise, the trend is toward dispersion (Clark
and Evans, 1954).

SDI =
Do

DE
(1)

where: Do is the observed mean distance between each feature and its nearest neighbour,
and DE is the expected mean distance for the features given in the random pattern.

Polygon contiguity (the Spatial Contiguity Index) is determined using a statistic
called Polygon Neighbours. Spatial contiguity was defined by Lai et al. (2009) as a mea-
sure to check contiguity between areas (whether polygons share border). The neighbour
relationship can loosely represent a measure of potential interaction between adjoining
areas. Contiguity measures evaluate the characteristics of spatial units that are connected.
The Polygon Neighbours tool available in ArcGIS 10.3.1 follows a hierarchical path to
determine the type of neighbour and the statistic showing the number of shared borders.
To evaluate the classification, standardized the Spatial Contiguity Index (SCI) based on
polygon contiguity was developed by the author. The SCI Index was specified by using
the following formula:

SCI =

n

∑
n=1

s
4 ·m
n

(2)

where:
s – the number of neighbours in the same class determined with the Polygon Neighbours

tool,
m – the number of observations in a given class,
n – the number of classes in the choropleth map,
4 – the number of adjacent neighbours for each grid cell.

The index takes vales from 0 to 1, with 0 meaning that that the objects in various
choropleth map classes are characterized by a high dispersion (low proximity), and 1
meaning that the objects in the choropleth map for each class are characterized by a high
concentration (high proximity).

Five population density maps of Poland were assessed using this spatial indexes. All
maps were 1 km geometrical choropleth maps portraying the same set of population data
in five classes. The number of classes was determined with the head-tail breaks method.
Different classification method were employed to different maps: natural breaks, quan-
tile, equal intervals, geometrical intervals and head-tail breaks methods.

The TAI index based on minimising the variation of data within the classes and
maximizing differences between classes is computed according to the formula (Janks
and Caspall, 1971):

TAI = 1−

k

∑
j=1

n j

∑
i=1

∣∣x ji − x j
∣∣

n

∑
i=1

|xi − x|
(3)

where:
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xi – observed values,
n – the total number of observations, the number

of grid cells,
x – the mean of all values,
k – the number of classes,
x ji – class j values,
n j – the number of observations in class j,
x j – the class mean for class j.
The Tabular Accuracy Index takes values form 0 to 1. The numerator is the sum

of absolute deviation values to be found in a class and the denominator is the sum of
absolute deviation of all values.

3. Area and data

The study area covers Poland, a central-eastern European country. With nearly 38.5 mil-
lion people living in Poland, its area is 312.7 thousand km2, making it the 6th largest
country in Europe. Population data was taken from the Census of Population and Hous-
ing. The last census was carried out in 2011. The population data are available in a
grid cell of 1 km2, in Lambert Azimuthal Equal Area coordination system (LAEA). The
people counts were attributed to grid cells based on address points (Calka et al., 2017).

Population data are characterized by high spatial differentiation and the logarithmic
distribution (Figure 1). Nearly 40% of the Polish land is uninhabited, while 70% of the
total population is located in 5% of the country’s area.
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Fig. 1. Histogram of population density in Poland

The highest number of 33.014 people per 1 km2 was attributed to the grid cell located
in Szczecin. After examining this area this value was this value has been considered as



Comparing continuity and compactness of choropleth map classes 27

outlying, and then replaced by a similar value to the data from four neighbouring grid
cells equals 13.014 people per 1 km2.

The descriptive statistics calculated for Polish population data are presented in Ta-
ble 2. The average population per 1 km2 is almost 122 people. The data do not have a
normal distribution, being skewed to the right, with the skewness coefficient vale of 13.9.
This is also confirmed by a low value of the first and the third quartile, and a low value
of median. Standard deviation equalling to 654.1 shows that variability of population
counts in grid cells is highly heterogeneous.

Table 2. Descriptive statistics of population data

Descriptive statistics Population Data

Number of observations 315,857

Min 0

The first quartile (Q1) 0

Median 12.0

The third quartile (Q3) 64

Max 21,531

Sum 38,492,223

Mean 121.9

Standard deviation 654.1

Coefficient of skewness 13.9

4. Results and discussion

Choropleth maps together with histograms are presented in Figure 2. The head-tail map
(Figure 2a), as relatively new in visualising population density, describes, in the author’s
opinion, more details than others.

Class 1 (Figure 2a) presents sparsely populated area with 122 inhabitants per 1 km2.
It well reflects rural areas according to the OECD typology. Moreover, it is the most
numerous, comprising 85% of all values. The SDI index for class 1 is greater than 1
(SDI = 1.56), underlying the spatial dispersion of grid cells belonging to this class. The
values of SDI index for the other classes are lower than 1, and are as follows: Class 2 –
SDI = 0.81; Class 3 – SDI = 0.48; Class 4 – SDI = 0.38; Class 5 – SDI = 0.33 (Table 3).
The low value of the SDI index confirms that the spatial pattern of classes 2, 3, 4, and 5
exhibits clustering. Class 2, ranging from 123 to 697 people in a grid cell, well illustrates
small cities, with the share of population about 12.4% out of the total population. Classes
3, 4, and 5 are the smallest, with the number of observations below 2%. They represent
urban areas, with large and medium sized cities.

Classes 1 in the natural breaks and the equal intervals methods are the biggest (grid
cells of those classes constitute, respectively, 96%, and 99% of all objects). The values
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a)

b)

c)

d)

e)

Fig. 2. Population density maps of Poland with histograms; a) the head-tail breaks; b) the
natural breaks; c) the equal intervals; d) the quantile method; e) the geometrical intervals
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Fig. 3. Maps of population density in Poland developed using head-tail breaks classification, a division into
classes 1 to 5.

Table 3. Values of the SDI index

Classification Method
SDI (Spatial Distance Index)

Class 1 Class 2 Class 3 Class 4 Class 5

Head-Tail Breaks Method 1.56 0.81 0.48 0.38 0.33

Natural Breaks Method 1.66 0.54 0.39 0.40 0.36

Equal Intervals Method 1.69 0.39 0.34 0.41 0.50

Quantile Method 1.10 0.91 0.90 0.89 0.84

Geometrical Intervals Method 1.10 0.95 1.05 0.67 0.32

of the SDI index (Table 3), with SDI = 1.66 and SDI = 1.69, indicate strong dispersion.
Although the other classes for those methods of classification exhibit clustering, the clear
dominance of the first class negatively affects the readability of maps. Both the natural
breaks and the equal intervals methods do not highlight rural or urban areas clearly
enough. The quantile method (Figure 2d) is characterized by a similar size of each class.
Classes 2 to 5 comprise 15% of all population grid cells and are characterized by high
clustering, as shown in Table 3. Class 1 constitutes 38% of all values. The SDI index for
class 1 is greater than 1 (SDI = 1.10), so the trend is toward dispersion. Classes 1 to 4
represent rural areas. With the geometrical intervals method (Figure 2e) class 1 has the
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largest number of grids, with 39% of all values. This class, with the value of the SDI
equals to 1.10, is strongly dispersed. Class 3, with the number of observations of 33%,
has the SDI value of 1.05 and lacks clustering properties. The results of the p-value in
Table 3 constitute 0.000, showing that there is less than 1% likelihood that this clustered
or dispersed pattern could be random. It means that the obtained results are statistically
significant.

Spatial contiguity is measured with the number of neighbours in the same class,
hence the computation of the SCI index should be preceded by Neighbourhood Analysis
(Table 4). Class 1 in all methods is the most numerous, and therefore shows the greatest
spatial contiguity, which positively affects the readability of this class on the maps.

Table 4. Polygon Neighbours analysis results

Head-tail
Breaks 1 2 3 4 5

1 305785 11169 61131 73959 31728

2 11169 1014 6447 7515 2538

3 61131 6447 47771 67064 20100

4 73959 7515 67064 150682 52291

5 31728 2538 20100 52291 81909

Natural
Breaks 1 2 3 4 5

1 1182247 22622 2405 590 76

2 22622 8434 2372 880 197

3 2405 2372 1562 962 303

4 590 880 962 848 420

5 76 197 303 420 300

Equal
Intervals 1 2 3 4 5

1 1244953 2821 710 140 17

2 2821 912 444 128 27

3 710 444 306 87 17

4 140 128 87 42 23

5 17 27 17 23 4

Quantile 1 2 3 4 5

1 305785 63942 43322 38996 31728

2 63942 45428 39165 29954 19089

3 43322 39165 48208 40851 22362

4 38996 29954 40851 47942 33477

5 31728 19089 22362 33477 81909

Geometrical
Intervals 1 2 3 4 5

1 305785 79743 85878 11993 374

2 79743 79001 93673 9846 326

3 85878 93673 200158 31574 1204

4 11993 9846 31574 26696 4302

5 374 326 1204 4302 5582

The values of the SCI index and Tabular Accuracy Index (TAI) for different methods
are presented in Table 5.

The results of the analysis show that the head-tail breaks method is characterised
by the best selected class ranges, shown by a high rate of TAI (Table 5). At the same
time, for this classification the SCI index is the lowest, indicating that the classes are
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Table 5. SCI and TAI of classification methods

Classification method SCI TAI

Head-tail breaks method 0.29 0.70

Natural breaks 0.38 0.60

Quantile classification 0.37 0.34

Equal intervals 0.31 0.24

Geometrical intervals 0.44 0.65

of low spatial contiguity, which negatively affects the perception of maps by the user.
This involves difficulty in identifying individual classes on the map. The best spatial
contiguity and good TAI results are achieved using the geometrical intervals method,
with a value of the Spatial Contiguity Index reaching 0.44, and with the TAI of 0.65. This
means that the geometrical intervals method allows large diversity between classes, and
small diversity inside classes, and they, at the same time, are relatively easily identifiable
on the map by a user. The natural breaks method generally produces good results in
terms of the TAI (0.60), and quite a high score for SCI (0.38). The ranges of classes
result in quite a large diversity between classes and quite low diversity in individual
classes. The equal interval and quantile methods both lead to classes with large within-
class variations for population data sets and to a low value of TAI. This is due to the fact
that in the quantile method class 5 has a very large value range (from 123 to 21,531),
while in the equal intervals method class 1 is dominant, with 99% of all observations. At
the same time those classification methods have quite a low or average value of the SCI
index (0.31 and 0.37), due to the fairly low spatial contiguity of the classes.

5. Conclusion

The article presents an analysis of the application of five classification methods (natural
breaks, equal intervals, geometrical intervals, quantile and head-tail breaks method) to
present Polish population data obtained from the Main Statistical Office. These data have
the high right-hand coefficient of skewness of 13.9, which negatively affects the choice
of appropriate classification methods. The data are presented by means of geometric
choropleth map. An evaluation of the methods is done in two ways: with the TAI index,
and with two innovative indexes: the Spatial Distance Index (SDI) and Spatial Contiguity
Index (SCI). The article shows how important a selection of data classification methods
is in the process of developing a choropleth map. Depending on the selection of classi-
fication methods, a variety of population density maps can be developed. Therefore, it
is so important to use not only statistics, but also spatial analysis methods to choose an
appropriate one for data classification.

The head-tail breaks classification method shows its large utility in the process of
mapping population density. Maps developed with this method clearly highlight rural
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areas in accordance with the OECD typology. In further studies on data classification it
seems to be reasonable to exclude areas with a population value equal to zero from the
analysis, and in consequence these areas will form a separate class. Classes developed
by using this method are clustered, although they have a low SCI value, indicating low
spatial contiguity. The geometrical intervals method is a useful tool for population data
classification, with the highest value of SCI and a high quality confirmed by a high TAI
value. Classes 4 and 5 present urban areas in accordance with the OECD rural-urban
typology. When assessed with the TAI index, the quantile method and the equal intervals
methods show the smallest utility in population data classification.

The results how that choosing a method of data classification is important because
the contiguity and compactness of choropleth classes affect the readability of the map.
Depending on the selection of class ranges in mapping population density, rural areas
can be made prominent or the focus can be directed at urban areas with small, medium,
and large town and cities. An evaluation of geometric choropleth maps for population
data is not possible using only such traditional indicator as the Tabular Accuracy Index
(TAI). In choropleth map analysis the pattern complexity of grid cells should also be
taken into account. This paper shows that complex rating of geometric choropleth maps
allows a selection of the best method of data population classification.
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